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Dynamic (i.e., Adaptive) Treatment Regimes

Dynamic treatment regimes are seq’s of treatment allocations...

I ...tailored to individual heterogeneity

I each period t, assignment rule δt(·) maps previous outcome
(and covariates) onto a current allocation decision

δt(yt−1) ∈ {0, 1}

Optimal dynamic treatment regime is a dynamic regime that
maximizes counterfactual welfare

δ∗(·) = arg max
δ(·)∈D

Wδ
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Identification of Optimal Dynamic Treatment Regime

δ∗(·) = arg max
δ(·)∈D

Wδ

This paper investigates the possibility of identification of δ∗(·)
when data are from...

I multi-stage experiments with possible non-compliance,

or

I more generally, observational studies



Motivating Example: Returns to Schooling & Training

Y2 employed after program

D2 receiving job training program

Y1 employed before program

D1 receiving high school diploma

Let Y1(d1) and Y2(d2) be counterfactual employment status

Treatment effects: E [Y1(1)]− E [Y1(0)] and E [Y2(1)]− E [Y2(0)]

May be interested in the effects of sequence of treatments using
Y2(d1, d2)

Then, e.g., E [Y2(1, 0)]− E [Y2(0, 1)] or complementarity:

E [Y2(1, 1)]− E [Y2(1, 0)] vs. E [Y2(0, 1)]− E [Y2(0, 0)]
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Motivating Example: Returns to Schooling & Training

Y2 employed after program

D2 receiving job training program

Y1 employed before program

D1 receiving high school diploma

Since (d1, d2) are not simultaneously provided, Y1 responds to d1
(as Y1(d1))

So want to incorporate this knowledge in recommendation of d2

thus, instead of d2, consider δ2(Y1(d1)) as hypothetical policy

And, instead of Y2(d1, d2), consider

Y2(d1, δ2(Y1(d1))) ≡ Y2(δ)
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Motivating Example: Returns to Schooling & Training

Y2 employed after program

D2 receiving job training program

Y1 employed before program

D1 receiving high school diploma

Optimal dynamic regime: schedule δ(·) = (δ1, δ2(·)) of allocation
rules that maximizes Wδ = E [Y2(δ)] where

δ1 = d1, δ2(Y1(δ1)) = d2

Policy implication of δ∗(·) s.t. δ∗2(1) = 0, δ∗2(0) = 1,...

I more training resources to disadvantaged workers

I with δ∗1 combined, interaction with earlier schooling
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Instrument Variables from Sequential Designs

How to learn Wδ’s and δ∗(·), esp. when treatments are
endogenous?

⇒ we show IVs from sequential (quasi-) experiments are helpful

I e.g., medical trials, field experiments, A/B testings

I e.g., seq of policy shocks, sequential fuzzy RDs

In motivating example,

I distance to (or density of) high schools can be Z1

I random assignment of job training can be Z2

Single IV can still be helpful esp. with short horizon
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This Paper: Partial ID of Optimal Regime and Welfares

This paper proposes a nonparametric framework where we can (at
least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e.,
ranking) of Wδ’s w.r.t. δ(·) ∈ D
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Sharp Partial Welfare Ordering in Numerical Exercise

Figure: Partial Ordering as Directed Acyclic Graph



This Paper: Partial ID of Optimal Regime and Welfares

This paper proposes a nonparametric framework where we can (at
least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e.,
ranking) of Wδ’s w.r.t. δ(·) ∈ D

2. Based on partial ordering, we characterize (sharp) identified set
for optimal regime δ∗(·)

I as a set of maximal elements



This Paper: Partial ID of Optimal Regime and Welfares

This paper proposes a nonparametric framework where we can (at
least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e.,
ranking) of Wδ’s w.r.t. δ(·) ∈ D

2. Based on partial ordering, we characterize (sharp) identified set
for optimal regime δ∗(·)

I as a set of maximal elements



Sharp Partial Welfare Ordering in Numerical Exercise

Figure: Partial Ordering as Directed Acyclic Graph



This Paper: Partial ID of Optimal Regime and Welfares

This paper proposes a nonparametric framework where we can (at
least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e.,
ranking) of Wδ’s w.r.t. δ(·) ∈ D

