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Abstract

Dynamic treatment regimes are treatment allocations tailored to heterogeneous in-

dividuals (e.g., via previous outcomes and covariates). The optimal dynamic treatment

regime is a regime that maximizes counterfactual welfare. We introduce a framework

in which we can partially learn the optimal dynamic regime from observational data,

relaxing the sequential randomization assumption commonly employed in the literature

but instead using (binary) instrumental variables. We propose the notion of sharp par-

tial ordering of counterfactual welfares with respect to dynamic regimes and establish

mapping from data to partial ordering via a set of linear programs. We then character-

ize the identified set of the optimal regime as the set of maximal elements associated

with the partial ordering. We relate the notion of partial ordering with a more conven-

tional notion of partial identification using topological sorts. Practically, topological

sorts can be served as a policy benchmark for a policymaker. We apply our method to

understand returns to schooling and post-school training as a sequence of treatments

by combining data from multiple sources. The framework of this paper can be used

beyond the current context, e.g., in establishing rankings of multiple treatments or

policies across different counterfactual scenarios.
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1 Introduction

Dynamic treatment regimes are dynamically personalized treatment allocations. Given that

individuals are heterogeneous, allocations tailored to heterogeneity can improve overall wel-

fare. Define a dynamic treatment regime δ(·) as a sequence of binary rules δt(·) that map

the previous outcome and treatment (and possibly other covariates) onto current allocation

decisions: δt(yt−1, dt−1) = dt ∈ {0, 1} for t = 1, ..., T . The motivation for being adaptive to

the previous outcome is that it may contain information on unobserved heterogeneity that

is not captured in covariates. Then the optimal dynamic treatment regime, which is this pa-

per’s main parameter of interest, is defined as a regime that maximizes certain counterfactual

welfare:

δ∗(·) = arg max
δ(·)

Wδ.

This paper investigates the possibility of identifiability of the optimal dynamic regime δ∗(·)
from data that are generated from randomized experiments in the presence of non-compliance

or more generally from observational studies in multi-period settings.

Optimal treatment regimes have been extensively studied in the biostatistics literature

(Murphy et al. (2001), Murphy (2003), and Robins (2004), among others). These stud-

ies typically rely on an ideal multi-stage experimental environment that satisfies sequential

randomization. Based on such experimental data, they identify optimal regimes that max-

imize welfare, defined as the average counterfactual outcome. However, non-compliance is

prevalent in experiments, and more generally, treatment endogeneity is a marked feature in

observational studies. This may be one reason the vast biostatistics literature has not yet

gained traction in other fields of social science, despite the potentially fruitful applications

of optimal dynamic regimes in various policy evaluations.

To illustrate the policy relevance of the optimal dynamic regime, consider the labor market

returns to high school education and post-school training for disadvantaged individuals. A

policymaker may be interested in learning a schedule of allocation rules δ(·) = (δ1, δ2(·))
that maximizes the employment rate Wδ = E[Y2(δ)], where δ1 ∈ {0, 1} assigns a high school

diploma, δ2(y1, δ1) ∈ {0, 1} assigns a job training program based on δ1 and earlier employment

status y1 ∈ {0, 1} (1 being employed), and Y2(δ) indicates the counterfactual employment

status under regime δ(·). Suppose the optimal regime δ∗(·) is such that δ∗1 = 1, δ∗2(0, δ∗1) = 1,
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and δ∗2(1, δ∗1) = 0; that is, it turns out optimal to assign a high school diploma to all individuals

and a training program to unemployed individuals. One of the policy implications of such

δ∗(·) is that the average job market performance can be improved by job trainings focusing

on unemployed individuals complementing with high school education. Dynamic regimes are

more general than static regimes where δt(·) is a constant function. In this sense, the optimal

dynamic regime provides richer policy candidates than what can be learned from dynamic

complementarity (Cunha and Heckman (2007), Cellini et al. (2010), Almond and Mazumder

(2013), Johnson and Jackson (2019)). In learning δ∗(·) in this example, observational data

may only be available where the observed treatments (schooling and training decisions) are

endogenous.

This paper proposes a nonparametric framework, in which we can at least partially learn

the ranking of counterfactual welfares Wδ’s and hence the optimal dynamic regime δ∗(·).
We view that it is important to avoid making stringent modeling assumptions in the anal-

ysis of personalized treatments, because the core motivation of the analysis is individual

heterogeneity, which we want to keep intact as much as possible. Instead, we embrace the

partial identification approach. Given the observed distribution of sequences of outcomes

and endogenous treatments and using the instrumental variable (IV) method, we establish

sharp partial ordering of welfares, and characterize the identified set of optimal regimes as a

discrete subset of all possible regimes. We define welfare as a linear functional of the joint

distribution of counterfactual outcomes across periods. Examples of welfare include the aver-

age counterfactual terminal (i.e., distal) outcome commonly considered in the literature and

as shown above. We assume we are equipped with some IVs that are possibly binary. We

show that it is helpful to have a sequence of IVs generated from sequential experiments or

quasi-experiments. Examples of the former are increasingly common as forms of random as-

signments or encouragements in medical trials, public health and educational interventions,

and A/B testing on digital platforms. Examples of the latter can be some combinations

of traditional IVs and regression discontinuity designs. Our framework also accommodates

a single binary IV in the context of dynamic treatments and outcomes (e.g., Cellini et al.

