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Endogeneity and Control Function Approach

Control function approach has been a valuable tool...

I in addressing endogeneity and recovering various causal
parameters,

I esp. for nonparametric models that allow for heterogeneity



Control Function Approach

Construct control variables V , which defines a latent type

I conditional on V , endogenous explanatory variables D is
unconfounded

Often, V is constructed by inverting treatment selection processes

I so that V is written as a function of observables

I thus a control function (CF)

Many empirical studies build on this insight to construct CF

I Kline & Walters 16; Card et al 19; Abdulkadiroglu et al 20; Bishop et al

22...



Challenges of Control Function Approach

Challenge: CF approach relies on invertibility of selection models

I e.g., in nonparametric triangular model, it requires...
• continuous D and

• strict monotonicity w.r.t scalar unobservable

⇒ most important limitation of CF approach (Blundell & Powell 03)

Challenge: CF is required to be “point identified”

I sometimes does not hold

I e.g., interval data, controls involving strategic behaviors
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This Paper: Set-Valued Control Functions

This paper: allows the CF to be set-valued

I when only coarse information of controls is available

I e.g., selection models without invertibility

⇒ expands the CF approach to broader applications



This Paper: General Selection Processes

We allow complex treatment selection processes, such as...

1. continuous or discrete decisions with rich heterogeneity

2. censored decisions

3. strategic interaction of multiple agents

4. dynamically optimizing behavior

⇒ these processes typically violate invertibility
• mapping from observables to V is only a correspondence



This Paper: Partially Observed Controls without Selection

We also allow control variables that are partially observed/identified
without any selection process

5. controls being interval data (e.g., wealth, debt, biometric
measures, psychological traits)

6. strategically reported preference in school matching (Bertanha et

al 24)

7. link information as controls (Auerbach 22)

We show that the CF approach can still be used...

I to (partially) identify structural (i.e., causal) parameters

I e.g., average and quantile structural functions for outcomes
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Outcome Equation

Consider an outcome equation:

Y = µ(D,U)

I Y ∈ Y ⊆ RdY outcome of interest

I D ∈ D ⊆ RdD vector of endogenous treatments

I U ∈ U ⊆ RdU vector of latent variables

I (X ∈ X ⊆ RdX vector of covariates, suppressed)

I µ structural function



Causal Parameters

Consider a potential outcome:

Yd = µ(d ,U)

I many policy-relevant parameters are features of Yd

• hence functionals of µ

I e.g., the average structural function and the distributional
structural function:

ASF(d) ≡ E [µ(d ,U)] = E [Yd ]

DSF(d) ≡ Fµ(d ,U) = FYd



Control Function Assumption

A vector of control variables V ∈ V (e.g. ⊆ RdV ) is such that

D ⊥ U|V

For CF approach to work, V needs to be identified or expressed as
a function of observables

I when selection is involved, let Z ∈ Z ⊆ RdZ be vector of IVs

I Newey et al 99: D = π(Z ) + V , then V = D − π(Z )

I Imbens & Newey 09: D = h(Z ,V ) with continuous scalar V and
h strictly monotonic in V , then V = h−1(Z ,D)
• when V is continuous, invertibility requires D to be continuous

• scalar V limits heterogeneity in selection mechanism

⇒ We aim to remove these restrictions



Generalized Selection Equation

Consider generalized selection equation:

D = π(Z ,V )

I (X suppressed)

I in general, (D,Z ) 7→ V is only a correspondence

I e.g., D = 1{π(Z ) ≥ V }

The selection process restricts V to the following set a.s.:

{v : D = π(Z , v)} ⊆ RdV



This Paper: Control Function as Random Set

A set-valued CF V is a random closed set, constructed from
observable variables

V (D,Z ;π) = cl{v : D = π(Z , v)} ⊆ RdV

I it contains the true control variable V a.s.