2. Based on partial ordering, we characterize (sharp) identified set
for optimal regime δ∗(·)

I as a set of maximal elements

3. We propose additional assumptions that tighten the ID’ed set

I e.g., on agent’s behavior or dynamics

4. We apply the method in policy analysis using schooling &
post-school training as sequence of treatments



This Paper: Partial ID of Optimal Regime and Welfares

This paper proposes a nonparametric framework where we can (at
least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e.,
ranking) of Wδ’s w.r.t. δ(·) ∈ D

2. Based on partial ordering, we characterize (sharp) identified set
for optimal regime δ∗(·)

I as a set of maximal elements

3. We propose additional assumptions that tighten the ID’ed set

I e.g., on agent’s behavior or dynamics

4. We apply the method in policy analysis using schooling &
post-school training as sequence of treatments



This Paper: Partial ID of Optimal Regime and Welfares

This paper proposes a nonparametric framework where we can (at
least partially) learn optimal dynamic regime and related welfares

1. We establish mapping from data to sharp partial ordering (i.e.,
ranking) of Wδ’s w.r.t. δ(·) ∈ D

2. Based on partial ordering, we characterize (sharp) identified set
for optimal regime δ∗(·)

I as a set of maximal elements

3. We propose additional assumptions that tighten the ID’ed set

I e.g., on agent’s behavior or dynamics

4. We apply the method in policy analysis using schooling &
post-school training as sequence of treatments



Contribution 1: Treatment Endogeneity

Dynamic treatment regimes:

I Murphy et al. 01, Murphy 03, Robins 04,...

I sequential randomization: “randomize treatment in the current
period conditional on past treatments and outcomes”

Statistical treatment rules and policy learning:

I Manski 04, Hirano & Porter 09, Bhattacharya & Dupas 12, Stoye 12,
Kitagawa & Tetenov 18, Sakaguchi 19, Athey & Wager 21, Mbakop &
Tabord-Meehan 21,...

I versions of unconfoundedness assumption

Not plausible in experiments with partial compliance and many
observational studies

This paper: relaxes sequential randomization
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Contribution 2: Partial ID in Multi-Period Settings

ID of optimal regime (as fcn of covariates) using IVs:

I Cui & Tchetgen Tchetgen 20, Qiu et al. 20, Han 21; Kasy 16, Pu &
Zhang 2021
I single-period setting

I rely on independence of compliance type or rank preservation

I or partial ID

I Han 20
I dynamic treatment effects and optimal regime in multi-period

setting

I rely on existence of extra exogenous variables

This paper:

I partial ID of optimal adaptive regime and dynamic treatment
effects
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Contribution 3: Linear Programming Approach to Partial ID

Calculating bounds using linear programming (LP)

I Balke & Pearl 97, Manski 07, Mogstad et al. 18, Kitamura & Stoye 19,
Torgovitsky 19, Machado et al. 19, Kamat 19, Han & Yang 20,...

This paper:

I establish partial ordering via a set of LPs...

I that are governed by the same DGP...

I and characterize bounds on welfare gaps

Simple estimation and inference procedures for optimal regime

Broader applicability:

I rankings across different counterfactual scenarios
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Roadmap

I. Dynamic treatment regime and counterfactual welfare

II. Partial ID of optimal dynamic regime

I linear programming

I partial ordering and ID’ed set

III. Additional identifying assumptions

IV. Numerical illustration

V. Empirical application

VI. Inference



I. Dynamic Treatment Regime and Counterfactual Welfare



Dynamic (i.e., Adaptive) Treatment Regimes

Consider two-period case (T = 2) only for simplicity

Dynamic regime is defined as

δ(·) ≡ (δ1, δ2(·)) ∈ D

where

δ1 = d1 ∈ {0, 1}
δ2(y1) = d2 ∈ {0, 1}

I e.g., yt symptom, dt medical treatment

I (stochastic rules in the paper)