(2010)). The identifying power in such a case is investigated in simulation. The partial

ordering and identified set proposed in this paper enable “sensitivity analyses.” That is, by

comparing a chosen regime (e.g., from a parametric approach) with these benchmark objects,

one can determine how much the former is led by assumptions and how much is informed

by data. Such a practice also allows us to gain insight into data requirements to achieve a

certain level of informativeness.

The identification analysis is twofold. In the first part, we establish mapping from data

to sharp partial ordering of counterfactual welfares with respect to possible regimes, repre-
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Figure 1: An Example of Sharp Partial Ordering of Welfares

senting the partial ordering as a directed acyclic graph (DAG).1 The point identification of

δ∗(·) will be achieved by establishing the total ordering of welfares, which is not generally

possible in this flexible nonparametric framework with limited exogenous variation. Figure

1 is an example of partial ordering (interchangeably, a DAG) that we calculated by applying

this paper’s theory and using simulated data. Here, we consider a two-period case as in the

schooling and post-school training example, which yields eight possible δ(·)’s and correspond-

ing welfares, and “→” corresponds to the relation “>”. To establish the partial ordering,

we first characterize bounds on the difference between two welfares as the set of optima of

linear programs, and we do so for all possible welfare pairs. The bounds on welfare gaps

are informative about whether welfares are comparable or not, and when they are, how to

rank them. Then we show that although the bounds are calculated from separate optimiza-

tions, the partial ordering is consistent with common data-generating processes. The DAG

obtained in this way is shown to be sharp in the sense that will become clear later. Note that

each welfare gap measures the dynamic treatment effect. The DAG concisely (and tightly)

summarizes the identified signs of these treatment effects, and thus can be a parameter of

independent interest.

In the second part of the analysis, given the sharp partial ordering, we show that the

identified set can be characterized as the set of maximal elements associated with the partial

ordering, i.e., the set of regimes that are not inferior. For example, according to Figure 1, the

identified set consists of Regimes 7 and 8. Given the DAG, we also calculate topological sorts,

which are total orderings that do not violate the underlying partial ordering. Theoretically,

topological sorts can be viewed as observationally equivalent total orderings, which insight

1The way directed graphs are used in this paper is completely unrelated to causal graphical models in the
literature.
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relates the partial ordering we consider with a more conventional notion of partial identifica-

tion. Practically, topological sorts can be served as a policy benchmark that a policymaker

can be equipped with. If desired, linear programming can be solved to calculate bounds on

a small number of sorted welfares (e.g., top-tier welfares).

Given the minimal structure we impose in the data-generating process, the size of the

identified set may be large in some cases. Such an identified set may still be useful in elimi-

nating suboptimal regimes or warning about the lack of informativeness of the data. Often,

however, researchers are willing to impose additional assumptions to gain identifying power.

We propose identifying assumptions, such as uniformity assumptions that generalize the

monotonicity assumption in Imbens and Angrist (1994), Markovian structure, and station-

arity. These assumptions tighten the identified set by reducing the dimension of the simplex

in the linear programming, thus producing a denser DAG. We show that these assumptions

are easy to impose in our framework.

This paper makes several contributions. To our best knowledge, this paper is first in the

literature that considers the identifiability of optimal dynamically adaptive regimes under

treatment endogeneity. Murphy (2003) and subsequent works consider point identification of

optimal dynamic regimes, but under the sequential randomization assumption. This paper

brings that literature to observational contexts. Recently, Han (2021b), Han (2021a), Cui

and Tchetgen Tchetgen (2021), and Qiu et al. (2021) relax sequential randomization and es-

tablish identification of dynamic average treatment effects and/or optimal regimes using IVs.