I it can be used to construct a set-valued predictions of outcome
that are compatible with the model

I then, using the containment functional or Aumann expectation
(Molchanov 17) associated with the set, we generate sharp
identifying restrictions,

I which then yield the (sharp) identified set for structural
parameters



Related Literature

Identification and estimation in nonparametric models with
endogenous explanatory variables:

I nonparametric IV approach: Newey & Powell 03; Hall & Horowitz

05; Chernozhukov & Hansen 05; Darolles et al 11; D’Haultfoeuille &

Fevrier 15; Torgovitsky 15; Vuong & Xu 17; Chen & Christensen 18

I nonparametric CF approach: Newey et al 99; Chesher 03; Das et al

03; Blundell & Powell 04; Imbens & Newey 09; D’Haultfoeuille et al 21;

Newey & Stouli 21

I monotonicity assumption with binary or discrete D: Imbens &

Angrist 94; Abadie et al 02; Heckman & Vytlacil 05



Related Literature
Partial identification:

I generalization of IV approach: Chesher & Rosen 17; Chesher &

Smolinski 12; Chesher & Rosen 13; Chesher et al 23

I related approaches: Beresteanu et al 11; Galichon & Henry 11

I partial identification without invertibility in selection: Chesher

05; Shaikh & Vytlacil 11; Jun et al 11; Mourifie 15; Mogstad et al 18;

Machado et al 19; Han & Yang 24

I interval data: Manski & Tamer 02; Molinari 20

This paper:

I different way of applying random set theory

I generalization of CF approach
• CF and IV assumptions are non-nested

I a wide range of models where controls are partially identified



I. Motivating Examples



Example 1: Generalized Roy Model

D = 1{π(Z ) ≥ V }

can be motivated by

D = 1{Y1 − Y0 − C ≥ 0}
Yd = µ(d) + Ud for d = 0, 1

C = µc(Z ) + Uc

I Z a vector of cost-shifters

I π(Z ) ≡ µ(1)− µ(0)− µc(Z ) and V ≡ Uc − U1 + U0

Note U ≡ (U1,U0) is a vector in Y = µ(D,U)



Example 1: Generalized Roy Model

Suppose we are interested in the causal effect of D on Y

Suppose Z ⊥ U|V

Then, V is valid control variable, because D ⊥ U|V

We cannot recover V by inverting the selection equation

Nonetheless, the model restricts V to the following set a.s.:

V (D,Z ;π) =

{
[0, π(Z )] if D = 1
[π(Z ), 1] if D = 0

which is a set-valued CF
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Example 2: Non-Monotonic Treatment Decisions

Example 1 satisfies LATE monotonicity, eliminating either defiers or
compliers (Imbens & Angrist 94; Vytlacil 02)

Consider instead

Dz = 1{π(z) ≥ Vz} for z ∈ Z

I suppose Z is binary

I both compliers and defiers can have nonzero shares:

{D0 = 0,D1 = 1} = {V0 > π(0),V1 ≤ π(1)}
{D0 = 1,D1 = 0} = {V0 ≤ π(0),V1 > π(1)}



Example 2: Non-Monotonic Treatment Decisions
Observed D = D0 + (D1 − D0)Z satisfies

D = 1{π(0)− V0 + (π(1)− π(0)− V1 + V0)Z ≥ 0}
≡ 1{π̃(Z ) + (V1 − V0)Z + V0 ≥ 0}

where π̃(Z ) ≡ π(0) + Z (π(1)− π(0))

I a random-coefficient model for selection (Gautier & Hoderlein 11;

Kline & Walters 19)

Suppose Z ⊥ U|(V0,V1), then V ≡ (V0,V1) are valid control
variables

V belongs to the following set-valued CF a.s.:

V (D,Z ;π) =

{
cl {(v0, v1) : π̃(Z ) + (1− Z )v0 + Zv1 ≥ 0} if D = 1
cl {(v0, v1) : π̃(Z ) + (1− Z )v0 + Zv1 ≤ 0} if D = 0



Example 2: Non-Monotonic Treatment Decisions

For continuous D, consider a random coefficient model:

D = V0 + V1Z

Then V ≡ (V0,V1) belongs to the following set-valued CF a.s.:

V (D,Z ) = cl {(v0, v1) : v0 = D − Zv1}



Example 3: Decisions as Corner Solutions

Latent treatment: D∗ = π∗(Z ) + V

Observed treatment: D = max{D∗, 0}

I e.g., hours of training, amount of subsidy

I then D = π(Z ,V ) ≡ max{π∗(Z ) + V , 0}

Fix z , then

I if d = 0, it must be that π∗(z) + V ≤ 0

I if d > 0, it must be that π∗(z) + V > 0

Then, we have

V (D,Z ;π∗) =

{
[−π∗(Z ),∞) if D > 0
(−∞,−π∗(Z )] if D = 0



Example 4: Strategic or Dynamic Treatment Decisions

Let D be vector of decisions (across individuals or periods)

We are interested in the effect of the entire profile D on Y

I treatment effects with strategic interaction (Balat & Han 23)

I dynamic treatment effects (Han 21; Han 24; Han & Lee 24)

Suppose Z is vector of IVs (individual- or time- specific) and π(·) is
the generalized selection function

We can construct V (D,Z ;π) in multi-dimensional space (more
later)



Example 5: Set-Valued Controls Without Selection

Bertanha, Luflade & Mourifié 24 estimate the causal effects of school
assignment

I students’ local preferences as control variables, then RD
comparison

I i.e., V ∈ V where V is the set of preference relations

I but under capacity constraints, students have incentives to
misreport their preferences

I based on reported partial order of preferences, they recover
local preference sets (V ) that contain V a.s.



Example 5: Set-Valued Controls Without Selection

In social network setting, Auerbach 22 considers a partial linear
model for an outcome

I with nonparametric λ(V ) where V is an unknown control
variable (e.g., social characteristics)
• V is seldom identified

I instead, use the link function f (·) in a link formation model
• f is identified from the distribution of social links

I Assumption 3: individuals with similar f have similar λ(V )

I then, the linear parameters are identified

I want to relax Assumption 3: individuals with similar f have
values of λ(V ) with discrepancy bounded by M

I then, we can recover a set of controls (λ(VM))



II. Model Predictions and Identification Analysis



Main Assumptions

Assumption 1 (CF)
U|D,V ∼ U|V .

Assumption 2 (Set-Valued CF)
(i) There is a random closed set V : Ω→ F(V) such that V ∈ V
with prob 1; (ii) V is a measurable function of observable variables
and a parameter π.

Assumption 3 (Continuous U)
U|D,V has strictly positive density w.r.t. Lebesgue measure on
RdU a.s.



Main Assumptions

By Assumption 3, one may represent

U = Q(η;D,V ) ∈ RdU

I random vector η ∈ RdU where η ⊥ (D,V ) and η ∼ U[0, 1]dU

I Knothe-Rosenblatt transform (Villani 08; Carlier et al 10; Joe 14)

I e.g., we can represent U = (U0,U1) ∼ FU|D,V sequentially as

U0 = Q0(η;D,V ) ≡ F−1
U0|D,V (η0|D,V )

U1 = Q1(η;D,V ) ≡ F−1
U1|U0,D,V

(η1|U0,D,V )

where (η0, η1) ∼ U[0, 1]2



Main Assumptions

U = Q(η;D,V ) ∈ RdU

Then, by Assumption 1,

U = Q(η;V )

I Q is a known function of distribution F on U|V
• if U is scalar, Q is conditional quantile of U|V



Model’s Prediction

Now we can write

Y = µ(D,U) = µ(D,Q(η;V ))

I Q(η;V ) is adjustment term
• involves V and “clean” error term η (independent of D)

Consider model’s prediction given parameter θ ≡ (µ,F , π):

I define a random closed set

Y (η,D,V ;µ,F ) ≡ cl{y ∈ Y : y = µ(D,Q(η;V )),V ∈ Sel(V )}

I this set collects all Y values compatible with the model

I a function of observable exogenous (D,V ) and latent η



Illustrative Example
Consider binary Y and

Y = 1{µ(D) ≥ U}
= 1{µ(D) ≥ Q(η|V )} = 1{F (µ(D)|V ) ≥ η}

Model’s prediction given (µ,F ):

Y (η,D,V ;µ,F )

