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Abstract

The control function approach allows the researcher to identify various causal effects

of interest. While powerful, it requires a strong invertibility assumption, which limits

its applicability. This paper expands the scope of the nonparametric control function

approach by allowing the control function to be set-valued and derive sharp bounds

on structural parameters. The proposed generalization accommodates a wide range of

selection processes involving discrete endogenous variables, random coefficients, treatment

selections with interference, and dynamic treatment selections.
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1 Introduction

Endogeneity is the main challenge in conducting causal inference with observational data.

The control function (CF) approach has been a valuable tool in addressing endogeneity and

recovering various causal parameters. Although this approach originated in linear models,

it has been proven to be a powerful tool for identification and estimation in nonparametric

models that allow causal effect heterogeneity. The CF approach constructs control variables

V , which define a latent type conditional on which endogenous explanatory variables D can

be viewed as unconfounded. In observational settings, such V is typically constructed by

inverting treatment selection processes so that it is written as a function of observables—

thus a control function. Many empirical studies build on this insight to construct and utilize

control variables (Kline and Walters, 2016; Card et al., 2019; Abdulkadiroğlu et al., 2020;

Bishop et al., 2022). While powerful, this approach relies on the invertibility of selection

models. For example, in nonparametric triangular models, invertibility requires D to be

continuously distributed and the selection equation for D to be strictly monotone in a scalar

unobservable variable. This type of restriction is viewed as the most important limitation of

the CF approach (Blundell and Powell, 2003).

This paper expands the scope of the CF approach by dropping the invertibility assump-

tion. We allow the control function to be set-valued. That is, one only needs to know the

set of values V takes for each value of observable variables. This adaptation accommodates

a wide range of selection processes. Observational data are often generated through complex

selection processes, which may exhibit rich heterogeneity with continuous or discrete deci-

sions, dynamically optimizing behavior, and strategic interaction of multiple agents. Such

processes typically violate the invertibility assumption, as the mapping from observables to

V is only a correspondence. We show that the CF approach can still be used with these

selection processes to partially identify structural (i.e., causal) parameters, such as average

and quantile structural functions for outcomes.

Formally, a set-valued control function V is a random closed set, constructed from ob-

servable variables, that contains the true control variable V inside it. This set can be used

to construct a random set that collects all outcome values compatible with model structure

and the containment functional or Aumann expectation associated with the set (Molchanov,

2017). The latter quantities generate identifying restrictions, which then yield the (sharp)

identified set for structural parameters. The random set V can be constructed in a variety

of settings. For example, D can be a binary variable generated by a generalized Roy model

(Eisenhauer et al., 2015). One can also consider a selection model with binary D that violates

the local average treatment effect (LATE) monotonicity (Imbens and Angrist, 1994) or, anal-
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ogously, a model with continuous D with vector unobservables (e.g., selection with random

coefficients). Other examples are the cases where D is determined through interaction of

multiple agents (Tamer, 2003; Balat and Han, 2022) (e.g., due to violation of the stable-unit

treatment value assumption (SUTVA) in forming outcomes); and where D and outcomes are

dynamically determined over time (Han, 2021). We demonstrate how to derive identifying

restrictions in these models.

This paper contributes to the vast literature on identification and estimation in nonpara-

metric models with endogenous explanatory variables. In linear models, the two-stage least

squared (TSLS) estimator can have two different interpretations: the instrumental variable

(IV) approach and the CF approach (Blundell and Powell, 2003). The noparametric version

of the IV approach is considered in Newey and Powell (2003); Hall and Horowitz (2005);

Chernozhukov and Hansen (2005); Darolles et al. (2011); D’Haultfoeuille and Février (2015);

Torgovitsky (2015); Vuong and Xu (2017); Chen and Christensen (2018). Typically, this ap-

proach assumes invertibility in the outcome equation and thus relies on a scalar unobservable,

so that the IV assumption can be utilized. The CF approach is generalized to nonparametric

models by Newey et al. (1999); Chesher (2003); Das et al. (2003); Blundell and Powell (2004);

Imbens and Newey (2009); D’Haultfœuille et al. (2021); Newey and Stouli (2021), following

the adaptation to nonlinear parametric models in Newey (1987); Rivers and Vuong (1988);

Smith and Blundell (1986); Blundell and Smith (1989). The nonparametric CF literature typ-

ically assumes a model for endogenous explanatory variables and its invertibility in a scalar

unobservable. Then, this approach generates control variables and combines it with the CF

assumption (non-nested to the IV assumption) to identify structural parameters. Although

this approach restricts selection behavior and is not applicable to discrete treatments, its

advantage is the freedom from restricting heterogeneity directly relevant in generating causal

effects. Another important strand of the causal inference literature concerns a binary or dis-

crete treatment with a monotonicity assumption (Imbens and Angrist, 1994; Abadie et al.,

2002) or equivalently (Vytlacil, 2002) a threshold-crossing model (Heckman and Vytlacil,

2005).

Chesher and Rosen (2017) generalize the IV approach to a framework where one can

partially identify structural parameters in a range of complete and incomple models (see also

Chesher and Smolinski (2012); Chesher and Rosen (2013)). Under the IV assumption, they

define a random set of structural unobservables, which is used to construct sharp bounds on

structural parameters. Instead, this paper proposes the CF approach to partial identification,

filling the gap in the literature and complementing Chesher and Rosen (2017). We construct a

random set for selection unobservables and let true control variables be a (measurable) selec-

tion of the random set. Sharing the aspect of the CF literature above, we allow for arbitrary
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causal effect heterogeneity (e.g., multi-dimensional outcome unobservables). Overcoming the

aspect of the CF literature, we allow for discrete treatments and heterogeneity and complex-

ity in treatment selection (e.g., multi-dimensional selection unobservables, incompleteness of

selection models).

Chesher (2005) also considers partial identification without requiring invertibility in se-

lection processes. He assumes that discrete endogenous variables are generated from ordered

structure and focuses on local parameters. This paper in contrast focuses on global param-

eters, while encompassing a range of selection processes including ordered selection. Shaikh

and Vytlacil (2011); Jun et al. (2011); Mourifié (2015); Mogstad et al. (2018); Machado

et al. (2019); Han and Yang (2024) consider partial identification in nonparametric models

without requiring invertibility in selection processes; they consider either a binary treatment

generated from threshold-crossing models (equivalently, under the LATE monotonicity) or a

discrete treatment with similar restrictions. These models are nested in the class of models

we consider, but our distinct feature is the generality in selection processes and the use of

the CF approach.

2 Setup

Let Y ∈ Y ⊆ RdY be the outcome of interest generated according to the following outcome

equation:

Y = µ(D,X,U), (2.1)

where D ∈ D ⊆ RdD is a vector of endogenous treatment variables, X ∈ X ⊆ RdX is a vector

of covariates, and U ∈ U ⊆ RdU is a vector of latent variables. All random variables are

defined on a complete probability space (Ω,F, P ). The structural function µ determines the

value of the potential outcome Yd = µ(d,X,U) that would realize when the endogenous vari-

able is set to d ∈ D. Many policy-relevant parameters are features of the potential outcome,

and hence functionals of µ. Examples are the average structural function and the distribu-

tional structural function: ASF(d) ≡ E[µ(d,X,U)] = E[Yd] and DSF(d) ≡ Fµ(d,X,U) = FYd ,

respectively. Other examples are the policy-relevant structural function and the mediated

structural function, defined later.

A vector of control variables V ∈ V ⊆ RdV is such that, the assignment of D becomes

independent of U , once we condition on V and the observable covariates X. That is,

D ⊥ U |X,V. (2.2)
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Such variables allow the researcher to identify various causal parameters without additional

parametric assumptions on µ.

For this approach to work, one needs to express V as a function of observable variables. Let

Z be the vector of IVs. A commonly used specification is the additive model D = Π(Z) +V ,

in which one may express V = D − Π(Z) (e.g., Newey et al., 1999). Imbens and Newey

(2009) consider a nonseparable system, in which a single endogenous variable is modeled as

D = h(Z, Ṽ ) of a vector of instrumental variables Z and a continuously distributed scalar

latent variable Ṽ , where h is strictly monotonic in Ṽ . They show that, under the independence

of (U, Ṽ ) and Z, one may use the conditional cumulative distribution function V = FD|Z(D|Z)

as a control variable. The key assumption is the invertibility of h in the latent variable, which

ensures that there is a one-to-one relationship between Ṽ and V .

The argument above requires the selection equation to be invertible in the control vari-

able.1 This invertibility requirement often restricts the form of the selection equation and

the dimension of V . When V is continuously distributed, the invertibility also requires D to

be continuous, which limits the scope of the control function assumption. Moreover, having

vector V is important in allowing for heterogeneity in the selection mechanism. We, therefore,

aim to remove these restrictions.

2.1 Motivating Examples

We introduce motivating examples below, starting from a single agent’s self-selection model

to more complex ones. They share a few key features. First, they involve a vector of control

variables, conditional on which the treatment decision can be viewed as random. Second, they

do not allow the researcher to uniquely recover the control variables. Nonetheless, one may

construct a set that contains the true control variable V . We will formally define set-valued

control functions in the next section. Finally, the above features are related to the fact that

the control variable V may be interpreted as structural unobservables in these examples.

These features of selection mechanism can be summarized in the following generalized

selection equation:

D = π(Z,X, V ). (2.3)

Note that (D,X,Z) 7→ V is in general a correspondence, for example, because either π(Z,X, ·)
is not strictly monotonic or V is not scalar. Therefore, the selection process (2.3) restricts V

1As discussed in the introduction, Chesher (2005) is an exception even though he employs the CF approach.
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to the following set almost surely:

V (D,Z,X;π) = {v : D = π(Z,X, v)} ⊆ RdV . (2.4)

Each example illustrates specific forms of (2.3) and (2.4).