Dynamic (i.e., Adaptive) Treatment Regimes

Regime # δ1 δ2(1) δ2(0)

1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

Table: Dynamic Regimes δ(·) ≡ (δ1, δ2(·)) when T = 2



Non-Adaptive Treatment Regimes

Regime # d1 d2

1 0 0
2 1 0
3 0 1
4 1 1

Table: Non-Adaptive Regimes d ≡ (d1, d2) when T = 2



Counterfactual Outcomes

Define potential outcome as a function of dynamic regime

Potential outcomes with non-adaptive regime d = (d1, d2):

Y1(d1)

Y2(d1, d2)

Potential outcomes with dynamic regime δ(·) = (δ1, δ2(·)):

Y1(δ1) = Y1(d1)

Y2(δ) = Y2(δ1, δ2(Y1(δ1)))
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Welfare and Optimal Dynamic Regime

Let Y (δ) ≡ (Y1(δ1),Y2(δ))

Counterfactual welfare as linear funct’l of qδ(y) ≡ Pr[Y (δ(·)) = y ]

Wδ ≡ f (qδ)

I e.g., E [YT (δ(·))] = Pr[YT (δ(·)) = 1] Details

I e.g.,
∑T

t=1{ωtE [Yt(δ
t(·))]} (less the cost of treatments)

Optimal dynamic regime as

δ∗(·)= arg max
δ(·)∈D

Wδ
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II. Partial ID of Optimal Dynamic Regime



Observed Data

For t = 1, ...,T on a finite horizon,

I Yt ∈ {0, 1} outcome at t (e.g., symptom indicator)
I extension: continuous Yt with discretized rule (later)

I Dt ∈ {0, 1} treatment at t (e.g., medical treatment received)

I Zt ∈ {0, 1} instrument at t (e.g., medical treatment assigned)

Large N small T panel of (Y ,D,Z )

I (cross-sectional index i suppressed; covariates suppressed)

I more generally, e.g., single IV is allowed



Partial ID of Optimal Dynamic Regime

Let Y (d ) be vector of Yt(d t)’s and D(z) be vector of Dt(z t)’s.

Assumption SX

Zt ⊥ (Y (d ),D(z))|Z t−1.

I e.g., sequential randomized experiments, sequential fuzzy RDs

Goal: to characterize ID’ed set for δ∗(·) given the distribution of
(Y ,D,Z )

ID’ed set as a subset of the discrete set D:

D∗⊂ D
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Partial ID of Optimal Dynamic Regime

As first step, establish sharp partial ordering of welfare Wδ w.r.t.
δ(·) based on (Y ,D,Z )

I cf. total ordering is needed for point ID of δ∗(·)

I can only recover obs’ly equivalent total orderings

Partial ordering = a directed acyclic graph (DAG)

I parameter of independent interest

I topological sorts of DAG = obs’ly equivalent total orderings
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Partial Ordering of Welfare Wk ≡ Wδk

W2

W1 W4

W3

(a)

W1

W2 W3

W4

(b)

Figure: Partially Ordered Sets as DAGs



Sharp Partial Ordering of Welfare Wδ

We want this partial ordering to be sharp

Definition (Sharp Partial Ordering, i.e., Sharp DAG)
In the DAG, no more edges can be created without additional
assumptions.

To guarantee this, characterize sharp lower and upper bounds on

Wδ −Wδ′

as optima of linear programming
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Linear Programming for Bounds on Welfare Gap

For each δ, δ′ ∈ D, welfare gap (i.e., dynamic treatment effect) is

Wδ −Wδ′ = (Aδ − Aδ′)q

where q ∈ Q is vector of latent distribution

Sharp lower and upper bounds via linear programming:

Lδ,δ′ = minq∈Q(Aδ − Aδ′)q
Uδ,δ′ = maxq∈Q(Aδ − Aδ′)q

s.t. Bq = p

I Aδ, Aδ′ , and B are known to researcher

I p is vector of data distribution for (Y ,D,Z )