=


{0} η > supv∈V F (µ(D)|v)

{0, 1} infv∈V F (µ(D)|v) < η ≤ supv∈V F (µ(D)|v)

{1} η ≤ infv∈V F (µ(D)|v)

η

infv∈V F (µ(d)|v)

{1}

{0, 1}

{0}
supv∈V F (µ(d)|v)

0

1



Identification Analysis

We aim to characterizes ΘI (P0) through inequality restrictions on θ

We introduce the containment functional Cθ of random set Y :

Cθ(A|D = d ,Z = z) ≡
∫

[0,1]dU
1{Y (η,D,V ;µ,F ) ⊆ A}dη

for any closed set A ⊂ Y and (d , z)

I Cθ uniquely determines the distribution of Y (Molchanov 17)

I conditional on (D,Z ), the remaining randomness in Y is η

I it is straightforward to compute the right-hand side, as η is
uniform over [0, 1]dU independent of (D,Z )



Illustrative Example (continued)

Y (η,D,V ;µ,F )

=


{0} η > supv∈V F (µ(D)|v)

{0, 1} infv∈V F (µ(D)|v) < η ≤ supv∈V F (µ(D)|v)

{1} η ≤ infv∈V F (µ(D)|v)

For example, for A = {1},

Cθ({1}|D = d ,Z = z) = Fη(Y (η,D,V ;µ,F ) ⊆ {1}|D = d ,Z = z)

= inf
v∈V (d ,z;π)

F (µ(d)|v)

and, for A = {0},

Cθ({0}|D = d ,Z = z) = 1− sup
v∈V (d ,z;π)

F (µ(d)|v)



Identification Analysis

Theorem 1 (Identified Set)
Suppose Assumptions 1–3 hold. Then, the sharp identification
region for the structural parameter θ = (µ,F , π) is

ΘI (P0) = {θ ∈ Θ : P0(Y ∈ A|D,Z ) ≥ Cθ(A|D,Z ),

a.s. ∀A ∈ F(Y), π ∈ Πr (P0)}

I above restrictions are known as Artstein’s inequalities
(Molchanov & Molinari 18)

I model’s set-valued prediction ⇒ a system of inequalities that
do not involve unobservable V

I thus amenable to estimation:
• P0(A|D,Z ) can be recovered from sample of (Y ,D,Z )

• Cθ(A|D,Z ) can be computed from model primitives



Identification Analysis with Mean Restrictions
Suppose Y is continuous with

Yd = µ(d) + Ud

Then, instead of Assumption 1 (CF), we can assume the following:

Assumption 1′ (Mean CF)
For each d ∈ D, E [|Ud |] <∞, and E [Ud |D,V ] = E [Ud |V ], a.s.

Let λd(V ) ≡ E [Ud |V ] and ηd ≡ Ud − E [Ud |V ]

Under Assumption 1
′
, we may write

E [Y |D = d ,V = v ] = µ(d) + λd(v)

and Y = µ(d) + λd(v) + ηd

I λd is a known function of F (the distribution of U|V )



Identification Analysis with Mean Restrictions
With η ≡ (ηd , d ∈ D), define

Y (η,D,Z ;µ,F ) ≡ cl{y ∈ Y : y = µ(D) + λD(V ) + ηD ,V ∈ Sel(V )}

Then use Aumann expectations and support functions to derive:

Theorem 2 (Identified Set)

Suppose Assumptions 1
′
, 2, 3 hold. Suppose EP0 [|Y |] <∞. Then,

the sharp identification region for the structural parameter is

ΘI (P0) = {θ ∈ Θ : µ(d) + λL(d , z) ≤ EP0 [Y |D = d ,Z = z ]

≤ µ(d) + λU(d , z), π ∈ Πr (P0)},

where

λL(d , z) = inf
v∈V (d ,z;π)

λd(v), λU(d , z) = sup
v∈V (d ,z;π)

λd(v).



