Optimal Dynamic Treatment Regimes and Partial Welfare Ordering

Sukjin Han

University of Bristol

7 April 2022

Harvard & MIT Seminar

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Dynamic (i.e., Adaptive) Treatment Regimes

Dynamic treatment regimes are seq's of treatment allocations...

- …tailored to individual heterogeneity
- each period t, assignment rule δ_t(·) maps previous outcome (and covariates) onto a current allocation decision

 $\delta_t(y_{t-1}) \in \{0,1\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dynamic (i.e., Adaptive) Treatment Regimes

Dynamic treatment regimes are seq's of treatment allocations...

- …tailored to individual heterogeneity
- each period t, assignment rule δ_t(·) maps previous outcome (and covariates) onto a current allocation decision

$$\delta_t(y_{t-1}) \in \{0,1\}$$

Optimal dynamic treatment regime is a dynamic regime that maximizes counterfactual welfare

$$\delta^*(\cdot) = rg\max_{\delta(\cdot) \in \mathcal{D}} W_{\delta}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Identification of Optimal Dynamic Treatment Regime

$$\delta^*(\cdot) = rg\max_{\delta(\cdot) \in \mathcal{D}} W_{\delta}$$

This paper investigates the possibility of identification of $\delta^*(\cdot)$ when data are from...

multi-stage experiments with possible non-compliance,

or

more generally, observational studies

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Y_2 employed after program
- D_2 receiving job training program
- Y_1 employed before program
- D_1 receiving high school diploma

- Y_2 employed after program
- D_2 receiving job training program
- Y_1 employed before program
- D_1 receiving high school diploma

Let $Y_1(d_1)$ and $Y_2(d_2)$ be counterfactual employment status Treatment effects: $E[Y_1(1)] - E[Y_1(0)]$ and $E[Y_2(1)] - E[Y_2(0)]$

 Y_2 employed after program

- D_2 receiving job training program
- Y_1 employed before program

 D_1 receiving high school diploma

Let $Y_1(d_1)$ and $Y_2(d_2)$ be counterfactual employment status Treatment effects: $E[Y_1(1)] - E[Y_1(0)]$ and $E[Y_2(1)] - E[Y_2(0)]$

May be interested in the effects of sequence of treatments using $Y_2(d_1, d_2)$

Then, e.g., $E[Y_2(1,0)] - E[Y_2(0,1)]$ or complementarity:

 $E[Y_2(1,1)] - E[Y_2(1,0)]$ vs. $E[Y_2(0,1)] - E[Y_2(0,0)]$

- Y_2 employed after program
- D_2 receiving job training program
- Y_1 employed before program
- D1 receiving high school diploma

Since (d_1, d_2) are *not* simultaneously provided, Y_1 responds to d_1 (as $Y_1(d_1)$)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Y_2 employed after program
- D_2 receiving job training program
- Y_1 employed before program
- D1 receiving high school diploma

Since (d_1, d_2) are *not* simultaneously provided, Y_1 responds to d_1 (as $Y_1(d_1)$)

So want to incorporate this knowledge in recommendation of d_2 thus, instead of d_2 , consider $\delta_2(Y_1(d_1))$ as hypothetical policy

 Y_2 employed after program

 D_2 receiving job training program

 Y_1 employed before program

D1 receiving high school diploma

Since (d_1, d_2) are *not* simultaneously provided, Y_1 responds to d_1 (as $Y_1(d_1)$)

So want to incorporate this knowledge in recommendation of d_2 thus, instead of d_2 , consider $\delta_2(Y_1(d_1))$ as hypothetical policy And, instead of $Y_2(d_1, d_2)$, consider

 $Y_2(d_1,\delta_2(Y_1(d_1))) \equiv Y_2(\delta)$

 Y_2 employed after program

 D_2 receiving job training program

 Y_1 employed before program

D1 receiving high school diploma

Optimal dynamic regime: schedule $\delta(\cdot) = (\delta_1, \delta_2(\cdot))$ of allocation *rules* that maximizes $W_{\delta} = E[Y_2(\delta)]$ where

$$\delta_1 = d_1, \qquad \delta_2(Y_1(\delta_1)) = d_2$$

 Y_2 employed after program

- D_2 receiving job training program
- Y_1 employed before program
- D1 receiving high school diploma

Optimal dynamic regime: schedule $\delta(\cdot) = (\delta_1, \delta_2(\cdot))$ of allocation *rules* that maximizes $W_{\delta} = E[Y_2(\delta)]$ where

$$\delta_1 = d_1, \qquad \delta_2(Y_1(\delta_1)) = d_2$$

Policy implication of $\delta^*(\cdot)$ s.t. $\delta^*_2(1) = 0$, $\delta^*_2(0) = 1$,...

- more training resources to disadvantaged workers
- with \u03c6₁^{*} combined, interaction with earlier schooling

How to learn W_{δ} 's and $\delta^*(\cdot)$, esp. when treatments are endogenous?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

How to learn W_{δ} 's and $\delta^*(\cdot)$, esp. when treatments are endogenous?

 \Rightarrow we show IVs from sequential (quasi-) experiments are helpful

- e.g., medical trials, field experiments, A/B testings
- e.g., seq of policy shocks, sequential fuzzy RDs

How to learn W_{δ} 's and $\delta^*(\cdot)$, esp. when treatments are endogenous?