They consider a regime that is a mapping only from covariates, but not previous outcomes

and treatments, to an allocation. They focus on point identification by imposing assump-

tions such as the existence of additional exogenous variables in a multi-period setup (Han

(2021b)), or the zero correlation between unmeasured confounders and compliance types

(Cui and Tchetgen Tchetgen (2021); Qiu et al. (2021)) or uniformity (Han (2021a)) in a

single-period setup. The dynamic effects of treatment timing (i.e., irreversible treatments)

have been considered in Heckman and Navarro (2007) and Heckman et al. (2016) who uti-

lize exclusion restrictions and infinite support assumptions. A related staggered adoption

design was recently studied in multi-period difference-in-differences settings under treatment

heterogeneity by Athey and Imbens (2022), Callaway and Sant’Anna (2021), and Sun and

Abraham (2021). de Chaisemartin and d’Haultfoeuille (2020) consider a similar problem but

without necessarily assuming staggered adoption. This paper complements these papers by

considering treatment scenarios of multiple dimensions with adaptivity as the key ingredient.

Second, this paper contributes to the literature on partial identification of treatment

effects that utilizes linear programming approach, which has early examples as Balke and

Pearl (1997) and Manski (2007), and appears recently in Mogstad et al. (2018), Torgovitsky

(2019), Machado et al. (2019), Kamat (2019), and Han and Yang (2022) to name a few.
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The advantages of this approach is that (i) bounds can be automatically obtained even when

analytical derivation is not possible, (ii) the proof of sharpness is straightforward and not

case-by-case, and (iii) it can streamline the analysis of different identifying assumptions.

The dynamic framework of this paper complicates the identification analysis and thus fully

benefits from these advantages. However, a distinct feature of the present paper is that

the linear programming approach is used in establishing a sharp partial ordering across

counterfactual objects—a novel concept in the literature—and in such a way that separate

optimizations yield a common object, namely the partial ordering. The framework of this

paper can also be useful in other settings where the goal is to compare welfares across multiple

treatments and regimes—e.g., personalized treatment rules—or more generally, to establish

rankings of policies across different counterfactual scenarios and find the best ones.

Third, we apply our method to conduct a policy analysis with schooling and post-school

training as a sequence of treatments, which is to our knowledge a novel attempt in the litera-

ture. We consider dynamic treatment regimes of allocating a high school diploma and, given

pre-program earnings, a job training program for economically disadvantaged population.

By combining data from the Job Training Partnership Act (JTPA), the US Census, and the

National Center for Education Statistics (NCES), we construct a data set with a sequence of

IVs that is used to estimate the partial ordering of expected earnings and the identified set of

the optimal regime. Even though only partial orderings are recovered, we can conclude with

certainty that allocating the job training program only to the low earning type is welfare

optimal. We also find that more costly regimes are not necessarily welfare-improving.

The dynamic treatment regime considered in this paper is broadly related to the literature

on statistical treatment rules, e.g., Manski (2004), Hirano and Porter (2009), Bhattacharya

and Dupas (2012), Stoye (2012), Kitagawa and Tetenov (2018), Kasy (2016), and Athey

and Wager (2021). However, our setting, assumptions, and goals are different from those in

these papers. In a single-period setting, they consider allocation rules that map covariates to

decisions. They impose assumptions that ensure point identification, such as (conditional)

unconfoundedness or homogeneity, and focus on establishing the asymptotic optimality of the

treatment rules, with Kasy (2016) the exception. Kasy (2016) focuses on establishing partial

ranking by comparing a pair of treatment-allocating probabilities as policies. The notion of

partial identification of ranking relates to ours, but we introduce the notion of sharpness of

a partially ordered set with discrete policies and a linear programming approach to achieve

that. Another distinction is that we consider a dynamic setup. In the sense of constructing

a set of optimal dynamic treatment regimes, the current paper also relates to the approach

in biostatistics, most notably in Ertefaie et al. (2016) and Chao et al. (2022). However,

the fundamental difference is that, in the latter approach, the set consists of regimes that

cannot be differentiated from the best regime due to sampling uncertainty (i.e., the set is
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a confidence set) while, in our approach, it results from model uncertainty (i.e., the set is

an identified set). Finally, in order to focus on the challenge with endogeneity, we consider

a simple setup where the exploration and exploitation stages are separated, unlike in the

literature on bandit problems (Athey and Imbens (2019), Kasy and Sautmann (2021), Kock

et al. (2021)). We believe the current setup is a good starting point.

In the next section, we introduce the dynamic regimes and related counterfactual out-

comes, which define the welfare and the optimal regime. Section 3 conducts the main iden-

tification analysis by constructing the DAG and characterizing the identified set. Section 4

illustrates the analysis with numerical exercises, and Section 5 presents the empirical appli-

cation on returns to schooling and job training. In the Supplemental Appendix, the analysis

with binary outcomes and discrete covariates is extended with continuous outcomes and co-

variates, and stochastic regimes are discussed. The Appendix also contains discussions on

topological sorts and cardinality reduction for the set of regimes. It also briefly discusses

inference and shows the role of the strength of IVs via simulation. Most proofs are collected

in the Appendix.