Identification Analysis: Functionals of θ

Based on ΘI (P0) of θ obtained in Theorems 1 and 2, we can
construct bounds on functionals of θ

Structural estimands can be obtained as functionals of (µ,F ,FV ):

I e.g., ASF(d) ≡ E [µ(d ,U)] = E [Yd ] (Blundell & Powell 03):

ASF(d) =

∫ ∫
µ(d ,Q(η; v))dηdFV

• ATE(d , d ′) = ASF(d)− ASF(d ′)

I e.g., DSF (y , d) ≡ Fµ(d ,U) = FYd
(Chernozhukov et al 20):

DSF(y , d) =

∫ ∫
1{µ(d ,Q(η; v)) ≤ y}dηdFV

• QSF(d) = DSF−1(τ, d) (Imbens & Newey 02)
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Identification Analysis: Functionals of θ

I e.g., policy-relevant structural function:

κ(z) ≡ E [YDz ] =

∫ ∫
µ(π(z , v),Q(η; v))dηdFV

I e.g., mediated structural function:

κ(d1, d
′
1) ≡ E [Yd1,D2,d′1

] =

∫ ∫
µ(d1, π2(d ′1, z , v),Q(η; v))dηdFZ ,V

where we allow d1 6= d ′1



Identification Analysis: Functionals of θ

In general, given a function ϕ : R→ R, let

κ(d) ≡ E [ϕ(Yd)] =

∫ ∫
ϕ(µ(d ,Q(η; v))dηdFV

I ASF and DSF are special cases of κ

Theorem 3 (Identified Set)
Suppose the conditions of Theorem 1 or 2 hold. Then, the sharp
identification region for κ is KI (d) ≡

⋃
θ∈ΘI (P0)[κ(d ; θ), κ(d ; θ)],

where

κ(d ; θ) ≡ E [ sup
v∈V (D,Z ;π)

∫
ϕ(µ(d ,Q(η; v))dη],

κ(d ; θ) ≡ E [ inf
v∈V (D,Z ;π)

∫
ϕ(µ(d ,Q(η; v))dη].



Discussion: Inference

Practitioners can use the restrictions in Theorem 1 or 2 to make
inference for ΘI (P0), its elements, or KI (d)

I inference methods based on conditional moment inequalities
(Andrews & Shi 13; Chernozhukov et al 13)

I likelihood-based inference methods (Chen et al 18; Kaido &

Molinari 22; Kaido & Zhang 24)



III. Applications of the Identification Results



Example 4.1: Treatment Responses with Social Interactions

Consider individuals j = 1, . . . , J

Let D ≡ (D1, . . . ,DJ) be vector of decisions across individuals

We are interested in the effect of the entire profile D on Y

Suppose that observed D satisfies

Dj = 1{πj(D−j ,Zj) ≥ Vj} for j = 1, . . . , J (1)

where D−j is vector D without Dj

I Balat & Han 23; Ciliberto, Murry & Tamer 21

I can be motivated by relaxing SUTVA (Rubin 78) and
introducing Roy-type decisions

I multiple solutions to (1) may exist
• the selection process is incomplete (Tamer 03)



Example 4.1: Treatment Responses with Social Interactions

V1

V2

A

B

Sπ,(1,1)

Sπ,(0,0)Sπ,(1,0)

Sπ,(0,1)

Sπ,{(1,0),(0,1)}

Note: A = (π1(1, z1), π2(1, z1)); B = (π1(0, z1), π2(0, z2))



Example 4.1: Treatment Responses with Social Interactions

Let Vs : Ω→ {0, 1} represent an unknown selection mechanism

I if (V1,V2) ∈ Sπ,{(1,0),(0,1)}(Z ),...
• D = (1, 0) is selected when Vs = 1, and

• D = (0, 1) is selected when Vs = 0

I Vs is another source of possible endogeneity

Suppose E [U|Z ,V ] = E [U|V ] for V ≡ (V1,V2,Vs), then V is
valid control variable



Example 4.1: Treatment Responses with Social Interactions

We define the following set-valued CF as a union of two random
sets:

V (D,Z ;π) = [Ṽ 0(D,Z ;π)× {0}] ∪ [Ṽ 1(D,Z ;π)× {1}]

where

Ṽ 0(D,Z ;π) ≡

{
Sπ,(0,1)(Z ) ∪ Sπ,{(1,0),(0,1)}(Z ) if D = (0, 1)