- \Rightarrow we show IVs from sequential (quasi-) experiments are helpful
 - e.g., medical trials, field experiments, A/B testings
 - e.g., seq of policy shocks, sequential fuzzy RDs

In motivating example,

• distance to (or density of) high schools can be Z_1

random assignment of job training can be Z₂

How to learn W_{δ} 's and $\delta^*(\cdot)$, esp. when treatments are endogenous?

- \Rightarrow we show IVs from sequential (quasi-) experiments are helpful
 - e.g., medical trials, field experiments, A/B testings
 - e.g., seq of policy shocks, sequential fuzzy RDs

In motivating example,

- distance to (or density of) high schools can be Z₁
- random assignment of job training can be Z₂

Single IV can still be helpful esp. with short horizon

This paper proposes a nonparametric framework where we can (at least partially) learn optimal dynamic regime and related welfares

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This paper proposes a nonparametric framework where we can (at least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e., ranking) of W_{δ} 's w.r.t. $\delta(\cdot) \in D$

Sharp Partial Welfare Ordering in Numerical Exercise

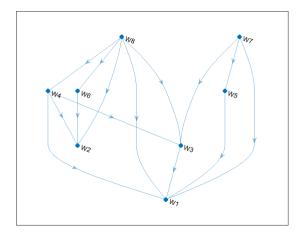


Figure: Partial Ordering as Directed Acyclic Graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This paper proposes a nonparametric framework where we can (at least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e., ranking) of W_{δ} 's w.r.t. $\delta(\cdot) \in D$

This paper proposes a nonparametric framework where we can (at least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e., ranking) of W_{δ} 's w.r.t. $\delta(\cdot) \in D$

2. Based on partial ordering, we characterize (sharp) identified set for optimal regime $\delta^*(\cdot)$

as a set of maximal elements

Sharp Partial Welfare Ordering in Numerical Exercise

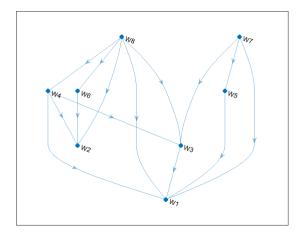


Figure: Partial Ordering as Directed Acyclic Graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This paper proposes a nonparametric framework where we can (at least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e., ranking) of W_{δ} 's w.r.t. $\delta(\cdot) \in D$

2. Based on partial ordering, we characterize (sharp) identified set for optimal regime $\delta^*(\cdot)$

as a set of maximal elements

This paper proposes a nonparametric framework where we can (at least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e., ranking) of W_{δ} 's w.r.t. $\delta(\cdot) \in D$

2. Based on partial ordering, we characterize (sharp) identified set for optimal regime $\delta^*(\cdot)$

as a set of maximal elements

3. We propose additional assumptions that tighten the ID'ed set

e.g., on agent's behavior or dynamics

This paper proposes a nonparametric framework where we can (at least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e., ranking) of W_{δ} 's w.r.t. $\delta(\cdot) \in D$

2. Based on partial ordering, we characterize (sharp) identified set for optimal regime $\delta^*(\cdot)$

as a set of maximal elements

3. We propose additional assumptions that tighten the ID'ed set

e.g., on agent's behavior or dynamics

4. We apply the method in policy analysis using schooling & post-school training as sequence of treatments

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Contribution 1: Treatment Endogeneity

Dynamic treatment regimes:

- Murphy et al. 01, Murphy 03, Robins 04,...
- sequential randomization: "randomize treatment in the current period conditional on past treatments and outcomes"

Statistical treatment rules and policy learning:

Manski 04, Hirano & Porter 09, Bhattacharya & Dupas 12, Stoye 12, Kitagawa & Tetenov 18, Sakaguchi 19, Athey & Wager 21, Mbakop & Tabord-Meehan 21,...

versions of unconfoundedness assumption

Contribution 1: Treatment Endogeneity

Dynamic treatment regimes:

- Murphy et al. 01, Murphy 03, Robins 04,...
- sequential randomization: "randomize treatment in the current period conditional on past treatments and outcomes"

Statistical treatment rules and policy learning:

- Manski 04, Hirano & Porter 09, Bhattacharya & Dupas 12, Stoye 12, Kitagawa & Tetenov 18, Sakaguchi 19, Athey & Wager 21, Mbakop & Tabord-Meehan 21,...
- versions of unconfoundedness assumption

Not plausible in experiments with partial compliance and many observational studies

Contribution 1: Treatment Endogeneity

Dynamic treatment regimes:

- Murphy et al. 01, Murphy 03, Robins 04,...
- sequential randomization: "randomize treatment in the current period conditional on past treatments and outcomes"

Statistical treatment rules and policy learning:

- Manski 04, Hirano & Porter 09, Bhattacharya & Dupas 12, Stoye 12, Kitagawa & Tetenov 18, Sakaguchi 19, Athey & Wager 21, Mbakop & Tabord-Meehan 21,...
- versions of unconfoundedness assumption

Not plausible in experiments with partial compliance and many observational studies

This paper: relaxes sequential randomization

Contribution 2: Partial ID in Multi-Period Settings

ID of optimal regime (as fcn of covariates) using IVs:

- Cui & Tchetgen Tchetgen 20, Qiu et al. 20, Han 21; Kasy 16, Pu & Zhang 2021
 - single-period setting
 - rely on independence of compliance type or rank preservation
 - or partial ID
- Han 20
 - dynamic treatment effects and optimal regime in multi-period setting

rely on existence of extra exogenous variables

Contribution 2: Partial ID in Multi-Period Settings

ID of optimal regime (as fcn of covariates) using IVs:

- Cui & Tchetgen Tchetgen 20, Qiu et al. 20, Han 21; Kasy 16, Pu & Zhang 2021
 - single-period setting
 - rely on independence of compliance type or rank preservation
 - or partial ID
- Han 20
 - dynamic treatment effects and optimal regime in multi-period setting
 - rely on existence of extra exogenous variables

This paper:

 partial ID of optimal adaptive regime and dynamic treatment effects

Contribution 3: Linear Programming Approach to Partial ID

Calculating bounds using linear programming (LP)

Balke & Pearl 97, Manski 07, Mogstad et al. 18, Kitamura & Stoye 19, Torgovitsky 19, Machado et al. 19, Kamat 19, Han & Yang 20,...

This paper:

- establish partial ordering via a set of LPs...
- that are governed by the same DGP...
- and characterize bounds on welfare gaps

Simple estimation and inference procedures for optimal regime

Contribution 3: Linear Programming Approach to Partial ID

Calculating bounds using linear programming (LP)

Balke & Pearl 97, Manski 07, Mogstad et al. 18, Kitamura & Stoye 19, Torgovitsky 19, Machado et al. 19, Kamat 19, Han & Yang 20,...

This paper:

- establish partial ordering via a set of LPs...
- that are governed by the same DGP...
- and characterize bounds on welfare gaps

Simple estimation and inference procedures for optimal regime

Broader applicability:

rankings across different counterfactual scenarios

Roadmap

I. Dynamic treatment regime and counterfactual welfare

- II. Partial ID of optimal dynamic regime
 - linear programming
 - partial ordering and ID'ed set
- III. Additional identifying assumptions
- IV. Numerical illustration
- V. Empirical application
- VI. Inference

I. Dynamic Treatment Regime and Counterfactual Welfare

Dynamic (i.e., Adaptive) Treatment Regimes

Consider two-period case (T = 2) only for simplicity

Dynamic regime is defined as

$$\boldsymbol{\delta}(\cdot) \equiv (\delta_1, \delta_2(\cdot)) \in \mathcal{D}$$

where

$$\delta_1 = d_1 \in \{0, 1\}$$

 $\delta_2(y_1) = d_2 \in \{0, 1\}$

• e.g., y_t symptom, d_t medical treatment

(stochastic rules in the paper)

Dynamic (i.e., Adaptive) Treatment Regimes

Regime #	δ_1	$\delta_2(1)$	$\delta_2(0)$
1	0	0	0
2	1	0	0
3	0	1	0
4	1	1	0
5	0	0	1
6	1	0	1
7	0	1	1
8	1	1	1

Table: Dynamic Regimes $\delta(\cdot) \equiv (\delta_1, \delta_2(\cdot))$ when T = 2

Non-Adaptive Treatment Regimes

Regime #	d_1	<i>d</i> ₂
1	0	0
2	1	0
3	0	1
4	1	1

Table: Non-Adaptive Regimes $d \equiv (d_1, d_2)$ when T = 2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Counterfactual Outcomes

Define potential outcome as a function of dynamic regime

Counterfactual Outcomes

Define potential outcome as a function of dynamic regime

Potential outcomes with non-adaptive regime $d = (d_1, d_2)$:

 $\begin{array}{c} Y_1(d_1) \\ Y_2(d_1, d_2) \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Counterfactual Outcomes

Define potential outcome as a function of dynamic regime

Potential outcomes with non-adaptive regime $d = (d_1, d_2)$:

 $\begin{array}{c} Y_1(d_1) \\ Y_2(d_1, d_2) \end{array}$

Potential outcomes with dynamic regime $\delta(\cdot) = (\delta_1, \delta_2(\cdot))$:

 $Y_1(\delta_1) = Y_1(d_1)$ $Y_2(\delta) = Y_2(\delta_1, \delta_2(Y_1(\delta_1)))$

Welfare and Optimal Dynamic Regime

Let $\mathbf{Y}(\boldsymbol{\delta}) \equiv (Y_1(\delta_1), Y_2(\boldsymbol{\delta}))$

Counterfactual welfare as linear funct'l of $q_{\delta}(\mathbf{y}) \equiv \Pr[\mathbf{Y}(\delta(\cdot)) = \mathbf{y}]$

$$W_{\delta} \equiv f(q_{\delta})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• e.g.,
$$E[Y_T(\delta(\cdot))] = \Pr[Y_T(\delta(\cdot)) = 1]$$
 • Details
• e.g., $\sum_{t=1}^{T} \{ \omega_t E[Y_t(\delta^t(\cdot))] \}$ (less the cost of treatments)

Welfare and Optimal Dynamic Regime

Let $\mathbf{Y}(\boldsymbol{\delta}) \equiv (Y_1(\delta_1), Y_2(\boldsymbol{\delta}))$

Counterfactual welfare as linear funct'l of $q_{\delta}(\mathbf{y}) \equiv \Pr[\mathbf{Y}(\delta(\cdot)) = \mathbf{y}]$

$$W_{\delta} \equiv f(q_{\delta})$$

• e.g.,
$$E[Y_T(\delta(\cdot))] = \Pr[Y_T(\delta(\cdot)) = 1]$$
 • Details
• e.g., $\sum_{t=1}^{T} \{\omega_t E[Y_t(\delta^t(\cdot))]\}$ (less the cost of treatments)