2 Dynamic Regimes and Counterfactual Welfares

2.1 Dynamic Regimes

Let t be the index for a period or stage. For each t = 2, ..., T with fixed T , define an adaptive

treatment rule δt : {0, 1}t−1 × {0, 1}t−1 → {0, 1} that maps the lags of the realized binary

outcomes and treatments yt−1 ≡ (y1, ..., yt−1) and dt−1 ≡ (d1, ..., dt−1) onto a deterministic

treatment allocation dt ∈ {0, 1}:

δt(y
t−1,dt−1) = dt. (2.1)

This adaptive rule also appears in, e.g., Murphy (2003). When t = 1, the adaptive rule

δ1 : X → {0, 1} maps discrete pre-treatment covariate vector x onto an allocation d1 ∈ {0, 1}:

δ1(x) = d1 (2.2)

The treatment rules above are dynamic in the sense that it is a function of previous outcomes,

treatments and covariates. Special cases of (2.1)–(2.2) are a dynamic rule that is only a

function of covariates but not (yt−1,dt−1) (Han (2021b), Cui and Tchetgen Tchetgen (2021))

and a static rule where δt(·) is a constant function. Binary outcomes and treatments are

prevalent, and they are helpful in analyzing, interpreting, and implementing dynamic regimes
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Regime # δ1 δ2(1, δ1) δ2(0, δ1)

1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

Table 1: Dynamic Regimes δ(·) When T = 2 and δ1(x) = δ1

(Zhang et al. (2015)). Later, we extend the framework to allow for continuous outcome

variables and covariates and time-varying covariates; see Appendix A.1 and A.2. We only

consider deterministic rules δt(·) ∈ {0, 1}. In Appendix A.3, we extend this to stochastic rules

and show why it is enough to consider deterministic rules in some cases. Then, a dynamic

regime up to period t is defined as a vector of all treatment rules:

δt(·) ≡ (δ1(·), δ2(·), ..., δt(·)) .

Let δ(·) ≡ δT (·) ∈ D where D is the set of all possible regimes. We can allow D to be

a strict subset of the set of all possible regimes due to institutional or practical purposes;

see Section E.4 for relevant discussions. Throughout the paper, we will mostly focus on the

leading case with T = 2 for simplicity. Also, this case already captures the essence of the

dynamic features, such as adaptivity and complementarity. Table 1 lists all possible dynamic

regimes δ(·) ≡ (δ1, δ2(·)) (with constant function δ1(x) = δ1) as contingency plans, and there

are 8 of them. When δ1(x) is a function of binary x ∈ {0, 1}, it is easy to see that there will

be 16 regimes in total.

2.2 Counterfactual Welfares and Optimal Regimes

To define welfare with respect to (w.r.t.) this dynamic regime, we first introduce a counter-

factual outcome as a function of a dynamic regime. Because of the adaptivity intrinsic in

dynamic regimes, expressing counterfactual outcomes is more involved than that with static

regimes dt, i.e., Yt(d
t) with dt ≡ (d1, ..., dt). Let Y t(dt) ≡ (Y1(d1), Y2(d2), ..., Yt(d

t)). In

terms of notation throughout the paper, for an arbitrary r.v. Rt, we let Rt ≡ (R1, .., Rt)

denote a vector that collects Rt across time up to t, and let rt be its realization. Most of the

time, we write R ≡ RT for convenience. We express a counterfactual outcome with adaptive
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regime δt(·) and covariate values x as follows:

Yt(δ
t(·)) ≡ Yt(d

t), (2.3)

where the “bridge variables” dt ≡ (d1, ..., dt) satisfy

d1 = δ1(x),

d2 = δ2(Y1(d1), d1),

d3 = δ3(Y 2(d2),d2), (2.4)

...

dt = δt(Y
t−1(dt−1),dt−1).

Suppose T = 2. Then, the two counterfactual outcomes are defined as Y1(δ1(·)) = Y1(δ1(x))

and Y2(δ2(·)) = Y2(δ1, δ2(Y1(δ1), δ1)). As the notation suggests, we implicitly assume the “no

anticipation” condition.

Let qδ(y) ≡ Pr[Y (δ(·)) = y] be the joint distribution of counterfactual outcome vector

Y (δ(·)) ≡ (Y1(δ1(·)), Y2(δ2(·)), ..., YT (δ(·))). We define counterfactual welfare as a linear

functional of qδ(y):

Wδ ≡ f(qδ). (2.5)

Examples of the functional include the average counterfactual terminal outcome E[YT (δ(·))] =

Pr[YT (δ(·)) = 1], our leading case and which is common in the literature, and the weighted

average of counterfactuals
∑T

t=1 ωtE[Yt(δ
t(·))]. Then, the optimal dynamic regime is a regime

that maximizes the welfare:

δ∗(·) = arg max
δ(·)∈D

Wδ. (2.6)

We assume that the optimal dynamic regime is unique by simply ruling out a knife-edge

case in which two regimes deliver the same welfare. In the case of Wδ = E[YT (δ(·))], the

solution δ∗(·) can be justified by backward induction in finite-horizon dynamic programming.