We start with a generalized Roy model of selection (Eisenhauer et al., 2015).

Example 1 (Generalized Roy Model): Let D be a binary treatment that is determined

by the selection equation

D = 1{π(Z,X) ≥ V }, (2.5)

where we normalize V |X to the uniform distribution without loss of generality. The selection

equation can be motivated by the generalized Roy model. Suppose Y = DY1 + (1 − D)Y0

where Yd follows

Yd = µ(d,X) + Ud for d = 0, 1. (2.6)

We allow the unobservables Ud to be treatment-specific, which ensures unobserved hetero-

geneity necessary to formulate the generalized Roy model. This makes U = (U1, U0) a vector.

Let C = µc(Z,X) + Uc be the cost of choosing one alternative over the other, where Z is a

vector of variables that shifts the cost but not the outcome.2 The treatment decision is based

on the net surplus S from the treatment:

D = 1{S ≥ 0} = 1{Y1 − Y0 − C ≥ 0}. (2.7)

We may write the surplus as

S = π(Z,X)− V, (2.8)

where π(Z,X) = µ(1, X) − µ(0, X) − µc(Z,X) is the observable part of the surplus, and

V = (Uc−U1 +U0) is the unobserved part of the surplus. Then, we can express the treatment

decision as (2.5). Clearly, V depends on (U0, U1).

Suppose we are interested in the causal effect of D on Y . Suppose Z is independent of

U given (X,V ). Then, (X,V ) are valid control variables because D’s remaining variation is

independent of U conditional on them. What prevents us from applying the existing approach

is that we cannot recover V by inverting (2.5) because D is binary. Nonetheless, the model

2The generalized Roy model above nests the classical Roy model where C is degenerate (Heckman and
Honoré, 1990) and the extended Roy model where Uc is degenerate (Heckman and Vytlacil, 2007).
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restricts V to the following set almost surely:

V (D,Z,X;π) =

[0, π(Z,X)] if D = 1

[π(Z,X), 1] if D = 0,
(2.9)

which is a set-valued analog of the control function we may condition on. �

The previous example satisfies the local average treatment effect (LATE) monotonicity,

eliminating either compliers or defiers (Imbens and Angrist, 1994; Vytlacil, 2002). Next, we

consider a selection model that allows richer compliance types.

Example 2 (Non-Monotonic Treatment Decisions): Suppose the value of the instrument

is set to z. Let the potential treatment be

Dz = 1{π(z,X) ≥ Vz} for z ∈ Z. (2.10)

The observed treatment is D =
∑

z∈Z Dz1{Z = z}. Suppose Z is binary below. Given (2.10),

both compliers and defiers can have nonzero shares:

{D0 = 0, D1 = 1} = {V0 > π(0, X), V1 ≤ π(1, X)},

{D0 = 1, D1 = 0} = {V0 ≤ π(0, X), V1 > π(1, X)}.

The observed treatment D satisfies

D = 1{π(0, X)− V0 + (π(1, X)− π(0, X)− V1 + V0)Z ≥ 0}

= 1{π(0, X) + Z(π(1, X)− π(0, X)) + ZV1 + (1− Z)V0 ≥ 0}

≡ 1{π̃(Z,X) + (V1 − V0)Z + V0 ≥ 0}, (2.11)

where π̃(Z,X) = π(0, X) + Z(π(1, X) − π(0, X)).3 One may view the last expression as a

random-coefficient model, in which the individuals respond heterogeneously to interventions

to Z (Gautier and Hoderlein, 2011; Kline and Walters, 2019). Suppose the outcome Y is

generated according to (2.1) and Z is independent of U conditional on (X,V0, V1). Then,

(X,V0, V1) are valid control variables. By (2.11), V = (V0, V1) belongs to the following set

3Note that D = ZD1 + (1− Z)D0 = 1{Z(π(1, X)− V1) + (1− Z)(π(0, X)− V0) ≥ 0}.
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almost surely:

V (D,Z,X;π) =

{(v0, v1) : π̃(Z,X) + (1− Z)v0 + Zv1 ≥ 0} if D = 1

{(v0, v1) : π̃(Z,X) + (1− Z)v0 + Zv1 ≤ 0} if D = 0.
(2.12)

�

The next example involves multiple individuals. Importantly, other individuals’ treatment

status affects one’s outcome through spillover or equilibrium effects.

Example 3 (Treatment Responses with Social Interactions): Consider individuals j =

1, . . . , J . Let D = (D1, . . . , DJ) be a vector of treatment decisions across individuals. We

may be interested in the effect of the entire profile D on some outcome Y . The observed

treatments D satisfy

Dj = 1{πj(D−j , Zj , X) ≥ Vj}, j = 1, . . . , J (2.13)

where D−j is defined as the vector D without the element Dj and Vj |X = x is normalized

to U [0, 1] without loss of generality.4 In this specification, each player’s treatment decision is

affected by others’ decisions.

One way to motivate (2.13) is by relaxing the Stable Unit Treatment Value Assumption

(SUTVA) (Rubin, 1978) (or equivalently relaxing the Individualistic Treatment Response

(ITR) by Manski (2013)) and introducing Roy-type decisions. Let Yj,d1,...,dJ be the poten-

tial outcome of individual j when D is set to (d1, . . . , dJ). The previous examples assume

an individual’s outcome only depended on their own treatment (i.e., SUTVA or ITR) that

Yj,d1,...,dJ = Yj,dj . We relax such an assumption and allow each individual’s outcome to de-

pend on the entire vector of treatments received by the individuals. The generalization is

important when treatments are expected to have spillover effects (Graham, 2011; Aronow

and Samii, 2017). For simplicity, consider two individuals (i.e., J = 2). Each individual may

either choose Dj = 0 or Dj = 1. For individual j, the outcome is generated according to

Yj =
∑

(d1,d2)∈{0,1}2
1{D1 = d1, D2 = d2}Yj,d1,d2 , (2.14)

where

Yj,d1,d2 = µj(d1, d2, X) + Uj,d1,d2 . (2.15)

4The joint distribution of V is unrestricted.
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Suppose the individuals are involved in Roy-type decisions:

D1 = 1{Y1,(1,D2) − Y1,(0,D2) ≥ µc1(Zj , X) + Uc1},

D2 = 1{Y2,(D1,1) − Y2,(D1,0) ≥ µc2(Zj , X) + Uc2}.

Then, the selection process is compatible with (2.13) with

πj(D−j , Zj , X) = µj(1, D−j , X)− µj(0, D−j , X)− µcj(Zj , X)

Vj = Ucj − Uj,1,D−j − Uj,0,D−j .

The individuals’ social interaction is captured by the impact of the other individual’s treat-

ment choice on player j’s payoff, which corresponds to πj(1, zj , x)− π(0, zj , x).

Multiple solutions to the simultaneous system (2.13) may exist, which may make the

selection process incomplete and thus set-valued (Tamer, 2003; Balat and Han, 2022). For

example, suppose πj(1, zj , x)− π(0, zj , x) ≤ 0 for j = 1, 2. For each (z, x, v1, v2), the model’s

prediction is

G(v|z, x;π) =



{(0, 0)} (v1, v2) ∈ Sπ,(0,0)(z, x)

{(0, 1)} (v1, v2) ∈ Sπ,(0,1)(z, x)

{(1, 0)} (v1, v2) ∈ Sπ,(1,0)(z, x)

{(1, 1)} (v1, v2) ∈ Sπ,(1,1)(z, x)

{(1, 0), (0, 1)} (v1, v2) ∈ Sπ,{(1,0),(0,1)}(z, x).

(2.16)

Figure 1 summarizes subsets Sπ,(0,0)(z, x), . . . , Sπ,{(1,0),(0,1)}(z, x) of (v1, v2) values that cor-

respond to certain model predictions.5 Let Vs : Ω → {0, 1} represent an unknown selection

mechanism that selects a solution when G contains multiple values.6 If the model predicts

multiple equilibria (V1, V2) ∈ Sπ,{(1,0),(0,1)}(Z,X), the equilibrium outcome D = (1, 0) is se-

lected when Vs = 1, and D = (0, 1) is selected Vs = 0. Our model is silent about how

5The sets are formally defined as follows.

Sπ,(0,0)(z, x) = {v : v1 > π1(0, z1, x), v2 > π2(0, z2, x)}
Sπ,(0,1)(z, x) = {v : π1(1, z1, x) < v1 ≤ π1(0, z1, x), v2 ≤ π2(1, z, x)} ∪ {v : π1(0, z1, x) < v1, v2 ≤ π2(0, z2, x)}
Sπ,(1,0)(z, x) = {v : v1 ≤ π1(1, z1, x), v2 > π2(1, z2, 0)} ∪ {v : π1(1, z1, x) < v1 ≤ π1(0, z1, x), v2 > π2(0, z2, x)}
Sπ,(1,1)(z, x) = {v : v1 ≤ π1(1, z1, x), v2 ≤ π2(1, z2, x)}

Sπ,{(0,1),(1,0)}(z, x) = {v : πj(0, zj , x) < vj ≤ πj(1, zj , x), j = 1, 2}.

6Without loss of generality, one may represent the selection mechanism by a latent random variable defining
a mixture. See Tamer (2010), Ponomareva and Tamer (2011), and Molinari (2020, p.377).
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Figure 1: Level sets of v 7→ G(v|z;π) and set-valued CF

v1

v2

A

B

Sπ,(1,1)

Sπ,(0,0)Sπ,(1,0)

Sπ,(0,1)

Sπ,{(1,0),(0,1)}

Note: A = (π1(1, z1, x), π2(1, z1, x)); B = (π1(0, z1, x), π2(0, z2, x)).