Optimal dynamic regime as

$$\delta^*(\cdot) = rg\max_{\delta(\cdot) \in \mathcal{D}} W_\delta$$

・ロト ・ 理ト ・ ヨト ・ ヨー・ つへで

Observed Data

For t = 1, ..., T on a finite horizon,

- Y_t ∈ {0,1} outcome at t (e.g., symptom indicator)
 extension: continuous Y_t with discretized rule (later)
- ▶ $D_t \in \{0,1\}$ treatment at t (e.g., medical treatment received)
- ▶ $Z_t \in \{0,1\}$ instrument at t (e.g., medical treatment assigned)

Large N small T panel of $(\mathbf{Y}, \mathbf{D}, \mathbf{Z})$

(cross-sectional index i suppressed; covariates suppressed)

more generally, e.g., single IV is allowed

Let Y(d) be vector of $Y_t(d^t)$'s and D(z) be vector of $D_t(z^t)$'s.

Assumption SX $Z_t \perp (\boldsymbol{Y}(\boldsymbol{d}), \boldsymbol{D}(\boldsymbol{z})) | \boldsymbol{Z}^{t-1}.$

e.g., sequential randomized experiments, sequential fuzzy RDs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let Y(d) be vector of $Y_t(d^t)$'s and D(z) be vector of $D_t(z^t)$'s.

Assumption SX $Z_t \perp (\boldsymbol{Y}(\boldsymbol{d}), \boldsymbol{D}(\boldsymbol{z})) | \boldsymbol{Z}^{t-1}.$

e.g., sequential randomized experiments, sequential fuzzy RDs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Goal: to characterize ID'ed set for $\delta^*(\cdot)$ given the distribution of $(\textbf{\textit{Y}}, \textbf{\textit{D}}, \textbf{\textit{Z}})$

Let Y(d) be vector of $Y_t(d^t)$'s and D(z) be vector of $D_t(z^t)$'s.

Assumption SX $Z_t \perp (\boldsymbol{Y}(\boldsymbol{d}), \boldsymbol{D}(\boldsymbol{z})) | \boldsymbol{Z}^{t-1}.$

e.g., sequential randomized experiments, sequential fuzzy RDs

Goal: to characterize ID'ed set for $\delta^*(\cdot)$ given the distribution of $(\textbf{\textit{Y}}, \textbf{\textit{D}}, \textbf{\textit{Z}})$

ID'ed set as a subset of the discrete set $\mathcal{D}:$

 $\mathcal{D}^* {\subset} \, \mathcal{D}$

As first step, establish *sharp partial ordering* of welfare W_{δ} w.r.t. $\delta(\cdot)$ based on $(\mathbf{Y}, \mathbf{D}, \mathbf{Z})$

• cf. total ordering is needed for point ID of $\delta^*(\cdot)$

can only recover obs'ly equivalent total orderings

As first step, establish *sharp partial ordering* of welfare W_{δ} w.r.t. $\delta(\cdot)$ based on $(\boldsymbol{Y}, \boldsymbol{D}, \boldsymbol{Z})$

- cf. total ordering is needed for point ID of $\delta^*(\cdot)$
- can only recover obs'ly equivalent total orderings

Partial ordering = a *directed acyclic graph* (DAG)

- parameter of independent interest
- topological sorts of DAG = obs'ly equivalent total orderings

Partial Ordering of Welfare $W_k \equiv W_{\delta_k}$

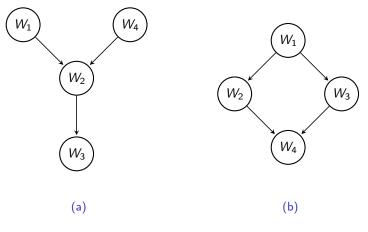


Figure: Partially Ordered Sets as DAGs

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Sharp Partial Ordering of Welfare W_{δ}

We want this partial ordering to be *sharp*

Definition (Sharp Partial Ordering, i.e., Sharp DAG)

In the DAG, no more edges can be created without additional assumptions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sharp Partial Ordering of Welfare W_{δ}

We want this partial ordering to be *sharp*

Definition (Sharp Partial Ordering, i.e., Sharp DAG)

In the DAG, no more edges can be created without additional assumptions.

To guarantee this, characterize sharp lower and upper bounds on

$$W_{\delta} - W_{\delta'}$$

as optima of linear programming

Linear Programming for Bounds on Welfare Gap

For each $\delta, \delta' \in \mathcal{D}$, welfare gap (i.e., dynamic treatment effect) is

$$W_{\delta} - W_{\delta'} = (A_{\delta} - A_{\delta'})q$$

where $q \in \mathcal{Q}$ is vector of latent distribution

Linear Programming for Bounds on Welfare Gap

For each $\delta, \delta' \in \mathcal{D}$, welfare gap (i.e., dynamic treatment effect) is

$$W_{\delta} - W_{\delta'} = (A_{\delta} - A_{\delta'})q$$

where $q \in \mathcal{Q}$ is vector of latent distribution

Sharp lower and upper bounds via linear programming:

$$\begin{array}{l} L_{\delta,\delta'} = \min_{q \in \mathcal{Q}} (A_{\delta} - A_{\delta'})q \\ U_{\delta,\delta'} = \max_{q \in \mathcal{Q}} (A_{\delta} - A_{\delta'})q \end{array} \qquad s.t. \quad Bq = p \end{array}$$