Moreover in this case, the regime with deterministic rules δt(·) ∈ {0, 1} achieves the same

optimal regime and optimized welfare as the regime with stochastic rules δt(·) ∈ [0, 1]; see

Theorem A.1 in Appendix A.3.

The identification analysis of the optimal regime is closely related to the identification of

welfare for each regime and welfare gaps, which also contain information for policy. Some

interesting special cases are the following: (i) the optimal welfare, Wδ∗ , which in turn
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yields (ii) the regret from following individual decisions, Wδ∗ − WD, where WD is simply

f(Pr[Y (D) = ·]) = f(Pr[Y = ·]), and (iii) the gain from adaptivity, Wδ∗ − Wd∗ , where

Wd∗ = maxdWd is the optimum of the welfare with a static rule, Wd = f(Pr[Y (d) = ·]). If

the cost of treatments is not considered, the gain in (iii) is non-negative as the set of all d is

a subset of D.

To illustrate dynamic regimes and counterfactual welfares, we continue discussing the

example in the Introduction. This stylized example in an observational setting is meant to

motivate the policy relevance of the optimal dynamic regime and the type of data that are

useful for recovering it. Again, consider labor market returns to high school education and

post-school training for disadvantaged individuals. First, consider a static regime, which

is a schedule d = (d1, d2) ∈ {0, 1}2 of first assigning a high school diploma (d1 ∈ {0, 1})
and then a job training (d2 ∈ {0, 1}). Define associated welfare, which is the employment

rate Wd = E[Y2(d)] where Y2 is an indicator of employment status with value 1 if being

employed. This setup is already useful in learning, for example, E[Y2(1, 0)] − E[Y2(0, 1)]

or complementarity (i.e., E[Y2(0, 1)] − E[Y2(0, 0)] versus E[Y2(1, 1)] − E[Y2(1, 0)]), which

cannot be learned from period-specific treatment effects. However, because d1 and d2 are

not simultaneously given but d1 precedes d2, the allocation d2 can be more informed by

incorporating the knowledge about the individual’s response to d1. An example of such a

response to d1 would be employment status y1 after high school and before the training

program. This motivates the dynamic regime, which is the schedule δ(·) = (δ1(·), δ2(·)) ∈ D
of allocation rules that first assigns a high school diploma (δ1(x) ∈ {0, 1}) depending on

individual characteristics x and then assigns a job training (δ2(y1, δ1) ∈ {0, 1}) depending

on δ1 and the employment status y1. Then, the optimal regime with adaptivity δ∗(·) is the

one that maximizes Wδ = E[Y2(δ)]. As argued in the Introduction, δ∗(·) provides policy

implications that d∗ cannot.

3 Partial Ordering and Partial Identification

3.1 Observables

We introduce observables based on which we want to identify the optimal regime and coun-

terfactual welfares. Assume that the time length of the observables is equal to T , the length

of the optimal regime to be identified; in general, we may allow T̃ ≥ T where T̃ is the

length of the observables. For each period or stage t = 1, ..., T , assume that we observe the

binary instrument Zt, the binary endogenous treatment decision Dt, and the binary outcome

Yt =
∑
dt∈{0,1}t 1{Dt = dt}Yt(dt). Also, we observe discrete pre-treatment covariates X that

are potentially endogenous. As an example, Yt is a symptom indicator for a patient, Dt is
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the medical treatment received, and Zt is generated by a multi-period medical trial. Impor-

tantly, the framework does not preclude the case in which Zt exists only for some t but not

all; see Section 4 for related discussions. In this case, Zt for the other periods is understood

to be degenerate. Let Dt(z
t) be the counterfactual treatment given zt ≡ (z1, ..., zt) ∈ {0, 1}t.

Then, Dt =
∑
zt∈Zt Dt(z

t). Let Z ≡ (Z1, ..., ZT ), Y (d) ≡ (Y1(d1), Y2(d2), ..., YT (d)), and

D(z) ≡ (D1(z1), D2(z2), ..., DT (z)) and let “⊥” denote statistical independence.

Assumption SX. Z ⊥ (Y (d),D(z))|X.