Vs is generated, and hence, we do not restrict the distribution of Vs. It can be correlated

with (Z,X, V1, V2) and U = (Uj,d1,d2 , Ucj )d1,d2∈{0,1},j=1,2. Therefore, Vs is another source of

possible endogeneity. Suppose Z is independent of U conditional on (X,V1, V2, Vs). Then,

(X,V1, V2, Vs) are valid control variables.

Below, we take Vs as a component of the control variables and let V = (V1, V2, Vs).

Suppose D = (1, 1) is realized. What does it tell us about V ? This outcome occurs if and

only if (V1, V2) ∈ Sπ,(1,1)(Z,X) regardless of Vs. Therefore, V ∈ Sπ,(0,0)(Z,X) × {0, 1} in

this case. Now suppose D = (0, 1) realized. This outcome may arise from two scenarios.

One is that (0, 1) is the unique equilibirum due to (V1, V2) ∈ Sπ,(0,1)(Z,X), in which case

Vs can take any value. The other scenario is that (0, 1) is one of the predicted equilibria

(V1, V2) ∈ Sπ,{(1,0),(0,1)}(Z,X), and it was selected due to Vs = 0. Using this argument, we

may define the following set-valued control function:

V (D,Z,X;π) =



Sπ,(0,0)(Z,X)× {0, 1} if D = (0, 0)[
Sπ,(0,1)(X,Z)× {0, 1}

]
∪
[
Sπ,{(1,0),(0,1)}(Z,X)× {0}

]
if D = (0, 1)[

Sπ,(1,0)(Z,X)× {0, 1}
]
∪
[
Sπ,{(1,0),(0,1)}(Z,X)× {1}

]
if D = (1, 0)

Sπ,(1,1)(Z,X)× {0, 1} if D = (1, 1).

(2.17)

�

Remark 1: In the example above, we focused on the case in which the treatment is
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generated through a game of strategic substitution: πj(1, zj , x)−π(0, zj , x) ≤ 0, j = 1, 2. The

same argument can be applied to games of strategic complementarity and even to models

with incoherent predictions.

The next example considers dynamic treatment decisions with imperfect compliance

(Robins, 1997; Han, 2021).

Example 4 (Dynamic Treatment Effects): In the initial period, the observed treatment

and outcome (D1, Y1) are generated according to

D1 = 1{π1(Z1, X) ≥ V1}. (2.18)

Y1 = 1{µ1(D1, X) ≥ U1} (2.19)

The observed treatment status in the next period is determined based on (D1, Y1) as

D2 = 1{π2(Y1, D1, Z2, X) ≥ V2}. (2.20)

Finally, the eventual observed outcome Y2 is determined by

Y2 = 1{µ2(Y1, D1, D2, X) ≥ U2}. (2.21)

Throughout, Ut and Vt are normalized to U [0, 1] conditional on X = x.

A researcher may consider various causal effects. For now, consider the effect of the

initial outcome and treatment history D = (Y1, D1, D2) on Y2. Recovering the effect is

not straightforward because U2 may depend on the unobserved determinants (U1, V1, V2) of

the treatment. For example, U1 and U2 may share a time invariant component. Another

possibility is that U2 may be related to (V1, V2) through the agent’s dynamic treatment

decisions.

Below, we let U ≡ U2 and let V ≡ (U1, V1, V2) be unobserved control variables; also let

Z ≡ (Z1, Z2). Inspecting the system of selection equations (2.18)-(2.20), one can see that the

assignment of D = (Y1, D1, D2) is independent of U2 conditional on (X,V ) as long as the

instrumental variables Z are independent of U2.

Let π ≡ (µ1(·), π1(·), π2(·)). One can construct the following set-valued control function:

V (D,Z,X;π) = VU1(D,X;µ1)× V1(D,Z1, X;π1)× V2(D,Z2, X;π2), (2.22)
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where

VU1(D,X;µ1) =

[µ1(D1, X), 1] if Y1 = 0

[0, µ1(D1, X)] if Y1 = 1,
V1(D,Z1, X;π1) =

[π1(Z1, X), 1] if D1 = 0

[0, π1(Z1, X)] if D1 = 1,

V2(D,Z2, X;π2) =

[π2(Y1, D1, Z2, X), 1] if D2 = 0

[0, π2(Y2, D2, Z2, X)] if D2 = 1.

�

3 Model Predictions

We derive the model’s prediction based on our incomplete knowledge that V is a valid control

variable but only known to belong to V . We first assume that V and observable covariates

X form a set of control variables.

Assumption 1: U |D,X, V ∼ U |X,V .

By Assumption 1, the treatment decision is independent of U once we condition on the

control variables (X,V ). Next, we introduce random closed sets and their measurable selec-

tions.

Definition 1 (Random Closed Set): A map X from a probability space (Ω,F, P ) to the

family F(E) of closed subsets of a Euclidean space E is called a random closed set if

X−(K) ≡ {ω ∈ Ω : X(ω) ∩K 6= ∅} (3.1)

is in F for each compact set K ⊆ E.

Definition 2 (Measurable Selections): For any random set X, a measurable selection

of X is a random element X with values in E such that X(ω) ∈ X(ω) almost surely. We

denote by Sel(X) the set of all selections from X.

We assume one can construct a set-valued control function.

Assumption 2: (i) There is a random closed set V : Ω → F(RdV ) such that V ∈ V

with probability 1; (ii) V is a measurable function of the observable variables and an infinite-

dimensional parameter π.

The set-valued control function V is a random closed-set constructed from the observ-
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ables.7 A leading case would be V generated by a selection equation D = π(Z,X, V ) (e.g.,

Section 2.1) where Z is a vector of instrumental variables excluded from µ. However, V can

also be generated from other sources (e.g., Auerbach, 2022). Assumption 2 is agnostic about

the genesis of a set-valued control function. We write V (D,X,Z;π) whenever it is useful to

show its dependence on (D,X,Z) and π.

Let us discuss Assumptions 1-2 further. In the conventional CF approach, we use the

control variable for two purposes. The first is to account for the effects of confounders, which

we refer to as “controlling” (Assumption 1), and we continue to use V for this purpose. The

second purpose is to condition on the subpopulation for which the conditional independence

assumption holds. If V is observable or can be uniquely recovered from other observables,

we may use these properties simultaneously. However, in the current setting, this is not the

case. Therefore, while we continue to use V to control for the latent confounders, we use

V (recovered from other observables ensured by Assumption 2) to condition on a “coarser”

subpopulation. Being unable to condition on V can lead to a loss of point identification.

Nonetheless, our framework allows the researcher to derive sharp bounds on the parameters

of interest.

Finally, we assume U is continuously distributed.

Assumption 3: U |D,X, V has a strictly positive density with respect to Lebesgue measure

on RdU almost surely.

By Assumption 3, one may represent the latent variables in the outcome equation as

U = Q(η;D,X, V ) for some measurable function Q : [0, 1]dU × D × X × V → U ⊆ RdU and

a random vector η ∈ RdU , which is independent of (D,X, V ) and is uniformly distributed

over [0, 1]dU . This representation holds generally. For example, suppose U = (U0, U1) is two

dimensional as in Example 1. One can apply the Knothe-Rosenblatt transform (see, e.g.,

Villani, 2008; Carlier et al., 2010; Joe, 2014) to represent (U0, U1) ∼ FU |D,X,V sequentially

U0 = Q0(η;D,X, V ) ≡ F−1
U0|D,X,V (η0|D,X, V ), (3.2)

U1 = Q1(η;D,X, V ) ≡ F−1
U1|U0,D,X,V

(η1|U0, D,X, V ), (3.3)

where (η0, η1) ∼ U [0, 1]2. Then, by Assumption 1, we may write

U0 = Q0(η;X,V ) ≡ F−1
U0|X,V (η0|X,V ),

U1 = Q1(η;X,V ) ≡ F−1
U1|U0,X,V

(η1|U0, X, V ).

7A singleton-valued control function in the literature is a special case of Assumption 2.
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In general, under Assumption 1, we represent U as

U = Q(η;X,V ), (3.4)

for a map Q : [0, 1]dU × X × V → U ⊆ RdU that depends on the conditional distribution F

of U |X,V . We may view η as the remaining source of randomness in the potential outcome

after controlling for (X,V ). Note that η0 and η1 are mutually independent even though U0

and U1 are not.

Now consider the model’s prediction given the structural parameter θ ≡ (µ, F, π). For

the moment, suppose we condition on (X,V ). We represent U as U = Q(η;X,V ). Under

Assumption 1, the treatment D is generated independently of U conditional on (X,V ). The

outcome is determined by

Y = µ(D,X,U) = µ(D,X,Q(η;X,V )). (3.5)

One can view the right-hand side of (3.5) as an outcome equation augmented by an adjust-

ment term Q(η;X,V ), which involves the control variable V and a “clean” error term η that

is independent of D.8 It is useful to note that Q is a function of F .

Using the fact that V is a measurable selection of V , we define the following random

closed set

Y (η,D,X,V ;µ, F ) ≡ cl
{
y ∈ Y : y = µ(D,X,Q(η;X,V )), V ∈ Sel(V )

}
. (3.6)

This set collects all outcome values (and their closure) compatible with the model structure.

Lemma 1 in the appendix establishes Y is a well-defined random closed set. Representing

the model’s prediction in this way has several advantages. First, Y collects all outcome

values given all observable exogenous variables (D,X,V ) and latent variables η. It represents

the prediction of an incomplete model and fits into the framework of Jovanovic (1989) (see

Remark 2 below). The model is silent about how Y gets selected from Y because we do

not observe the true control variable V . Nonetheless, there are systematic ways to obtain

sharp identifying restrictions in such a model and eventually sharp bounds on parameters

of interest. Second, Y can often be simplified, which also helps derive closed-form bounds;

e.g., see the discussion of the next paragraph. Finally, the framework can accommodate both

continuous and discrete outcomes. We provide further details in Section 5.