- A_{δ} , $A_{\delta'}$, and B are known to researcher
- \triangleright p is vector of data distribution for $(\mathbf{Y}, \mathbf{D}, \mathbf{Z})$
- q is unknown decision variable in standard simplex Q

Sharp Partial Ordering and Identified Set

Theorem

Suppose SX holds. (i) DAG is sharp with set of edges

 $\{(W_{\delta}, W_{\delta'}) : L_{\delta, \delta'} > 0 \text{ for } \delta \neq \delta'\}$

(ii) \mathcal{D}_p^* satisfies

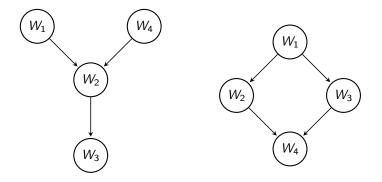
$$\mathcal{D}_{\rho}^{*} = \{ \delta' : \nexists \delta \text{ such that } L_{\delta,\delta'} > 0 \text{ for } \delta \neq \delta' \}$$

= $\{ \delta' : L_{\delta,\delta'} \leq 0 \text{ for all } \delta \text{ and } \delta \neq \delta' \}$

i.e., the rhs set is sharp

- ▶ \mathcal{D}_p^* is the set of *maximal elements* associated with the DAG
- key insight: despite separate optimizations, DAG is governed by common latent dist q's in {q : Bq = p} (i.e., that are obs'ly equivalent)

Partial Ordering of Welfare $W_k \equiv W_{\delta_k}$



(a) $\delta^*(\cdot)$ is partially ID'ed $\mathcal{D}_p^* = \{\delta_{\#1}, \delta_{\#4}\}$ (b) $\delta^*(\cdot)$ is point ID'ed $\mathcal{D}_p^* = \{\delta_{\#1}\}$

Figure: Partially Ordered Sets as DAGs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Discussion: Identified Set

Given the minimal structure, the size of \mathcal{D}_p^* may be large

Discussion: Identified Set

Given the minimal structure, the size of \mathcal{D}_{p}^{*} may be large

Such \mathcal{D}_{p}^{*} still has implications for policy:

- (i) it recommends the planner to eliminate sub-optimal regimes from her options
- (ii) it warns about the lack of informativeness of data (e.g., even with experimental data)

Discussion: Identified Set

Given the minimal structure, the size of \mathcal{D}_{p}^{*} may be large

Such \mathcal{D}_{p}^{*} still has implications for policy:

- (i) it recommends the planner to eliminate sub-optimal regimes from her options
- (ii) it warns about the lack of informativeness of data (e.g., even with experimental data)

The size of \mathcal{D}_{p}^{*} is related to...

- the strength of Z_t (i.e., the size of the complier group at t),
- the strength of the dynamic treatment effects

III. Additional Identifying Assumptions

Additional Identifying Assumptions

Researchers are willing to impose more assumptions based on priors about agent's behavior or dynamics

monotonicity/uniformity

Imbens & Angrist 94, Manski & Pepper 00

▶ for each *t*, either $Y_t(1) \ge Y_t(0)$ w.p.1 or $Y_t(1) \le Y_t(0)$ w.p.1. conditional on $(\boldsymbol{Y}^{t-1}, \boldsymbol{D}^{t-1})$

Assumption M1

- agent's learning
- Markovian structure
- positive state dependence, stationarity, etc.
 - Torgovitsky 19

Easy to incorporate within the linear programming

These assumptions tighten the ID'ed set \mathcal{D}_p^* by...

▶ reducing the dimension of the simplex Q

▶ Assumption L

► Assumption M2

Assumption K

IV. Numerical Illustration

・ロット 御マ トロマ トロマー ひゃん

Numerical Illustration

For
$$T = 2$$
, DGP is

$$D_{i1} = 1\{\pi_1 Z_{i1} + \alpha_i + v_{i1} \ge 0\}$$

$$Y_{i1} = 1\{\mu_1 D_{i1} + \alpha_i + e_{i1} \ge 0\}$$

$$D_{i2} = 1\{\pi_{21} Y_{i1} + \pi_{22} D_{i1} + \pi_{23} Z_{i2} + \alpha_i + v_{i2} \ge 0\}$$

$$Y_{i2} = 1\{\mu_{21} Y_{i1} + \mu_{22} D_{i2} + \alpha_i + e_{i2} \ge 0\}$$

and

$$W_{\delta} = E[Y_2(\delta)]$$

Calculate $[L_{\delta_k,\delta_l}, U_{\delta_k,\delta_l}]$ for $W_{\delta_k} - W_{\delta_l}$ for all pairs $k, l \in \{1, ..., 8\}$ We make $\begin{pmatrix} 8\\2 \end{pmatrix} = 28$ comparisons, i.e., 28×2 linear programs

Bounds on Welfare Gaps $W_{\delta_k} - W_{\delta_l}$

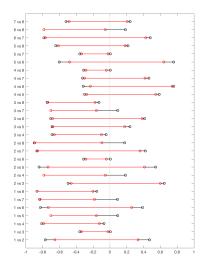


Figure: Sharp Bounds on Welfare Gaps (red: under M2)

イロト 不得下 イヨト イヨト

э.