I q is unknown decision variable in standard simplex Q
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Sharp Partial Ordering and Identified Set
Theorem
Suppose SX holds. (i) DAG is sharp with set of edges

{(Wδ,Wδ′) : Lδ,δ′ > 0 for δ 6= δ′}

(ii) D∗p satisfies

D∗p = {δ′ : @δ such that Lδ,δ′ > 0 for δ 6= δ′}
= {δ′ : Lδ,δ′ ≤ 0 for all δ and δ 6= δ′}

i.e., the rhs set is sharp

I D∗p is the set of maximal elements associated with the DAG

I key insight: despite separate optimizations, DAG is governed
by common latent dist q’s in {q : Bq = p} (i.e., that are
obs’ly equivalent)



Partial Ordering of Welfare Wk ≡ Wδk

W2

W1 W4

W3

(a) δ∗(·) is partially ID’ed

D∗p = {δ#1, δ#4}

W1

W2 W3

W4

(b) δ∗(·) is point ID’ed

D∗p = {δ#1}

Figure: Partially Ordered Sets as DAGs



Discussion: Identified Set

Given the minimal structure, the size of D∗p may be large

Such D∗p still has implications for policy:

(i) it recommends the planner to eliminate sub-optimal regimes
from her options

(ii) it warns about the lack of informativeness of data (e.g., even
with experimental data)

The size of D∗p is related to...

I the strength of Zt (i.e., the size of the complier group at t),

I the strength of the dynamic treatment effects
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III. Additional Identifying Assumptions



Additional Identifying Assumptions
Researchers are willing to impose more assumptions based on priors
about agent’s behavior or dynamics

I monotonicity/uniformity Assumption M1 Assumption M2

I Imbens & Angrist 94, Manski & Pepper 00

I for each t, either Yt(1) ≥ Yt(0) w.p.1 or Yt(1) ≤ Yt(0) w.p.1.
conditional on (Y t−1,Dt−1)

I agent’s learning Assumption L

I Markovian structure Assumption K

I positive state dependence, stationarity, etc.
I Torgovitsky 19

Easy to incorporate within the linear programming

These assumptions tighten the ID’ed set D∗p by...

I reducing the dimension of the simplex Q



IV. Numerical Illustration



Numerical Illustration

For T = 2, DGP is

Di1 = 1{π1Zi1 + αi + vi1 ≥ 0}
Yi1 = 1{µ1Di1 + αi + ei1 ≥ 0}
Di2 = 1{π21Yi1 + π22Di1 + π23Zi2 + αi + vi2 ≥ 0}
Yi2 = 1{µ21Yi1 + µ22Di2 + αi + ei2 ≥ 0}

and

Wδ = E [Y2(δ)]

Calculate [Lδk ,δl ,Uδk ,δl ] for Wδk −Wδl for all pairs k , l ∈ {1, ..., 8}

We make
(

8
2

)
= 28 comparisons, i.e., 28× 2 linear programs



Bounds on Welfare Gaps Wδk −Wδl

Figure: Sharp Bounds on Welfare Gaps (red: under M2)



Sharp Partial Welfare Ordering

Figure: Partial Ordering as DAG and ID’ed Set for δ∗ (under M2)



Sharp Partial Welfare Ordering

Figure: Partial Ordering as DAG with Only Z1 (under M2)



V. Empirical Application: Returns to Schooling and Training



Empirical Application: Returns to Schooling and Training

Individuals who face “barriers to employment”

Y2 above median 30-mo earnings

D2 receiving job training program

Z2 random assignment of the program

Y1 above 80th pctle pre-program earnings

D1 receiving high school diploma (or GED)

Z1 number of schools per sq mile (e.g., Neal 97)

Consider Wδ = E [Y2(δ)] and = E [Y1(δ1)] + E [Y2(δ)]

Data: JTPA (e.g., Abadie, Angrist & Imbens 02, Kitagawa & Tetenov 18)
+ NCES + US Census
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Estimation