Assumption 1 plays an important role in obtaining identifying restrictions for structural

8This is analogous to an additive model, in which the error term can be decomposed into a control function
and an error term that is independent of the treatment.
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parameters via Y . Each measurable selection of Y is represented by the augmented outcome

equation Y = µ(D,X,Q(η;X,V )), which involves two functions with different features: the

structural function µ takes D as its argument, while the adjustment term Q excludes D but

accounts for (X,V ). This separation is possible due to Assumption 1. Since Q does not de-

pend on D, it facilitates recovering structural parameters from the equation µ(d, x,Q(η, x, v)).

For example, we may represent the potential outcome using the augmented outcome equa-

tion: Yd = µ(d,X,Q(η;X,V )). This allows us to express structural quantities such as the

average conditional response E[Yd|X = x, V = v] by integrating out η

E[Yd|X = x, V = v] =

∫
[0,1]dU

µ(d, x,Q(η;x, v))dη. (3.7)

After characterizing the sharp identification region for θ, we use this property to obtain

bounds on various structural functions of interest (see Section 4.2).

Remark 2: The general formulation of Jovanovic (1989) is characterized by observed

endogenous variables y, latent variables η, and a structure (ν, φ), where ν is the distribution

of η, and φ is a relation such that (y, η) ∈ φ. The observable exogenous variables are allowed

to shift φ. In our setting, the graph of Y corresponds to φ. The representation of U in

(3.4) allows us to incorporate the structural parameter (µ, F ) into the model’s incomplete

prediction (φ in Jovanovic (1989)), whereas the remaining randomness is captured by η ∼
U [0, 1]dU .

4 Identification

Let P0 be the joint distribution of the observable variables (Y,D,X,Z). Recall θ = (µ, F, π),

and it belongs to a parameter space Θ ≡ M× F×Π, which embodies a priori restrictions on

the structural parameter. It is common to have additional restrictions on the parameter in

the selection equation. We let Πr(P0) ⊂ Π be the set of selection parameters that satisfy the

additional restrictions. As we show below, π can be point identified in some examples.

We define the sharp identification region for θ as follows.

Definition 3 (Sharp Identification Region under Full Independence): The sharp identi-

fication region ΘI(P0) ⊂ M× F× Πr(P0) is a set such that each of its elements θ = (µ, F, π)

satisfies the following statement: (i) For any Y |D,X,Z ∼ P0(Y |D,X,Z), one can represent

the outcome as Y = µ(D,X,U), where U ’s conditional law F satisfies Assumptions 1 and 3

for some V : Ω → V. (ii) The control variable V is a measurable selection of a set-valued

control function V satisfying Assumption 2.

[15]



The main result (Theorem 1) of this section characterizes ΘI(P0) through inequality

restrictions on θ. For this, we introduce the containment functional Cθ of a random set.

Note that the (conditional) distribution of η satisfies Fη(η|D = d,X = x, Z = z) = Fη(η|D =

d,X = x, V = v) = η by construction. Therefore, for any closed set A ⊂ Y and (d, x, z) ∈
D × X × Z, we let

Cθ(A|D = d,X = x, Z = z) ≡
∫

[0,1]dU
1
{
Y (η,D,X,V ;µ, F ) ⊆ A

}
dη (4.1)

be the containment functional associated with Y . This functional uniquely determines the

distribution of Y (Molchanov, 2017). We note that, conditional on (D,X,Z), the remaining

source of randomness in Y is η, which is a dU -dimensional random vector distributed uni-

formly over [0, 1]dU independently of (D,X,Z). As such, it is straightforward to compute the

right-hand side of (4.1) analytically or by simulation (see Section 5). The following theorem

characterizes the sharp identification region.

Theorem 1: Suppose Assumptions 1-3 hold. Then, the sharp identification region for

the structural parameter θ = (µ, F, π) is

ΘI(P0) = {θ ∈ Θ : P0(A|D,X,Z) ≥ Cθ(A|D,X,Z), a.s. ∀A ∈ F(Y), π ∈ Πr(P0)}. (4.2)

The restrictions (4.2) are known as Artstein’s inequalities (Molchanov and Molinari, 2018,

Theorem 2.13). We use them to convert the model’s set-valued prediction into a system of in-

equality restrictions that do not involve the unobserved control variable V , making the result-

ing restrictions amenable to estimation. More specifically, the left-hand side P0(A|D,X,Z) of

the inequality can be recovered from a large sample of (Y,D,X,Z). We demonstrate, through

examples, that one may compute the right-hand side Cθ(A|D,X,Z) from model primitives

(see Sections 5.2 and 5.4).

Remark 3: For a given (d, x, z), the number of the inequalities in (4.2) is finite when Y

is a discrete variable with a finite support. Furthermore, it often suffices to impose a subset

of inequalities to characterize ΘI(P0). Such a class A ⊆ F(Y) is called the core determining

class. The smallest core determining class only depends on the graph representation of

Y (·, D,X,Z;µ, F ) and does not depend on P0 (Luo and Wang, 2017; Ponomarev, 2022).9

If Y is a continuous variable, (4.2) involves infinitely many inequalities. However, if the

outcome equation is separable between (D,X) and U , one can work with a finite number of

inequalities under a weaker conditional mean independence assumption; see Section 4.1.

9Ponomarev (2022) provides an algorithm to determine the smallest core determining class.
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Practitioners can use (4.2) to make inference for ΘI(P0) or its elements. For example,

one may use inference methods for conditional moment inequalities (Andrews and Shi, 2013;

Chernozhukov et al., 2013) or likelihood-based inference methods (Chen et al., 2018; Kaido

and Molinari, 2022).

4.1 Conditional Mean Restrictions

In this section, we focus on a scalar outcome Y that is continuously distributed. Consider

the following additive model:

Y = µ(D,X) + U. (4.3)

It nests the linear model µ(d, x) = αd+ x′β as a special case. The model allows us to write

U = Y − µ(D,X).10 One can generate identifying restrictions on µ under conditional mean

independence assumption on U (Newey et al., 1999; Pinkse, 2000).

Below, we work with a more general model by relaxing the rank similarity assumption

maintained in (4.3), but we keep the separability assumption. Let U ≡ (Ud, d ∈ D), and

suppose

Y = µ(D,X) + UD, (4.4)

where UD =
∑

d∈D Ud1{D = d}. This way, Y is a function of vector U , making this model a

special case of (2.1). Suppose the following assumption holds.

Assumption 4: For each d ∈ D, E[|Ud|] <∞, and E[Ud|D,X, V ] = E[Ud|X,V ], a.s.

For each d ∈ D, let λd(X,V ) ≡ E[Ud|X,V ] and ηd ≡ Ud−E[Ud|X,V ]. Under Assumption

4, we may write

E[Y |D = d,X = x, V = v] = µ(d, x) + λd(x, v). (4.5)

We note that λd is a function of F . We define the sharp identification region as follows.

Definition 4 (Sharp Identification Region under Mean Independence): The sharp iden-

tification region ΘI(P0) ⊂ M × F × Πr(P0) is a set such that each of its elements θ =

(µ, F, π) ∈ ΘI(P0) satisfies the following statement: (i) For any Y whose conditional mean is

EP0 [Y |D,X,Z], one can represent the outcome as in (4.4), where U ’s conditional law F sat-

10A similar argument can be applied to a nonadditive model Y = µ(D,X,U) for which U is a scalar and µ
is invertible with respect to U . We focus on the additive model only for notational simplicity later.
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isfies Assumptions 3 and 4 for some V : Ω→ V. (ii) The control variable V is a measurable

selection of a set-valued control function V satisfying Assumption 2.

Let η ≡ (ηd, d ∈ D). Define

Y (η,D,X,Z;µ, F ) ≡ cl
{
y ∈ Y : y = µ(D,X) + λD(X,V ) + ηD, V ∈ Sel(V )

}
. (4.6)

Let EP0 [Y |D,X,Z] be the conditional mean of the outcome recovered from data. Then, it

should be the conditional mean of a measurable selection of Y (η,D,X,Z;µ, F ) for some

θ ∈ ΘI(P0). The following theorem characterizes the sharp identified set.

Theorem 2: Suppose Assumptions 2-4 hold. Suppose EP0 [|Y |] < ∞. Then, the sharp

identification region for the structural parameter is

ΘI(P0) = {θ ∈ Θ : µ(d, x) + λL(d, x, z) ≤ EP0 [Y |D = d,X = x, Z = z]

≤ µ(d, x) + λU (d, x, z), π ∈ Πr(P0)}, (4.7)

where

λL(d, x, z) = inf
v∈V (d,x,z;π)

λd(x, v), λU (d, x, z) = sup
v∈V (d,x,z;π)

λd(x, v). (4.8)

4.2 Functionals of θ

Based on the identification region of θ obtained in Theorems 1 and 2, one can also con-

struct bounds on functionals of θ. Let W ≡ (X,V ) and let FW be its distribution. Struc-

tural estimands can be obtained from θ. For example, the average structural function

ASF(d) ≡ E[µ(d,X,U)] = E[Yd] considered by Blundell and Powell (2003) can be expressed

as a function of (µ, F, FW ):

ASF(d) =

∫ ∫
µ(d, x, u)dF (u|w)dFW (w) =

∫ ∫
µ(d, x,Q(η;w))dηdFW (w). (4.9)

The average treatment effect (ATE) is then ATE(d, d′) = ASF(d)−ASF(d′). Another example

is the distributional structural function (Chernozhukov et al., 2020), which is the CDF of the

potential outcome Yd is also a function of (µ, F, FW ):

DSF(y, d) ≡
∫ ∫

1{µ(d, x, u) ≤ y}dFU (u|w)dFW (w)

=

∫ ∫
1{µ(d, x,Q(η;w)) ≤ y}dηdFW (w). (4.10)

[18]



The quantile structural function (QSF), the τ -th quantile of Yd, can be obtained using

QSF(d) = DSF−1(τ, d) (Imbens and Newey, 2002).