Sharp Partial Welfare Ordering

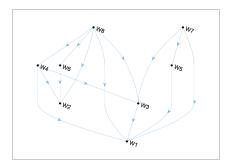


Figure: Partial Ordering as DAG and ID'ed Set for δ^* (under M2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Sharp Partial Welfare Ordering

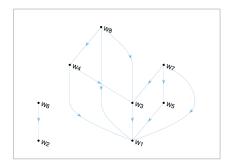


Figure: Partial Ordering as DAG with Only Z_1 (under M2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

V. Empirical Application: Returns to Schooling and Training

(ロ)、

Empirical Application: Returns to Schooling and Training

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Individuals who face "barriers to employment"

- Y₂ above median 30-mo earnings
- D_2 receiving job training program
- Z_2 random assignment of the program
- Y_1 above 80th pctle pre-program earnings
- D_1 receiving high school diploma (or GED)
- Z_1 number of schools per sq mile (e.g., Neal 97)

Empirical Application: Returns to Schooling and Training

Individuals who face "barriers to employment"

- Y_2 above median 30-mo earnings
- D_2 receiving job training program
- Z_2 random assignment of the program
- Y_1 above 80th pctle pre-program earnings
- D_1 receiving high school diploma (or GED)
- Z_1 number of schools per sq mile (e.g., Neal 97)

Consider $W_{\delta} = E[Y_2(\delta)]$ and $= E[Y_1(\delta_1)] + E[Y_2(\delta)]$

Empirical Application: Returns to Schooling and Training

Individuals who face "barriers to employment"

- Y_2 above median 30-mo earnings
- D_2 receiving job training program
- Z_2 random assignment of the program
- Y_1 above 80th pctle pre-program earnings
- D_1 receiving high school diploma (or GED)
- Z_1 number of schools per sq mile (e.g., Neal 97)

Consider $W_{\delta} = E[Y_2(\delta)]$ and $= E[Y_1(\delta_1)] + E[Y_2(\delta)]$

Data: JTPA (e.g., Abadie, Angrist & Imbens 02, Kitagawa & Tetenov 18) + NCES + US Census

Estimation

Estimation of DAG and \mathcal{D}_p^* is straightforward

▶ replace data distribution p in LP with sample frequencies \hat{p} , a vector of

$$\hat{p}_{y,d|z} = \sum_{i=1}^{N} 1\{Y_i = y, D_i = d, Z_i = z\} / \sum_{i=1}^{N} 1\{Z_i = z\}$$

Policy Analysis with Schooling and Training

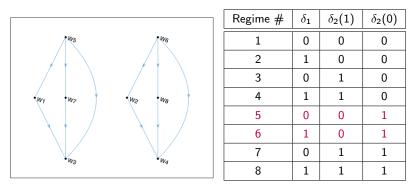


Figure: DAG of $W_{\delta} = E[Y_2(\delta)]$ and Est'ed Set for δ^* (under M2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Policy Analysis with Schooling and Training

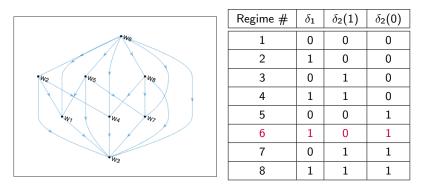


Figure: DAG of $W_{\delta} = E[Y_1(\delta_1)] + E[Y_2(\delta)]$ and Est'ed Set for δ^* (under M2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Policy Analysis with Schooling and Training

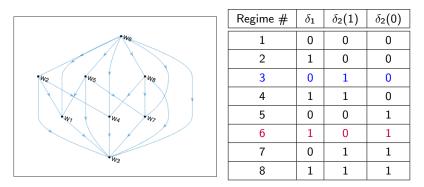


Figure: DAG of $W_{\delta} = E[Y_1(\delta_1)] + E[Y_2(\delta)]$ and Est'ed Set for δ^* (under M2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Policy Analysis with Schooling and Training

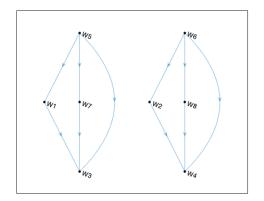


Figure: Partial Ordering with only Z_2 (under M2)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

VI. Inference

・ロット (四) (日) (日) (日) (日)

For the inference on $\delta^*(\cdot)$, we construct confidence set for \mathcal{D}^*_p

- by seq of hypothesis tests (Hansen, Lunde & Nason 11)
 - to eliminate regimes that are significantly inferior to others
 - null hypotheses in terms of multiple ineq's as functions of p
 e.g., Hansen 05, Andrews & Soares 10,...
 - no need to solve LPs for every bootstrap repetition
 - by using strong duality and vertex enumeration
- also useful for specification tests of (less palatable) identifying assumptions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall
$$W_{\delta} - W_{\delta'} = (A_{\delta} - A_{\delta'})q$$
 and
 $L_{\delta,\delta'} = \min_{q \in Q} (A_{\delta} - A_{\delta'})q$
 $U_{\delta,\delta'} = \max_{q \in Q} (A_{\delta} - A_{\delta'})q$ s.t. $Bq = p$