Assumption SX assumes the strict exogeneity and exclusion restriction. A single IV

with conditional independence trivially satisfies this assumption. For a sequence of IVs,

this assumption is satisfied in typical sequential randomized experiments, as well as quasi-

experiments. Returning to our illustrative example, let Di1 = 1 if student i has a high school

diploma and Di1 = 0 otherwise; let Di2 = 1 if i participates in a job training program and

Di2 = 0 if not. Also, let Yi1 = 1 if i is employed before the training program and Yi1 = 0 if

not; let Yi2 = 1 if i is employed after the program and Yi2 = 0 if not. Finally, let Xi be i’s ob-

servable characteristics. Given the data, suppose we are interested in recovering regimes that

maximize the employment rate as welfare. As D1 and D2 are endogenous, {Di1, Yi1, Di2, Yi2}
are not useful by themselves to identify Wδ’s and δ∗(·). Therefore, we employ the approach

of using IVs, either a single IV (e.g., in the initial period) or a sequence of IVs. In this

particular example, we can use the distance to high schools or the number of high schools

per square mile as an instrument Z1 for D1 conditional on X. Then, a random assignment

of the job training in a field experiment can be used as an instrument Z2 for the compliance

decision D2. Assumption SX requires that conditional on individual characteristics, these

instruments are jointly independent of the unobserved confounders (e.g., ability, personality)

that are present in the outcome formation and treatment selection processes. In Section 5,

we empirically study schooling and job training as a sequence of treatments and combine

IVs from experimental and observational data. In observational settings as this example,

one can use IVs from quasi-experiments, those from RD design, or a combination of them.

In experimental settings, examples of a sequence of IVs can be found in multi-stage experi-

ments, such as the Fast Track Prevention Program (Conduct Problems Prevention Research

Group (1992)), the Elderly Program randomized trial for the Systolic Hypertension (The

Systolic Hypertension in the Elderly Program (SHEP) Cooperative Research Group (1988)),

and Promotion of Breastfeeding Intervention Trial (Kramer et al. (2001)). It is also possible

to combine multiple experiments as in Johnson and Jackson (2019).

Let (Y ,D,Z, X) be the vector of observables (Yt, Dt, Zt) for the entire T periods and X,

and let p be its distribution. We assume that (Y i,Di,Zi, Xi) is independent and identically

distributed and {(Y i,Di,Zi) : i = 1, ..., N} is a small T large N panel. We mostly suppress
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(a) δ∗(·) is partially identified
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(b) δ∗(·) is point identified

Figure 2: Partially Ordered Sets of Welfares

the individual unit i throughout the paper. For empirical applications, the data structure

can be more general than a panel and the kinds of Yt, Dt and Zt are allowed to be different

across time; recall the above illustrative example. For the population from which the data

are drawn, we are interested in learning the optimal regime and related welfares.

3.2 Partial Ordering of Welfares

Given the distribution p of the data (Y ,D,Z, X) and under Assumption SX, we show how

the optimal dynamic regime and welfares can be partially recovered. The identified set of

δ∗(·) will be characterized as a subset of the discrete set D. As the first step, we establish

partial ordering of Wδ w.r.t. δ(·) ∈ D as a function of p. The partial ordering can be

represented by a directed acyclic graph (DAG). The DAG summarizes the identified signs of

the dynamic treatment effects, as will become clear later. Moreover, the DAG representation

is fruitful for introducing the notion of the sharpness of partial ordering and later to translate

it into the identified set of δ∗(·).
To facilitate this analysis, we enumerate all |D| = 22T−2×2|X | possible regimes. For index

k ∈ K ≡ {k : 1 ≤ k ≤ |D|} (and thus |K| = |D|), let δk(·) denote the k-th regime in D. For

T = 2 and δ1(x) = δ1, Table 1 indexes all possible dynamic regimes δ(·) ≡ (δ1, δ2(·)). Let

Wk ≡ Wδk be the corresponding welfare. Figure 2 illustrates examples of the partially ordered

set of welfares as DAGs where each edge “Wk → Wk′” indicates the relation “Wk > Wk′ .”

In general, the point identification of δ∗(·) is achieved by establishing the total ordering of

Wk. Without strong additional assumptions, this is only possible if instruments has infinite

support. Since we allow for instruments with minimal variation (i.e., binary instruments), we

may only recover a partial ordering. We want the partial ordering to be sharp in the sense

that it cannot be improved given the data and maintained assumptions. To formally state

this, let G(K, E) be a DAG where K is the set of welfare (or regime) indices and E is the set

of edges. For example, in Figure 2(a), we have E = {(W1,W2), (W2,W3), (W4,W2)}.

12



Definition 3.1. Given the data distribution p, a partial ordering G(K, Ep) is sharp under

the maintained assumptions if there exists no partial ordering G(K, E ′p) such that E ′p ) Ep
without imposing additional assumptions.