Given a function ϕ : R→ R, let

κ(d) ≡ E[ϕ(Yd)] =

∫
ϕ(µ(d, x,Q(η;w))dηdFW (w). (4.11)

The average and distributional structural functions are special cases of κ with ϕ(Yd) = Yd

and ϕ(Yd) = 1{Yd ≤ y} respectively. In general, FW is only partially identified. The following

proposition characterizes the identification region for κ.

Theorem 3: Suppose the conditions of Theorem 1 or 2 hold. Suppose ϕ is bounded, and

the underlying probability space is non-atomic. Then, the sharp identification region for κ is

KI(d) =
⋃

θ∈ΘI(P0)

[κ(d; θ), κ(d; θ)], (4.12)

where

κ(d; θ) = E[ sup
v∈V (D,X,Z;π)

∫
ϕ(µ(d,X,Q(η;X, v))dη], (4.13)

κ(d; θ) = E[ inf
v∈V (D,X,Z;π)

∫
ϕ(µ(d,X,Q(η;X, v))dη], (4.14)

and the expectation above is with respect to the distribution of (η,D,X,Z).

The identification region for κ is expressed as a union of intervals. Practically, one may

be interested in the upper and lower bounds of κ. They are given by

κ(d) = sup
θ∈ΘI(P )

E[ sup
v∈V (D,X,Z;π)

∫
ϕ(µ(d,X,Q(η;X, v))dη],

κ(d) = inf
θ∈ΘI(P )

E[ inf
v∈V (D,X,Z;π)

∫
ϕ(µ(d,X,Q(η;X, v))dη].

In some examples, FW is point identified even if V itself is unobserved and is not uniquely

recovered.11 If so, for each θ ∈ ΘI(P0), κ(d; θ) = κ(d; θ). Then, we can simplify the bounds

11In Example 1, the distribution of V is normalized to U [0, 1].
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on κ(d) as follows:

κ(d) = sup
θ∈ΘI(P )

Eη,W [ϕ(µ(d,X,Q(η;W ))] (4.15)

κ(d) = inf
θ∈ΘI(P )

Eη,W [ϕ(µ(d,X,Q(η;W ))]. (4.16)

In addition to the structural parameter (4.11), one can consider a policy that only changes

the selection behavior. Suppose a policy sets Z (e.g., a tuition subsidy) to z, and the treatment

selection under this policy is Dz = π(z,X, V ). The policy-relevant structural function (PRSF)

would be

κ(z) ≡ E[ϕ(YDz)] =

∫
ϕ(µ(π(z, w), x,Q(η;w))dηdFW (w). (4.17)

The PRSF is related to the policy-relevant treatment effect (PRTE) and marginal PRTE

introduced in Heckman and Vytlacil (2005) and Carneiro et al. (2010).

One can consider another related structural function. Suppose D = (D1, D2), and let

Yd1,d2 denote the counterfactual outcome given (d1, d2) and D2,d1 denote the counterfactual

treatment of D1 given d1. Then the mediated structural function (MSF) would be

κ(d1, d
′
1) ≡ E[ϕ(Yd1,D2,d′1

)] =

∫
ϕ(µ(d1, π2(d′1, z, w), x,Q(η;w))dηdFZ,W (z, w), (4.18)

where we allow d2 6= d′2. The MSF can be used to define the direct causal effect of one

treatment and the indirect causal effect mediated by another treatment. This scenario is

relevant in Example 3 on strategic interaction (e.g., a player’s decision being mediated by the

opponent’s decision) and Example 4 on dynamic treatment effects (e.g., a previous treatment

being mediated by the previous outcome; Han and Lee, 2023).

Again, one can derive bounds on these objects in a similar manner as before.

5 Applications of the Identification Results

We illustrate the use of Theorems 1 and 2 through examples.

5.1 Generalized Roy Model with a Continuous Outcome

We revisit Example 1. Let U ≡ (U1, U0), and recall that

D = 1{π(Z,X) ≥ V };
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hence U ’s conditional mean independence from D holds as long as U is mean independent of

the instrument Z. Let λd(X,V ) ≡ E[Ud|X,V ] for d ∈ D. The model’s prediction is

Y (η,D,X,V ;µ, F ) = {y ∈ Y : y = µ(D,X) + λD(X,V ) + ηD, V ∈ Sel(V )}. (5.1)

Theorem 2 implies

EP0 [Y |D = d,X = x, Z = z] ≤ µ(d, x) + λU (d, x, z) (5.2)

EP0 [Y |D = d,X = x, Z = z] ≥ µ(d, x) + λL(d, x, z). (5.3)

We summarize the argument as a corollary.

Corollary 1: Suppose EP0 [|Y |] < ∞. Suppose U0, U1|X,Z have a density with respect

to Lebesgue measure, and E[Ud|Z,X, V ] = E[Ud|X,V ], d = 0, 1. Then, ΘI(P0) is the set of

parameter values θ = (µ, F, π) such that, for almost all (d, x, z),

sup
z∈Z

{
EP0 [Y |D = d,X = x, Z = z]− λU (d, x, z)

}
≤ µ(d, x) ≤

inf
z∈Z

{
EP0 [Y |D = d,X = x, Z = z]− λL(d, x, z)

}
, (5.4)

where

λL(d, x, z) = inf
v∈V (d,x,z;π)

λd(x, v), λU (d, x, z) = sup
v∈V (d,x,z;π)

λd(x, v). (5.5)

The identifying restrictions (5.4) take the form of intersection bounds on µ. For each

z, EP0 [Y |D = d,X = x, Z = z] − λU (d, x, z) defines a lower bound on µ(d, x). Since z is

excluded from µ, we can intersect the lower bounds across all values of z. The upper bound

is formed similarly. It is worth noting that (5.4) restricts the parameter vector θ = (µ, F, π)

jointly because λL, λU are functions of (F, π). Therefore, they are also useful for bounding

(F, π). Furthermore, if Z ⊥ V |X, π is point identified as the propensity score π(z, x) =

P0(D = 1|Z = z,X = x) only using the model of selection. Hence, in this case, (5.4) gives

joint restrictions on (µ, F ).

The terms λU , λL can be seen as the correction terms to account for the effects of V . To

see this, suppose V is a singleton {V (D,X,Z;π)} (e.g., because D = π(Z,X) + V ). Then,

λL(d, x, z) = λU (d, x, z) = λd(x, z) = E[Ud|X = x, V = v], (5.6)
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In this case, (5.2)-(5.3) reduce to

E[Y |D = d,X = x, Z = z] = µ(d, x) + E[Ud|X = x, V = v]. (5.7)

Hence, it justifies regressing Y on (D,X) with an additive correction term (Newey et al.,

1999). This argument works only when V is singleton-valued. In the general setting with a

set-valued control function, one can work with the intersection bounds (5.4).

5.2 Multinomial Choice with a Generalized Selection Model

Suppose an individual chooses an option Y out of mutually exclusive alternatives Y =

{1, . . . , J} by maximizing her utility:12

Y ∈ arg max
j∈Y

µj(D,X) + Uj . (5.8)

The individual’s utility from alternative j depends on whether she is enrolled in a certain

program (D = 1) or not (D = 0).13 For example, Sosa-Rub́ı et al. (2009) analyze the choice

of pregnant women in Mexico who choose sites for their obstetric care. The treatment of

interest is enrollment in a public health insurance program that provides access to health

services for vulnerable populations.

Suppose there is a binary instrument (e.g., eligibility), and D = D1Z +D0(1− Z) with

Dz = 1{π(z,X) ≥ Vz}. (5.9)

This is the flexible selection model in Example 2. Allowing for the flexibility is relevant in

this context, as the insurance program may not be mandatory for the eligible or exclusive

against the non-eligible. The set-valued control function is as in (2.12).

Let V = (V0, V1) and let Uk = Qk(η;X,V ), k = 1, . . . , J . This model’s prediction is

Y (η,D,X,V ;µ, F )

=
{
j ∈ Y : µj(D,X) ≥ inf

V ∈Sel(V )

(
max
k 6=j

[µk(D,X) +Qk(η;X,V )]−Qj(η;X,V )
)}
. (5.10)

Each element of Y is the maximizer of the utility index µk(D,X) +Qk(η;X,V ), k = 1, . . . , J

12Similar to Section 5.1, one can allow further heterogeneity by replacing Uj with Uj,D in this model.
13It is also possible to let µ be a function of individual-specific unobservables (e.g., random coefficients) and

treat them as part of U . For simplicity, we do not pursue this extension here.
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for some V ∈ Sel(V ). When V is singleton-valued,

Y (η,D,X,V ;µ, F ) = arg max
j∈Y

µj(D,X) +Qj(η;X,V ). (5.11)

The model prediction in (5.11) nests Petrin and Train’s (2010) specification, which assumes

the additive separability of Qj between functions of V and η:14

Qj(η;X,V ) = g(V ;λ) +Qj(ηj). (5.12)

Let θ ≡ (µ1, . . . , µJ , π, F ). Also, let A ⊆ Y. One can show the containment functional is

Cθ(A|D = d,X = x, Z = z)

=
∑

{j1,...,jm}⊂A

Fη

(
µj`(d, x) ≥ inf

v∈V (d,x,z;π)

(
max
k 6=j`

[µk(d, x)+Qk(η;x, v)]−Qj`(η;x, v)
)
, ` = 1, . . . ,m

)
.