Dual programs with vertex enumeration (e.g., Avis & Fukuda 92):

$$L_{\delta,\delta'} = \max_{\lambda \in \Lambda_{\delta,\delta'}} -\tilde{\rho}' \lambda$$
$$U_{\delta,\delta'} = \min_{\lambda \in \tilde{\Lambda}_{\delta,\delta'}} \tilde{\rho}' \lambda$$

Null hypothesis for sequence of tests:

$$H_{0,\tilde{\mathcal{D}}}: L_{\delta,\delta'} \leq 0 \leq U_{\delta,\delta'} \qquad \forall \delta, \delta' \in \tilde{\mathcal{D}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall
$$W_{\delta} - W_{\delta'} = (A_{\delta} - A_{\delta'})q$$
 and
 $L_{\delta,\delta'} = \min_{q \in Q} (A_{\delta} - A_{\delta'})q$
 $U_{\delta,\delta'} = \max_{q \in Q} (A_{\delta} - A_{\delta'})q$ s.t. $Bq = p$

Dual programs with vertex enumeration (e.g., Avis & Fukuda 92):

$$L_{\boldsymbol{\delta},\boldsymbol{\delta}'} = \max_{\boldsymbol{\lambda}\in\Lambda_{\boldsymbol{\delta},\boldsymbol{\delta}'}} - \tilde{\boldsymbol{\rho}}'\boldsymbol{\lambda}$$
$$U_{\boldsymbol{\delta},\boldsymbol{\delta}'} = \min_{\boldsymbol{\lambda}\in\tilde{\Lambda}_{\boldsymbol{\delta},\boldsymbol{\delta}'}} \tilde{\boldsymbol{\rho}}'\boldsymbol{\lambda}$$

Null hypothesis for sequence of tests:

$$H_{0,\tilde{\mathcal{D}}}: \tilde{p}'\lambda > 0 \qquad \forall \lambda \in \bigcup_{\delta,\delta' \in \tilde{\mathcal{D}}} (\Lambda_{\delta,\delta'} \cup \tilde{\Lambda}_{\delta,\delta'})$$

Let $\widehat{\mathcal{D}}_{CS}$ be the confidence set for \mathcal{D}_p^*

Algorithm (Constructing \widehat{D}_{CS}) Step 0. Initially set $\widetilde{D} = D$. Step 1. Test $H_{0,\widetilde{D}}$ at level α . Step 2. If $H_{0,\widetilde{D}}$ is not rejected, define $\widehat{D}_{CS} = \widetilde{D}$; otherwise eliminate a regime δ^- from \widetilde{D} and repeat from Step 1.

▶ in Step 2,
$$\delta^- \equiv \arg \min_{\delta \in \tilde{D}} \min_{\delta' \in \tilde{D}} t_{\delta, \delta'}$$
.

Assumption CS

For any
$$\tilde{\mathcal{D}}$$
, (i) $\limsup_{n\to\infty} \Pr[\phi_{\tilde{\mathcal{D}}} = 1|H_{0,\tilde{\mathcal{D}}}] \leq \alpha$,
(ii) $\lim_{n\to\infty} \Pr[\phi_{\tilde{\mathcal{D}}} = 1|H_{A,\tilde{\mathcal{D}}}] = 1$, and
(iii) $\lim_{n\to\infty} \Pr[\delta_{\tilde{\mathcal{D}}}^-(\cdot) \in \mathcal{D}_p^*|H_{A,\tilde{\mathcal{D}}}] = 0$.

Proposition

Under Assumption CS, it satisfies that

$$\lim \inf_{n \to \infty} \Pr[\mathcal{D}_{p}^{*} \subset \widehat{\mathcal{D}}_{CS}] \geq 1 - \alpha$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

and $\lim_{n\to\infty} \Pr[\delta(\cdot) \in \widehat{\mathcal{D}}_{CS}] = 0$ for all $\delta(\cdot) \notin \mathcal{D}_p^*$

Extension: Continuous Outcomes

This paper's analysis can be extended to the case of continuous Y_t But the cost of incremental customization with Y_{t-1} can be high

thus planner may want to employ a threshold-crossing rule:

$$\delta_t (1\{y_{t-1} \ge \gamma_{t-1}\}) \in \{0, 1\}$$

Then a similar analysis can be done for optimal regime $(\delta^*(\cdot),\gamma^*)$

With continuous Y_t , two challenges in LP:

- ▶ q is infinite dimensional ⇒ approximate using Bernstein polynomials
- continuum of constraints => use mean absolute deviation of constraints
- Han & Yang 22

VI. Conclusions

・ロット (四) (日) (日) (日) (日)

Concluding Remarks

Propose a partial ID framework for optimal dynamic treatment regimes and welfares

allowing for observational data

Sharp partial welfare ordering and ID'ed set for optimal regime

via a set of linear programs

Applicability:

 e.g., when establishing rankings across multiple treatments or counterfactual policies

Concluding Remarks

Propose a partial ID framework for optimal dynamic treatment regimes and welfares

allowing for observational data

Sharp partial welfare ordering and ID'ed set for optimal regime

via a set of linear programs

Applicability:

 e.g., when establishing rankings across multiple treatments or counterfactual policies

Follow-ups:

- 1. inference on welfare with selected (set-ID'ed) regime
- 2. treatment allocation with distributional welfare