Estimation of DAG and D∗p is straightforward

I replace data distribution p in LP with sample frequencies p̂, a
vector of

p̂y ,d |z =
N∑
i=1

1{Y i = y ,D i = d ,Z i = z}/
N∑
i=1

1{Z i = z}



Policy Analysis with Schooling and Training

Regime # δ1 δ2(1) δ2(0)

1 0 0 0

2 1 0 0

3 0 1 0

4 1 1 0

5 0 0 1

6 1 0 1

7 0 1 1

8 1 1 1

Figure: DAG of Wδ = E [Y2(δ)] and Est’ed Set for δ∗ (under M2)
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Policy Analysis with Schooling and Training

Figure: Partial Ordering with only Z2 (under M2)



VI. Inference



Inference

For the inference on δ∗(·), we construct confidence set for D∗p
I by seq of hypothesis tests (Hansen, Lunde & Nason 11)

I to eliminate regimes that are significantly inferior to others

I null hypotheses in terms of multiple ineq’s as functions of p
I e.g., Hansen 05, Andrews & Soares 10,...

I no need to solve LPs for every bootstrap repetition
I by using strong duality and vertex enumeration

I also useful for specification tests of (less palatable) identifying
assumptions



Inference

Recall Wδ −Wδ′ = (Aδ − Aδ′)q and

Lδ,δ′ = minq∈Q(Aδ − Aδ′)q
Uδ,δ′ = maxq∈Q(Aδ − Aδ′)q

s.t. Bq = p

Dual programs with vertex enumeration (e.g., Avis & Fukuda 92):

Lδ,δ′ = max
λ∈Λδ,δ′

−p̃′λ

Uδ,δ′ = min
λ∈Λ̃δ,δ′

p̃′λ

Null hypothesis for sequence of tests:

H0,D̃ : Lδ,δ′ ≤ 0 ≤ Uδ,δ′ ∀δ, δ′ ∈ D̃
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H0,D̃ : p̃′λ > 0 ∀λ ∈
⋃

δ,δ′∈D̃

(Λδ,δ′ ∪ Λ̃δ,δ′)



Inference

Let D̂CS be the confidence set for D∗p

Algorithm (Constructing D̂CS)

Step 0. Initially set D̃ = D.
Step 1. Test H0,D̃ at level α.

Step 2. If H0,D̃ is not rejected, define D̂CS = D̃;
otherwise eliminate a regime δ− from D̃ and repeat from Step 1.

I in Step 1, TD̃ ≡ minδ,δ′∈D̃ tδ,δ′ where
tδ,δ′ ≡ minλ∈Λδ,δ′∪Λ̃δ,δ′

tλ with standard t-statistic tλ

I distribution of TD̃ can be estimated using bootstrap on p

I in Step 2, δ− ≡ arg minδ∈D̃minδ′∈D̃ tδ,δ′ .



Inference

Assumption CS

For any D̃, (i) lim supn→∞ Pr[φD̃ = 1|H0,D̃] ≤ α,
(ii) limn→∞ Pr[φD̃ = 1|HA,D̃] = 1, and
(iii) limn→∞ Pr[δ−D̃(·) ∈ D∗p|HA,D̃] = 0.

Proposition
Under Assumption CS, it satisfies that

lim inf
n→∞

Pr[D∗p ⊂ D̂CS ] ≥ 1− α

and limn→∞ Pr[δ(·) ∈ D̂CS ] = 0 for all δ(·) /∈ D∗p



Extension: Continuous Outcomes

This paper’s analysis can be extended to the case of continuous Yt

But the cost of incremental customization with Yt−1 can be high

I thus planner may want to employ a threshold-crossing rule:

δt(1{yt−1 ≥ γt−1}) ∈ {0, 1}

Then a similar analysis can be done for optimal regime (δ∗(·),γ∗)

With continuous Yt , two challenges in LP:

I q is infinite dimensional =⇒ approximate using Bernstein
polynomials

I continuum of constraints =⇒ use mean absolute deviation of
constraints

I Han & Yang 22



VI. Conclusions



Concluding Remarks

Propose a partial ID framework for optimal dynamic treatment
regimes and welfares

I allowing for observational data

Sharp partial welfare ordering and ID’ed set for optimal regime

I via a set of linear programs

Applicability:

I e.g., when establishing rankings across multiple treatments or
counterfactual policies

Follow-ups:

1. inference on welfare with selected (set-ID’ed) regime

2. treatment allocation with distributional welfare
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Thank You



Distribution of Counterfactual Outcome

With T = 2,

Pr[Y2(δ) = 1]

=
∑

y1∈{0,1}

Pr[Y2(δ1, δ2(Y1(δ1))) = 1|Y1(δ1) = y1] Pr[Y1(δ1) = y1]

I for example, Regime #4 yields

Pr[Y2(δ#4) = 1] =P[Y1(1) = 1,Y2(1, 1) = 1]

+ P[Y1(1) = 0,Y2(1, 0) = 1]

Return



Monotonicity/Uniformity in Dt

Assumption M1

Conditional on (Y t−1,Dt−1,Z t−1), either
Dt(Z t−1, 1) ≥ Dt(Z t−1, 0) w.p.1 or
Dt(Z t−1, 1) ≤ Dt(Z t−1, 0) w.p.1.

Assumption M1 imposes that there is no defying (complying)
behavior in the decision Dt conditional on (Y t−1,Dt−1,Z t−1)

I without conditional on (Y t−1,Dt−1,Z t−1), general
non-uniform pattern of Z t influencing Dt

By extending Vytlacil 02, M1 is implied by

Dt = 1{πt(Y t−1,Dt−1,Z t) ≥ νt}

Return



Monotonicity/Uniformity in Yt

Assumption M2

M1 holds, and conditional on (Y t−1,Dt−1,Z t−1), either
Yt(Dt−1, 1) ≥ Yt(Dt−1, 0) w.p.1 or
Yt(Dt−1, 1) ≤ Yt(Dt−1, 0) w.p.1.

Assumption M2 implicitly imposes rank similarity

I without conditional on (Y t−1,Dt−1,Z t−1), general
non-uniform pattern of Dt influencing Y t

Assumption M2 (and M1) does not assume the direction of
monotonicity

M2 is implied by

Yt = 1{µt(Y t−1,Dt) ≥ εt}
Dt = 1{πt(Y t−1,Dt−1,Z t) ≥ νt}

Return



Agent’s Learning
Assumption L

Dt(y t−1,d t−1, z t) ≥ Dt(ỹ t−1, d̃
t−1

, z t) w.p.1 for (y t−1,d t−1)

and (ỹ t−1, d̃
t−1

) s.t.
∥∥y t−1 − d t−1∥∥ < ∥∥∥ỹ t−1 − d̃

t−1
∥∥∥ (long

memory) or yt−1 − dt−1 < ỹt−1 − d̃t−1 (short memory).

Assumption L assumes agents have the ability to revise his next
period’s decision based on his memory

I e.g., consider D2(y1, d1)

I agent who would switch his decision had he experienced
y1 = 0 after d1 = 1, i.e., D2(0, 1) = 0, would remain to take
treatment had he experienced y1 = 1, i.e., D2(1, 1) = 1

I more importantly, if D2(0, 1) = 1, it should only because of
unobserved preference, not because he cannot learn from the
past, i.e., D2(1, 1) = 0 cannot happen Return



Markovian Structure

Assumption K

Yt |(Y t−1,Dt)
d
= Yt |(Yt−1,Dt) and

Dt |(Y t−1,Dt−1,Z t)
d
= Dt |(Yt−1,Dt−1,Zt).

In terms of the triangular model under M2, Assumption K implies

Yt = 1{µt(Yt−1,Dt) ≥ εt}
Dt = 1{πt(Yt−1,Dt−1,Zt) ≥ νt}

I a familiar structure of dynamic discrete choice models in the
literature Return