(5.13)

The containment functional can be computed by simulating η ∼ U [0, 1]J . The following

corollary characterizes ΘI(P0), applying Theorem 1.

Corollary 2: Suppose U = (U1, . . . , UJ) has a strictly positive conditional density given

(X,V ), and U ⊥ Z|X,V . Then, ΘI(P0) is the set of parameter values θ = (µ1, . . . , µJ , π, F )

such that, for almost all (d, x, z),

P0(Y ∈ A|D = d, Z = z,X = x) ≥∑
B⊆A

Fη

({
µj`(d, x) ≥ inf

v∈V (d,x,z;π)

(
max
k 6=j`

[µk(d, x) +Qk(η;x, v)]−Qj`(η;x, v)
)}

∩
{
µjm(d, x) < inf

v∈V (d,x,z;π)

(
max
k 6=jm

[µk(d, x)+Qk(η;x, v)]−Qjm(η;x, v)
)}
, j` ∈ B, jm ∈ A\B

)
,

A ⊆ {1, . . . , J}. (5.14)

As in the previous example, (5.14) jointly restricts µ, F (through Q), and π (via V ).

Suppose further that V ⊥ Z|X. Then, π is point identified as π(z, x) = P0(D = 1|Z =

z,X = x), which also ensures π̃ in (2.12) is point identified.

14In their notation, g(V ;λ) is CF (µn;λ), and Qj(ηj) is ε̃nj . Their specification only allows V to shift the
location of the conditional distribution of U . They show that this specification holds for several parametric
models of U |V .
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5.3 Treatment Responses with Social Interactions

We revisit Example 3. Recall

Yj,d1,d2 = µ(d1, d2, X) + Ud1,d2 , (5.15)

We work with the conditional mean-independence assumption. Recall D = (D1, D2). Define

the model prediction

Y (η,D,X,V ;µ, F ) = {y ∈ Y : y = µ(D,X) + λD(X,V ) + ηD, V ∈ Sel(V )}, (5.16)

where λd(x, v) is the conditional mean function of Ud|X,V .

Let us rewrite the set-valued control function in (2.17) as a union of two random sets.

V (D,X,Z;π) = [Ṽ0(D,X,Z;π)× {0}] ∪ [Ṽ1(D,X,Z;π)× {1}], (5.17)

where

Ṽ0(D,X,Z;π) ≡

Sπ,(0,1)(Z) ∪ Sπ,{(1,0),(0,1)}(Z) if D = (0, 1)

Sπ,(d1,d2)(Z) if D = (d1, d2), (d1, d2) 6= (0, 1),
(5.18)

and

Ṽ1(D,X,Z;π) ≡

Sπ,(1,0)(Z) ∪ Sπ,{(1,0),(0,1)}(Z) if D = (1, 0)

Sπ,(d1,d2)(Z) if D = (d1, d2), (d1, d2) 6= (1, 0).
(5.19)

As in the previous examples, the sharp identification region for θ = (µ, π, F ) involves the

supremum and infimum of a function f over v ∈ V (d, x, z;π). Eq. (5.17) suggests that the

supremum, for example, can be written as

sup
v∈V (d,x,z;π)

f(v1, v2, vs) = max{ sup
(v1,v2)∈Ṽ0(d,x,z)

f(v1, v2, 0), sup
(v1,v2)∈Ṽ1(d,x,z)

f(v1, v2, 1)}. (5.20)

We use (4.7) from Theorem 2 and argue as in Example 1 to characterize the sharp identifi-

cation region.

Corollary 3: Suppose EP0 [|Y |] < ∞. Suppose U = (U00, U10, U01, U11) has a strictly

positive conditional density given (X,V ). Suppose, for each (d1, d2) ∈ D, E[Ud1,d2 |Z,X, V ] =

E[Ud1,d2 |X,V ], a.s. Then, ΘI(P0) is the set of parameter values θ = (µ, π, F ) such that, for
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almost all (d, x),

sup
z∈Z

{
EP0 [Y |D = d,X = x, Z = z]− λU (d, x, z)

}
≤ µ(d, x) ≤

inf
z∈Z

{
EP0 [Y |D = d,X = x, Z = z]− λL(d, x, z)

}
, (5.21)

where

λU (d, x, z) = max
{

sup
(v1,v0)∈Ṽ0(d,x,z;π)

λd(x, v1, v2, 0), sup
(v1,v0)∈Ṽ1(d,x,z;π)

λd(x, v1, v2, 1)
}
, (5.22)

λL(d, x, z) = min
{

inf
(v1,v0)∈Ṽ0(d,x,z;π)

λd(x, v1, v2, 0), inf
(v1,v0)∈Ṽ1(d,x,z;π)

λd(x, v1, v2, 1)
}
. (5.23)

Remark 4: One may impose further restrictions on the relationship between U and Vs

via a priori restrictions on F . A leading example is to assume U is independent (or mean

independent) of the selection mechanism conditional on other control variables, i.e., U ⊥
Vs|X,V0, V1. This assumption may be plausible if Vs is viewed as a signal that is only relevant

for the treatment decision e.g., firms’ profitability but irrelevant for the outcome e.g., pollution

level. One can impose this restriction by restricting F to the space of conditional distributions

such that λd(x, v1, v2, 1) = λd(x, v1, v2, 0) = λd(x, v1, v2). This type of restriction helps

simplify λU and λL.

Remark 5: With additional assumptions, it is possible to point identify π using Tamer’s

(2003) result. Specifically, suppose (V1, V2) ⊥ (Z1, Z2)|X, and for each j, Zj = (Zj,k, Zj,−k)

contains a continuous component Zjk supported on R. Furthermore, supp(Zj , X|Z−j) =

supp(Zj , X), a.s. Tamer (2003) shows, if one can vary the continuous component to push the

choice probabilities toward extreme values, i.e., πj is such that limzj,k→−∞ πj(0, zj,k, zj,−k, x) =

0, and limzj,k→∞ πj(1, zj,k, zj,−k, x) = 1, then, π is point identified. This argument, however,

requires a variable with a large support (for each player), which may be hard to find in

practice.

5.4 Dynamic Treatment Effects

Depending on parameters of interest, each layer of the triangular dynamic system (2.19)–

(2.21) can be written as

Y = 1{µ(D,X) ≥ U}, (5.24)
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by properly labeling the variables. For example, we may write (2.21) as above with µ(D,X) =

µ2(Y1, D1, D2, X), D = (Y1, D1, D2), and U = U2. In this case, we take V = (U1, V1, V2) as a

vector of control variables and π = (µ1, π1, π2).

One can derive Y as follows. First, let U = Q(η|X,V ) = F−1(η|X,V ). Then,

Y = 1{µ(D,X) ≥ Q(η|X,V )}

= 1{F (µ(D,X)|X,V ) ≥ η}

= 1{H(D,X, V ) ≥ η},

where H(d, x, v) ≡ F (µ(d, x)|x, v). The model prediction Y has the following incomplete

threshold-crossing structure (Kaido, 2022)15:

Y (η,D,X,V ;µ, F ) =


{0} η > supV ∈Sel(V )H(D,X, V )

{0, 1} infV ∈Sel(V )H(d, x, v) < η ≤ supV ∈Sel(V )H(D,X, V )

{1} η ≤ infV ∈Sel(V )H(D,X, V ).

(5.25)

For a given (d, x, z), the model prediction depends on the realization of η relative to two

thresholds supv∈V (d,x,z;π)H(d, v) and infv∈V (d,x,z;π)H(d, v). If η is below the lower threshold,

the model predicts Y = {1}, whereas Y = {0} if η is above the upper threshold. The model

predicts Y = {0, 1} if η is between the two thresholds (see Figure 2).

The containment functional of Y in (5.25) for A = {1} is

Cθ({1}|D = d,X = x, Z = z) = Fη(Y (η,D,X,V ;µ, F ) ⊆ {1}|D = d,X = x, Z = z)

= inf
v∈V (d,x,z;π)

H(d, x, v).

Similarly, the containment functional for A = {0} is

Cθ({0}|D = d,X = x, Z = z) = 1− sup
v∈V (d,x,z;π)

H(d, x, v).

We apply this argument sequentially to (2.19)–(2.21) to characterize the sharp identification

15The incomplete threshold-crossing structure also appears in semiparametric binary choice models with
interval-valued covariates (Manski and Tamer, 2002). Manski and Tamer’s (2002) model is Y = 1{W ′θ +
δX + ε > 0}, where W is exogenous, X is interval-valued (i.e. X ∈ [XL, XU ]), δ > 0 and ε satisfies a quantile
independence condition. See also Molinari (2020) (Section 3.1.1) for an extensive discussion of their model.
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η

infv∈V (d,x,z;π)H(d, v)

{1}

{0, 1}

{0}

supv∈V (d,x,z;π)H(d, v)

0

1

Figure 2: An incomplete threshold-crossing structure.

Note: The figure shows the value of Y (η|d,V ; ν, F ) as a function of η.

region. For this, define the following objects

HY2(y1, d1, d2, x, v; θ) ≡ FU2|X,U1,V1,V2(µ2(y1, d1, d2, x)|x, u1, v1, v2)

HD2(y1, d1, z2, x, ṽ; θ) ≡ FV2|X,U1,V1(π2(y1, d1, z2, x)|x, u1, v1)

HY1(d1, x, v1; θ) ≡ FU1|X,V1(µ1(d1, x)|x, v1),

where ṽ = (u1, v1). Recall V was defined as in (2.22). Also define

VD2(Y1, D1, Z,X; θ) = VU1(D,X;µ1)× V1(D,Z1, X;π1)

VY1(D1, Z1, X; θ) = V1(D,Z1, X;π1).

Then, we can use (4.2) from Theorem 1 and characterize the sharp identification region.