◆□> ◆□> ◆目> ◆目> ◆□> ◆□>

Distribution of Counterfactual Outcome

With
$$T = 2$$
,

$$\Pr[Y_2(\delta) = 1]$$

$$= \sum_{y_1 \in \{0,1\}} \Pr[Y_2(\delta_1, \delta_2(Y_1(\delta_1))) = 1 | Y_1(\delta_1) = y_1] \Pr[Y_1(\delta_1) = y_1]$$

▶ for example, Regime #4 yields

$$\Pr[Y_2(\delta_{\#4}) = 1] = \Pr[Y_1(1) = 1, Y_2(1, 1) = 1] \\ + \Pr[Y_1(1) = 0, Y_2(1, 0) = 1]$$

		u		

Monotonicity/Uniformity in D_t

Assumption M1

Conditional on
$$(\mathbf{Y}^{t-1}, \mathbf{D}^{t-1}, \mathbf{Z}^{t-1})$$
, either $D_t(\mathbf{Z}^{t-1}, 1) \ge D_t(\mathbf{Z}^{t-1}, 0)$ w.p.1 or $D_t(\mathbf{Z}^{t-1}, 1) \le D_t(\mathbf{Z}^{t-1}, 0)$ w.p.1.

Assumption M1 imposes that there is no defying (complying) behavior in the decision D_t conditional on $(\mathbf{Y}^{t-1}, \mathbf{D}^{t-1}, \mathbf{Z}^{t-1})$

without conditional on (Y^{t-1}, D^{t-1}, Z^{t-1}), general non-uniform pattern of Z^t influencing D^t

By extending Vytlacil 02, M1 is implied by

$$D_t = 1\{\pi_t(\boldsymbol{Y}^{t-1}, \boldsymbol{D}^{t-1}, \boldsymbol{Z}^t) \geq \nu_t\}$$

Monotonicity/Uniformity in Y_t Assumption M2

M1 holds, and conditional on $(\mathbf{Y}^{t-1}, \mathbf{D}^{t-1}, \mathbf{Z}^{t-1})$, either $Y_t(\mathbf{D}^{t-1}, 1) \ge Y_t(\mathbf{D}^{t-1}, 0)$ w.p.1 or $Y_t(\mathbf{D}^{t-1}, 1) \le Y_t(\mathbf{D}^{t-1}, 0)$ w.p.1.

Assumption M2 implicitly imposes rank similarity

without conditional on (Y^{t-1}, D^{t-1}, Z^{t-1}), general non-uniform pattern of D^t influencing Y^t

Assumption M2 (and M1) does not assume the direction of monotonicity

M2 is implied by

$$Y_t = 1\{\mu_t(\boldsymbol{Y}^{t-1}, \boldsymbol{D}^t) \ge \varepsilon_t\}$$
$$D_t = 1\{\pi_t(\boldsymbol{Y}^{t-1}, \boldsymbol{D}^{t-1}, \boldsymbol{Z}^t) \ge \nu_t\}$$

Agent's Learning

Assumption L

$$\begin{split} & D_t(\boldsymbol{y}^{t-1}, \boldsymbol{d}^{t-1}, \boldsymbol{z}^t) \geq D_t(\tilde{\boldsymbol{y}}^{t-1}, \tilde{\boldsymbol{d}}^{t-1}, \boldsymbol{z}^t) \text{ w.p.1 for } (\boldsymbol{y}^{t-1}, \boldsymbol{d}^{t-1}) \\ & \text{and } (\tilde{\boldsymbol{y}}^{t-1}, \tilde{\boldsymbol{d}}^{t-1}) \text{ s.t. } \| \boldsymbol{y}^{t-1} - \boldsymbol{d}^{t-1} \| < \left\| \tilde{\boldsymbol{y}}^{t-1} - \tilde{\boldsymbol{d}}^{t-1} \right\| (\text{long } m \text{emory}) \text{ or } y_{t-1} - d_{t-1} < \tilde{y}_{t-1} - \tilde{d}_{t-1} \text{ (short memory).} \end{split}$$

Assumption L assumes agents have the ability to revise his next period's decision based on his memory

- e.g., consider $D_2(y_1, d_1)$
- ▶ agent who would switch his decision had he experienced y₁ = 0 after d₁ = 1, i.e., D₂(0,1) = 0, would remain to take treatment had he experienced y₁ = 1, i.e., D₂(1,1) = 1
- more importantly, if D₂(0, 1) = 1, it should only because of unobserved preference, not because he cannot learn from the past, i.e., D₂(1, 1) = 0 cannot happen

Markovian Structure

Assumption K

$$Y_t|(\boldsymbol{Y}^{t-1}, \boldsymbol{D}^t) \stackrel{d}{=} Y_t|(Y_{t-1}, D_t) \text{ and } D_t|(\boldsymbol{Y}^{t-1}, \boldsymbol{D}^{t-1}, \boldsymbol{Z}^t) \stackrel{d}{=} D_t|(Y_{t-1}, D_{t-1}, Z_t).$$

In terms of the triangular model under M2, Assumption K implies

$$Y_{t} = 1\{\mu_{t}(Y_{t-1}, D_{t}) \ge \varepsilon_{t}\}$$
$$D_{t} = 1\{\pi_{t}(Y_{t-1}, D_{t-1}, Z_{t}) \ge \nu_{t}\}$$

 a familiar structure of dynamic discrete choice models in the literature