Establishing sharp partial ordering amounts to determining whether we can tightly iden-

tify the sign of a counterfactual welfare gap Wk −Wk′ (i.e., the dynamic treatment effects)

for k, k′ ∈ K, and if we can, what the sign is. The sharp identification of the sign is possible

when we can construct sharp bounds on the counterfactual welfare gap. This motivates the

following analysis.

3.3 Data-Generating Framework

We introduce a simple data-generating framework and formally define the identified set.

First, we introduce latent state variables that generate (Y ,D). A latent state of the world

will determine specific maps dt 7→ yt and zt 7→ dt for t = 1, ..., T under the exclusion

restriction in Assumption SX. A more primitive state of the world would determine maps

(yt−1,dt) 7→ yt and (yt−1,dt−1, zt) 7→ dt for t = 1, ..., T , but we do not consider them as

they not relevant to our objective as shown below. We introduce the latent state variable

S̃t whose realization represents a latent state. We define S̃t as follows. For given (dt, zt),

recall Yt(d
t) and Dt(z

t) denote the counterfactual outcomes and treatments, respectively. Let

{Yt(dt)}dt and {Dt(z
t)}zt denote their sequences w.r.t. dt and zt. Then, by concatenating

the two sequences, define S̃t ≡ ({Yt(dt)}, {Dt(z
t)}) ∈ {0, 1}2t × {0, 1}2t . For example,

S̃1 = (Y1(0), Y1(1), D1(0), D1(1)) ∈ {0, 1}2 × {0, 1}2, whose realization specifies particular

maps d1 7→ y1 and z1 7→ d1. It is convenient to transform S̃ ≡ (S̃1, ..., S̃T ) into a scalar

(discrete) latent variable in N as S ≡ β(S̃) ∈ S ⊂ N, where β(·) is a one-to-one map that

transforms a binary sequence into a decimal value. Define

qs(x) ≡ Pr[S = s|X = x],

and define the vector q(x) ≡ {qs(x)}s∈S , which represents the distribution of S conditional

on X = x, namely the true data-generating process. Then the vector q ≡ {q(x)}x∈X resides

in Q ≡ {q :
∑

s qs(x) = 1 ∀x and qs(x) ≥ 0 ∀s, x} of dimension dq − |X | where dq ≡ dim(q).

A useful fact is that the joint distributions of counterfactuals (conditional on X = x) can be
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written as linear functionals of q(x):

Pr[Y (d) = y,D(z) = d|X = x] = Pr[S ∈ S : Y (d) = y,D(z) = d|X = x]

= Pr[S ∈ S : Yt(d
t) = yt, Dt(z

t) = dt ∀t|X = x]

=
∑

s∈Sy,d|z

qs(x), (3.1)

where Sy,d and Sy,d|z are constructed by using the definition of S; their expressions can be

found in Appendix B.

Based on (3.1), the counterfactual welfare can be written as a linear combination of

qs(x)’s. That is, there exists 1× dq vector Ak of 1’s and 0’s such that

Wk = Akq. (3.2)

The formal derivation of Ak can be found in Appendix B, but the intuition is as follows.

Recall Wk ≡ f(qδk) where qδ(y) ≡ Pr[Y (δ(·)) = y]. The key observation in deriving

the result (3.2) is that Pr[Y (δ(·)) = y] can be written as a linear functional of the joint

distributions of counterfactual outcomes with a static regime, i.e., Pr[Y (d) = y|X = x]’s,

which in turn is a linear functional of q(x). To illustrate this when T = 2 and welfare

Wδ = E[Y2(δ(·))] with δ1(x) = δ1, we have

Pr[Y2(δ(·)) = 1|X = x]

=
∑

y1∈{0,1}

Pr[Y2(δ1, δ2(Y1(δ1), δ1)) = 1|Y1(δ1) = y1, X = x] Pr[Y1(δ1) = y1|X = x]

by the law of iterated expectation. Then, for instance, Regime 4 in Table 1 yields

Pr[Y2(δ4(·)) = 1|X = x] = P [Y (1, 1) = (1, 1)|X = x] + P [Y (1, 0) = (0, 1)|X = x], (3.3)

where each Pr[Y (d1, d2) = (y1, y2)|X = x] is the counterfactual distribution with a static

regime, which in turn is a linear combination of qs(x)’s as in (3.1). Finally, Pr[Y2(δ(·)) =

1] =
∑

x∈X p(x) Pr[Y2(δ(·)) = 1|X = x] where p(x) ≡ Pr[X = x], and therefore the welfare is

a linear function of q.