Corollary 4: Suppose U2, U1, V1, V2|X has a positive density with respect to Lebesgue

measure. Suppose (i) U1 ⊥ Z1|X,V1 (ii) V2 ⊥ Z1|X,U1, V1 and (iii) U2 ⊥ (Z1, Z2)|X,V2, U1, V1.

Then, ΘI(P0) is the set of parameter values θ = (µ1, µ2, π1, π2, F ) such that, for almost all
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(d, x, z),

inf
v∈V (d,x,z;θ)

HY2(y1, d1, d2, x, v; θ)

≤ P0(Y2 = 1|Y1 = y1, D1 = d1, D2 = d2, X = x, Z = z)

≤ sup
v∈V (d,x,z;θ)

HY2(y1, d1, d2, x, v; θ), (5.26)

inf
ṽ∈VD2

(y1,d1,x,z;θ)
HD2(y1, d1, x, z2, ṽ; θ)

≤ P0(D2 = 1|Y1 = y1, D1 = d1, X = x, Z = z)

≤ sup
ṽ∈VD2

(y1,d1,x,z;θ)
HD2(y1, d1, x, z2, ṽ; θ), (5.27)

and

inf
v1∈VY1 (d1,x,z1;θ)

HY1(d1, x, v1; θ)

≤ P0(Y1 = 1|D1 = d1, X = x, Z1 = z1)

sup
v1∈VY1 (d1,x,z1;θ)

HY1(d1, x, v1; θ). (5.28)

In the corollary, the conditional independence assumptions (i), (ii), (iii) for the IVs are

useful in constructing informative bounds on µ1, π2, and µ2, respectively. As in Example 1,

π1 can be point identified from the selection equation in period 1 if V1 ⊥ Z1|X.

Remark 6: In the above illustrations, we paired continuous outcome variables with the

generalized Roy model and strategic treatment decisions. We paired discrete (multinomial

and binary) outcomes with other examples of selection processes. These choices were arbi-

trary. Theorems 1 and 2 are flexible. They allow the researcher to combine various outcome

variable types and selection models.

6 Concluding remarks

Observational data are often generated through complex decision processes. Allowing control

functions to be set-valued, this paper expands the scope of the control function approach. The

proposed framework accommodates, for example, selection processes that involve rich hetero-

geneity, dynamic optimizing behavior, or social interaction. Our identifying restrictions are
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inequalities on the conditional choice probabilities. One can conduct inference using moment-

based methods or likelihood-based inference methods. Practitioners can use the results of this

paper for various purposes. First, they can evaluate social programs nonparametrically, while

taking into account potentially complex treatment selection processes. Second, the bounds

in our main identification results can easily be combined with a range of shape restrictions

and parametric assumptions, allowing practitioners to conduct a sensitivity analysis to assess

the additional identifying power of specific assumptions. The tools from random set theory

enable us to guarantee sharpness of bounds one obtains in such a sensitivity analysis, without

needing to prove sharpness case after case.
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A Comparison with Chesher and Rosen (2017)

In characterizing identified sets for structural parameters, Chesher and Rosen (2017) utilize

random sets of unobservables. In this section, we compare our approach with theirs. The

main propose of the comparison is to illustrate that the two methods are non-nested and

complementary.

We summarize the characterization of the identified set in Chesher and Rosen (2017) with

notation close to ours. Let Y be a vector of endogenous variables, Z be a vector of exogenous

variables (e.g., IVs), and U be a vector of structural unobservables. Then define a random

closed set of U as

U(Y, Z;h) ≡ {u : h(Y,Z, u) = 0},

where h is a structural function, the features of which are of interest. Assume (h, FU |Z) ∈M
where M incorporates identifying assumptions. Chesher and Rosen (2017) use the following

Artstein’s inequality: For FU |Z(·|z) ∈ FU |Z being the distribution of one of the measurable

selections of U(Y, Z;h),

FU |Z(B|z) ≥ Ch(B|z)

holds for all closed sets B ∈ F(U) where Ch(B|z) ≡ P [U(Y, Z;µ) ⊆ B|Z = z]. Then, the

identified set can be characterized as

{(h, FU |Z) ∈M : FU |Z(B|Z) ≥ Ch(B|Z), a.s. ∀B ∈ F(U)}.

They also provide characterization using the Aumman expectation of U(Y,Z;h).

On the other hand, we characterize the identified set as

{(µ, FU |X,V ) : P0(A|D,X,Z) ≥ Cµ,F (A|D,X,Z), a.s. ∀A ∈ F(Y), π ∈ Πr(P0)},

where Cµ,F (A|D,X,Z) ≡ Fη(Y (η,D,X,V ;µ, FU |X,V ) ⊆ A). We also provide characteriza-

tion using the Aumman expectation of Y .

The two approaches share similar features in that only sets of unobservables can be

recovered from observed data, while stochastic restrictions are imposed on true unobservables.

However, the two differ in several ways. First, the CF assumption is imposed on FU |D,X,V

whereas the IV assumption is imposed on FU |Z . Note that the two stochastic assumptions

are not nested. Even if we were to use the IV approach by having our (U, V ) as their U and

µ as part of h, their framework is not suitable to impose the CF assumption. Second, the
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containment functional is compared to the observed distribution to construct the identified set

in our setting, while it is compared to the unobserved distribution in theirs. This difference

may have implications on implementation in practice.

In sum, the two approaches offer complementary tools to practitioners for robust causal

analyses. Practitioners can select the most appropriate approach based on the specific model

at hand and their belief on the stochastic nature of their problem.

B Proofs

B.1 Proofs of Theorems 1, 2, and 3

Proof of Theorem 1. By Assumptions 1 and 3, one may represent the outcome as Y =

µ(D,X,U) = µ(D,X,Q(η;X,V )). By Assumption 2, V is a measurable selecition of V , and

therefore Y is a measurable selection of Y (η,D,X,V ;µ, F ). Therefore, under Assumptions

1-3, the model’s prediction is summarized by

Y ∈ Y (η,D,X,V ;µ, F ), a.s. (B.1)

By Assumption 2 (ii), V is a function of (D,X,Z). Hence, one may condition on (D,X,V )

by conditioning on (D,X,Z). By Artstein’s inequality (see Molinari, 2020, Theorem A.1.),

the distribution P0(A|D,X,Z) is the conditional law of a measurable selection of Y if and

only if

P0(A|D,X,Z) ≥ Cθ(A|D,X,Z), ∀A ∈ F(RdY ). (B.2)

This ensures the representation of the sharp identification region by the inequalities above.

A random closed set X is said to be integrable if X has at least one integrable selection.

We define the Aumann (or selection) expectation of an integrable random closed set as follows

(Molinari, 2020). For this, we let Sel1(X) denote the set of integrable selections of X.

Definition 5: The Aumann expectation of an integrable random closed set X is given

by

E[X] = cl
{
E[X] :, X ∈ Sel1(X)

}
. (B.3)

For each sub σ-algebra B ⊂ F, the conditional Aumann expectation of X given B is the B-

measurable random closed set Y = E(X|B) such that the family of B-measurable integrable
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selections of Y , denoted Sel1B(Y ), satisfies

Sel1B(Y ) = cl
{
E[X|B] :, X ∈ Sel1(X)

}
. (B.4)

where the closure in the right-hand side is taken in L1.

Proof of Theorem 2. Let B ≡ σ(D,X,Z) be the σ-algebra generated by (D,X,Z). By As-

sumptions 2 and 4, we may represent the model’s set-valued prediction by Y in (4.6), the

random set of outcomes Y = µ(D,X)+λD(X,V )+ηD, where η = (ηd, d ∈ D) is conditionally

mean independent of D. Y is integrable because its measurable selection Y is assumed to

be integrable. Because of Y ∈ Sel1(Y ), the model’s prediction on the conditional mean is

summarized by

EP0 [Y |B] ∈ E[Y (η,D,X,Z;µ, F )|B], a.s., (B.5)

where the right-hand side is the conditional Aumann expectation of Y . Let b ∈ {−1, 1}.
Then, (B.5) is equivalent to

bEP0 [Y |B] ≤ s(b,E[Y (η,D,X,Z;µ, F )|B]), (B.6)

where s(b,K) ≡ supx∈K bx is the support function of K.

Now, we use the convexification property of the Aumann (selection) expectation of random

closed sets. Technically, Aumann expectation depends on the probability space used to

define Y (Molchanov, 2017, Sec. 2.1.2). Hence, we proceed as follows. Let Ω = RdU ×
RdD × RdX × RdZ be the sample space, and let F = FRdU ⊗ FRdD ⊗ FRdX ⊗ FRdZ be the

product σ-algebra, where FE is the Borel σ-algebra over E. Let F be a probability measure

on (Ω,F). Measurable maps (η,D,X,Z) are defined on this space. Consider a measurable

rectangle A = Aη × AD,X,Z , where Aη ⊂ RdU and AD,X,Z ⊂ RdD × RdX × RdZ . Then,

F(A|B) = Fη(Aη). By Assumption 3 and the construction of η, Fη is atomless. Since any

A ∈ F can be approximated by a countable union of measurable rectangles, conclude that F
is atomless over B.16

By the convexification theorem (Molinari, 2020, Theorem A.2.), E[Y (η,D,X,Z;µ, F )|B]

is convex and

s(b,E[Y (η,D,X,Z;µ, F )|B]) = E[s(b,Y (η,D,X,Z;µ, F ))|B], b ∈ {1,−1}. (B.7)

16An event A′ ∈ B is called a B-atom if F(0 < F(A|B) < F(A′|B)) = 0 for all A ⊂ A′ such that A ∈ F
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For b = 1,

E[s(b,Y (η,D,X,Z;µ, F ))|B] = E[ sup
y∈Y (η,D,X,Z;µ,F )

y|B]

= µ(d, x) + E[ sup
v∈V (D,X,Z;π)

λd(X,V )|B]

= µ(d, x) + sup
v∈V (d,x,z;π)

λd(x, v). (B.8)

By (B.6)-(B.8), EP0 [Y |D = d,X = x, Z = z] ≤ µ(d, x) + supv∈V (d,x,z;π) λd(x, v). For b = −1,

the argument is similar.