Sπ,(d1,d2)(Z ) if D 6= (0, 1)

and

Ṽ 1(D,Z ;π) ≡

{
Sπ,(1,0)(Z ) ∪ Sπ,{(1,0),(0,1)}(Z ) if D = (1, 0)

Sπ,(d1,d2)(Z ) if D 6= (1, 0)



Example 4.1: Treatment Responses with Social Interactions

For fixed j ,

Yj ,d1,d2 = µ(d1, d2) + Ud1,d2

Recall D ≡ (D1,D2) and define the model prediction

Y (η,D,V ;µ,F ) = cl{y ∈ Y : y = µ(D) + λD(V ) + ηD ,V ∈ Sel(V )}

where λd(v) ≡ E [Ud |V ]



Example 4.1: Treatment Responses with Social Interactions

Corollary 2 (Identified Set)
Suppose EP0 [|Y |] <∞. Suppose, for each (d1, d2) ∈ D,
E [Ud1,d2 |Z ,V ] = E [Ud1,d2 |V ], a.s. Then, ΘI (P0) is the set of
values θ = (µ, π,F ) such that

sup
z∈Z

{
EP0 [Y |D = d ,Z = z ]− λU(d , z)

}
≤ µ(d) ≤

inf
z∈Z

{
EP0 [Y |D = d ,Z = z ]− λL(d , z)

}
,

where

λU(d , z) ≡ max { sup
(v1,v2)∈Ṽ 0(d,z;π)

λd(v1, v2, 0), sup
(v1,v2)∈Ṽ 1(d,z;π)

λd(v1, v2, 1)},

λL(d , z) ≡ min { inf
(v1,v2)∈Ṽ 0(d,z;π)

λd(v1, v2, 0), inf
(v1,v2)∈Ṽ 1(d,z;π)

λd(v1, v2, 1)}.



Example 4.2: Dynamic Treatment Effects
Consider

D1 = 1{π1(Z1) ≥ V1}
Y1 = 1{µ1(D1) ≥ U1}
D2 = 1{π2(Y1,D1,Z2) ≥ V2}
Y2 = 1{µ2(Y1,D1,D2) ≥ U2}

I Han 21; Han 24; Han & Lee 24

Focus on the effect of D ≡ (Y1,D1,D2) on Y2

I recovering the effect is not straightforward

I U2 may depend on (U1,V1,V2)

I e.g., U1 and U2 may share a time invariant component

I e.g., U2 may be related to (V1,V2) through the agent’s
dynamic treatment decisions



Example 4.2: Dynamic Treatment Effects
Recall D ≡ (Y1,D1,D2) and let Z ≡ (Z1,Z2)

Let U ≡ U2 and V ≡ (U1,V1,V2)

Can show D ⊥ U|V if Z ⊥ U|V

Let π ≡ (µ1(·), π1(·), π2(·))

Can construct the following set-valued control function:

V (D,Z ;π) = V U1(D;µ1)× V 1(D,Z1;π1)× V 2(D,Z2;π2)

where

V U1(D;µ1) =

{
[µ1(D1), 1] if Y1 = 0
[0, µ1(D1)] if Y1 = 1

, V 1(D,Z1;π1) =

{
[π1(Z1), 1] if D1 = 0
[0, π1(Z1)] if D1 = 1

V 2(D,Z2;π2) =

{
[π2(Y1,D1,Z2), 1] if D2 = 0
[0, π2(Y2,D2,Z2)] if D2 = 1

Then, construct Y and apply Theorem 1 (see the paper)



IV. Impact of Learning HIV Status



Impact of Learning HIV Status

Revisit Thornton 08 who studies the impacts of learning HIV status
in Malawi by using RCT data and estimating LATE

I binary D: learning HIV status and receiving counseling

I ordered Y : HIV preventive behavior (condom purchases)

I IVs Z : voucher amount and distance to test center

I discrete/continuous X : HIV diagnosis, gender, age, district,
simulated distance to center
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Consider an ordered choice model of condom purchases:

Y =


0 if µ(D,X ) + U ≤ cL

3 if cL < µ(D,X ) + U ≤ cU

6 if µ(D,X ) + U > cU

and a model for selection: D = 1{π(Z ,X ) ≥ V }

Proposition 1 (Identified Set)
Suppose Assumptions 1–3 hold. Then, θ = (µ, cL, cU ,F , π) is in
the sharp identification region ΘI (P0) if and only if π ∈ Πr (P0) and

Cθ({0}|D,X ,Z ) ≤ P0(Y = 0|D,X ,Z ) ≤ C∗θ({0}|D,X ,Z )

Cθ({6}|D,X ,Z ) ≤ P0(Y = 6|D,X ,Z ) ≤ C∗θ({6}|D,X ,Z ), a.s.
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Our objects of interest:

I (conditional) average structural function:

ASF (d , xHIV ) = E [Yd |xHIV ]

I (conditional) switching probability:

P(Y0 = 0,Y1 > 0|xHIV )

i.e., the share of “switchers” induced by intervention

I (in progress) (conditional) policy-relevant structural function:

PRSF (z∗amt , xHIV ) = E [YDz∗amt
|xHIV ]

by giving $3 (z∗amt = 3) to encourage them to learn HIV status
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Additional identifying assumptions:

I MTS (Manski & Pepper 00: For each d = 0, 1,

E [Y (d)|D = 1] ≥ E [Y (d)|D = 0]

• those who choose to learn their HIV status are more likely to
buy condoms (e.g., health-conscious individuals)

I MTR (Manski 90, 97) for the HIV- group:

Y (1)|XHIV = 0 ≥ Y (0)|XHIV = 0

• HIV- group may have stronger incentive for preventive
behavior (Thornton 08)
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HIV+ HIV-
Baseline

ASF(1) [0.030, 5.578] [0.090, 2.864]
ASF(0) [0.030, 5.216] [0.151, 3.256]
ATE [-4.794, 4.492] [-2.563, 2.141]

MTS
ASF(1) [0.030, 5.307] [0.090, 1.779]
ASF(0) [0.030, 5.276] [0.181, 3.286]
ATE [-4.854, 3.889] [-2.563, 1.176]

95% CIs are calculated based on Kaido & Zhang 24



Impact of Learning HIV Status

HIV+ HIV-
MTR for HIV-

ASF(1) [0.060, 5.397] [0.271, 2.683]
ASF(0) [0.030, 4.070] [0.151, 1.568]
ATE [-2.985, 4.372] [0.030, 2.020]

MTS & MTR for HIV-
ASF(1) [0.030, 5.276] [0.241, 1.719]
ASF(0) [0.030, 4.281] [0.181, 1.719]
ATE [-3.045, 3.950] [0.030, 1.176]

95% CIs are calculated based on Kaido & Zhang 24
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HIV+ HIV-
Baseline

Switch Pr. [0, 0.829] [0, 0.508]

MTS
Switch Pr. [0, 0.724] [0, 0.291]

MTR for HIV-
Switch Pr. [0, 0.824] [0, 0.492]

MTS & MTR for HIV-
Switch Pr. [0, 0.729] [0, 0.286]

95% CIs are calculated based on Kaido & Zhang 24



V. Conclusions



Concluding Remarks

Allowing control functions to be set-valued, this paper expands the
scope of the control function approach

We accommodate selection processes that involve...

I rich heterogeneity,

I dynamic optimizing behavior,

I social interaction, or

I censoring,...

I and cases without selection process

We derive sharp identifying restrictions...

I that are inequalities on the conditional choice probabilities



Concluding Remarks

Practitioners can use the results of this paper for various purposes:

1. evaluate social programs nonparametrically, when only coarse
information of controls is available

2. conduct a sensitivity analysis to assess identifying power of
specific assumptions (e.g., shape restrictions)
• random set theory guarantees sharpness of bounds, without

needing to prove sharpness case after case

More empirical results to come...

I random coefficient model for selection



Thank You! ,