Proof of Theorem 3. Let θ ∈ ΘI(P0). Let W ≡ {X} × V . Define

KI(d; θ) ≡ {κ(d) ∈ R : κ(d) =

∫
ϕ(µ(d, x,Q(η;w))dηdFW (w), W ∈ Sel(W )}. (B.9)

This set collects the values of κ(d) compatible with θ for some measurable selection W of W .

The sharp identification region for κ(d) is

KI(d) =
⋃

θ∈ΘI(P0)

KI(d; θ). (B.10)

Hence, for the conclusion of the theorem, it suffices to show KI(d; θ) = [κ(d; θ), κ(d; θ)].

For this, we represent KI(d; θ) as the Aumann expectation of a random set and apply the

convexification theorem. Define

K(d; θ) ≡
{
r ∈ R : r =

∫
ϕ(µ(d, x,Q(η;W ))dη, W ∈ Sel(W )

}
. (B.11)

Then, by construction, KI(d; θ) is the Aumann expectation of K(d; θ). Under the assump-

tion that the underlying probability space is non-atomic, we may apply the convexification

theorem (Molinari, 2020, Theorem A.2.). It ensures KI(d; θ) = E[K(d; θ)] is a convex closed

set. Since ϕ is bounded, KI(d; θ) is a bounded closed interval. Again, by Theorem A.2. of

Molinari (2020), its upper bound is

s(1,K(d; θ)) = s(1,E[K(d; θ)]) = E[s(1,K(d; θ))]

= E[ sup
w∈W

∫
ϕ(µ(d, x,Q(η;W ))dη] = E[sup

v∈V

∫
ϕ(µ(d, x,Q(η;X, v))] = κ(d; θ), (B.12)

where we used W = {X}×V . The argument for the lower bound is similar and is omitted.
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B.2 Lemmas

Lemma 1: Suppose µ is a measurable function. Then, Y (η,D,X,V ;µ, F ) is a random

closed set.

Proof. Y (η,D,X,V ;µ, F ) being closed is immediate from the definition. We show its mea-

surability below. Write Y (η(ω), D(ω), X(ω),V (ω);µ, F ) as Y (ω) for short. Since V is

a random closed set, there is a sequence {Vn} such that V = cl({Vn, n ≥ 1}) by Theo-

rem 1.3.3 in Molchanov (2017). Let υn(ω) = µ(D(ω), X(ω), Q(η(ω), Vn(ω))) and note that

Y = cl({υn, n ≥ 1}) by Lemma 2. Then, for any x ∈ Y, the distance function

ρ(x,Y (ω)) = inf{‖x− y‖, y ∈ Y (ω)} = inf{‖x− υn(ω)‖, n ≥ 1} (B.13)

is a random variable in [0,∞]. Again, by Theorem 1.3.3 in Molchanov (2017), the conclusion

follows.

Consider a random closed set X that is nonempty almost surely. A countable family of

selections ξn ∈ Sel(X), n ≥ 1 is called the Castaing representation of X if X = cl({ξn, n ≥
1}). Such representation exists for any random closed set (Molchanov, 2017).

Lemma 2: Let X be a random closed set, and let {ξn, n ≥ 1} be its Castaing representa-

tion. For each ω ∈ Ω, let Y (ω) ≡ cl{y ∈ Y : y = f(ω, ξ(ω)), ξ ∈ Sel(X)} for a measurable

map f : Ω × X → Y. Then Y is a random closed set with a Castaing representation {υn}
with υn(ω) = f(ω, ξn(ω)) for n ≥ 1.

Proof. Le {yn, n ≥ 1} be an enumeration of a countable dense set in Y. For each n, k ≥ 1

and ω ∈ Ω, let Ck,n(ω) = {x ∈ X : f(ω, x) ∩ B2−k(yn) 6= ∅}. Let Xk,n ≡ X ∩ Ck,n if the

intersection is nonempty and let Xk,n = X otherwise. Note that Xk,n itself is a random

closed set. For each k, n, there is m ∈ N such that ξm is a measurable selection of Xk,n. For

each ω with y ∈ Y (ω), we have y ∈ B2−k(yn) for some k, n, and

‖y − υk,n‖ ≤ ‖y − yn‖+ ‖yn − υk,n‖ ≤ 2−k+1, (B.14)

where υk,n = f(ω, ξm). Therefore, the conclusion follows.
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B.3 Proofs of Corollaries

Proof of Corollary 1. We show Assumptions 2-4 and invoke Theorem 2. First, define

V (D,Z,X;π) =

[0, π(Z,X)] if D = 1

[π(Z,X), 1] if D = 0.
(B.15)

Then Assumption 2 (i) holds by the selection equation (2.7)–(2.8). Assumption 2 (ii) holds

because V is a function of (D,Z,X) and π. Assumptions 3-4 hold by hypothesis. By Theorem

2, each θ = (µ, F, π) in the sharp identified set satisfies

µ(d, x) + λL(d, x, z) ≤ EP0 [Y |D = d,X = x, Z = z] ≤ µ(d, x) + λU (d, x, z).

Rearranging them yields

EP0 [Y |D = d,X = x, Z = z]− λU (d, x, z) ≤ µ(d, x) ≤ EP0 [Y |D = d,X = x, Z = z]− λL(d, x, z).

Note that µ does not depend on z. Taking the supremum of the lower bounds and taking

the infimum of the upper bounds over z ∈ Z yields the desired result.

Proof of Corollary 2. We show Assumptions 1-3 and invoke Theorem 1. Assumption 1 holds

because D is a function of (Z,X, V ) in (2.11), and U ⊥ Z|X,V . Assumption 3 holds by

hypothesis. Define

V (D,Z,X;π) =


{
v ∈ R2 : π̃(Z,X) + (1− Z)v0 + Zv1 ≥ 0

}
if D = 1{

v ∈ R2 : π̃(Z,X) + (1− Z)v0 + Zv1 ≤ 0
}

if D = 0,
(B.16)

where π̃(z, x) = π(0, x) + z(π(1, x) − π(0, x)). Assumption 2 (i) holds by (2.10) and (2.11).

Also, Assumption 2 (ii) holds because V is a function of (D,Z,X) and π. By Theorem 1, θ

is in the sharp identified set iff P0(A|D,X,Z) ≥ Cθ(A|D,X,Z) holds.

For the main result, it remains to show (5.13). Let A ⊂ {1, . . . J} and write the model’s
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prediction as Y for short. Then,

{Y ⊆ A}

=
⋃
B⊆A
{Y = B}

=
⋃
B⊆A

( ⋂
j`∈B

{
µj`(D,X) ≥ inf

V ∈Sel(V )

(
max
k 6=j`

[µk(D,X) +Qk(η;X,V )]−Qj`(η;X,V )
)})

∩
( ⋂
jm∈A\B

{
µjn(D,X) < inf

V ∈Sel(V )

(
max
k 6=jm

[µk(D,X) +Qk(η;X,V )]−Qjm(η;X,V )
)})

.

Conditioning on (D,X,Z) and evaluating the probability on the right-hand side by Fη yields

(5.13).

Proof of Corollary 3. The main argument is essentially the same as the proof of Corollary 1.

Hence, we omit it. Here, we derive (5.22). By Theorem 2,

λU (d, x, z) = sup
v∈V (d,x,z;π)

λd(x, v), (B.17)

where v = (v1, v2, vs). By (5.20), the identifying restrictions in (5.22) follow. One can show

(5.23) by a similar argument.

Proof of Corollary 4. We first note that, conditional on (X,U1, V1, V2), the endogenous vari-

ables (Y1, D1, D2) are a function of the instruments determined by the following triangular

system:

D2 = 1{π2(Y1, D1, Z2, X) ≥ V2}

Y1 = 1{µ1(D1, X) ≥ U1}

D1 = 1{π1(Z1, X) ≥ V1}.

Therefore, Assumption 1 follows from U2 ⊥ (Z1, Z2)|X,U1, V1, V2, which in turn is implied

by (U1, U2, V1, V2) ⊥ (Z1, Z2)|X. The sets VU1 ,V1,V2 are defined by inverting the triangular

system above with respect to (U1, V1, V2), which ensures Assumption 2 (i). Assumption 2

(ii) also holds because these sets are functions of (D,Z,X) and π. Assumption 3 holds by

hypothesis and noting that U = U2 and V = (U1, V1, V2) in this example.
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By Theorem 1, θ ∈ ΘI(P0) iff

P0(Y = 1|D = d,X = x, Z = z) ≥ Cθ({1}|D = d,X = x, Z = z) (B.18)

P0(Y = 0|D = d,X = x, Z = z) ≥ Cθ({0}|D = d,X = x, Z = z). (B.19)

By (5.25) (and as argued in the text),

Cθ({1}|D = d,X = x, Z = z) = inf
v∈V (d,x,z;π)

H(d, x, v) (B.20)

Cθ({0}|D = d,X = x, Z = z) = 1− sup
v∈V (d,x,z;π)

H(d, x, v) (B.21)

The identifying restriction (5.26) follows from (B.18)-(B.21) and noting that P0(Y = 0|D =

d,X = x, Z = z) = 1− P0(Y = 1|D = d,X = x, Z = z).

The identifying restrictions (5.27)-(5.28) follow from applying the same argument sequen-

tially. For example, letting Y = D2, D = (Y1, D1), U = V2, and V = (U1, V1) and applying

the argument above yields (5.27).
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