The data impose restrictions on q ∈ Q. Define

py,d|z,x ≡ p(y,d|z, x) ≡ Pr[Y = y,D = d|Z = z, X = x],

and p as the vector of py,d|z,x’s except redundant elements. Let dp ≡ dim(p). Since Pr[Y =

y,D = d|Z = z, X = x] = Pr[Y (d) = y,D(z) = d|X = x] by Assumption SX, we can
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readily show by (3.1) that there exists dp × dq matrix B such that

Bq = p, (3.4)

where B is a matrix of 1’s and 0’s; the formal derivation of B can be found in Appendix B. It is

worth noting that the linearity in (3.2) and (3.4) is not a restriction but given by the discrete

nature of the setting. We assume rank(B) = dp without loss of generality, because redundant

constraints do not play a role in restricting Q. We focus on the non-trivial case of dp < dq.

If dp ≥ dq, which rarely holds, we can solve for q = (B>B)−1B>p, and can trivially point

identify Wk = Akq and thus δ∗(·). Otherwise, we have a set of observationally equivalent

q’s, which is the source of partial identification and motivates the following definition of the

identified set. For simplicity, we use the same notation for the true q and its observational

equivalence.

For a given q, let δ∗(·; q) ≡ arg maxδk(·)∈DWk = Akq be the optimal regime, explicitly

written as a function of the data-generating process.

Definition 3.2. Under Assumption SX, the identified set of δ∗(·) given the data distribution

p is

D∗p ≡ {δ∗(·; q) : Bq = p and q ∈ Q} ⊂ D, (3.5)

which is assumed to be empty when Bq 6= p.

3.4 Characterizing Partial Ordering and the Identified Set

Given p, we establish the partial ordering of Wk’s, i.e., generate the DAG, by determining

whether Wk > Wk′ , Wk < Wk′ , or Wk and Wk′ are not comparable, denoted as Wk ∼ Wk′ ,

for k, k′ ∈ K. As described in the next theorem, this procedure can be accomplished by

determining the signs of the bounds on the welfare gap Wk −Wk′ for k, k′ ∈ K and k > k′.

Note that directly comparing sharp bounds on welfares themselves will not deliver sharp

partial ordering. Then the identified set can be characterized based on the resulting partial

ordering.

The nature of the data generation induces the linear system (3.2) and (3.4). This enables

us to characterize the bounds on Wk−Wk′ = (Ak−Ak′)q as the optima in linear programming.

Let Uk,k′ and Lk,k′ be the upper and lower bounds. Also let ∆k,k′ ≡ Ak − Ak′ for simplicity,

and thus the welfare gap is expressed as Wk −Wk′ = ∆k,k′q. Then, for k, k′ ∈ K, we have
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the main linear programs:

Uk,k′ = maxq∈Q∆k,k′q,

Lk,k′ = minq∈Q∆k,k′q,
s.t. Bq = p. (3.6)

Assumption B. {q : Bq = p} ∩ Q 6= ∅.

Assumption B imposes that the model is correctly specified. In particular, this means

Assumption SX is correctly specified because the relationship Bq = p is derived under this

assumption. Under misspecification, the identified set is empty by definition. The next

theorem constructs the sharp DAG and characterize the identified set using Uk,k′ and Lk,k′

for k, k′ ∈ K and k > k′, or equivalently, Lk,k′ for k, k′ ∈ K and k 6= k′ since Uk,k′ = −Lk′,k.

Theorem 3.1. Suppose Assumptions SX and B hold. Then, (i) G(K, Ep) with Ep ≡ {(k, k′) ∈
K : Lk,k′ > 0 and k 6= k′} is sharp; (ii) D∗p defined in (3.5) satisfies

D∗p = {δk′(·) : @k ∈ K such that Lk,k′ > 0 and k 6= k′} (3.7)

= {δk′(·) : Lk,k′ ≤ 0 for all k ∈ K and k 6= k′}, (3.8)

and therefore the sets on the right-hand side are sharp.

The proof of Theorem 3.1 is shown in Appendix C. The key insight of the proof is that

even though the bounds on the welfare gaps are calculated from separate optimizations, the

partial ordering is governed by common q’s (each of which generates all the welfares) that

are observationally equivalent; see Section E.2 for related discussions.

Theorem 3.1(i) prescribes how to calculate the sharp DAG as a function of data. The

DAG can be conveniently represented in terms of a |K| × |K| adjacency matrix Ω such that

its element Ωk,k′ = 1 if Wk ≥ Wk′ and Ωk,k′ = 0 otherwise. According to (3.7) in (ii), D∗p
is characterized as the collection of δk(·) where k is in the set of maximal elements of the

partially ordered set G(K, Ep), i.e., the set of regimes that are not inferior. In Figure 2, it is

easy to see that the set of maximals is D∗p = {δ1(·), δ4(·)} in panel (a) and D∗p = {δ1(·)} in

panel (b).

The identified set D∗p characterizes the information content of the model. Given the

minimal structure we impose in the model, D∗p may be large in some cases. However, we

argue that an uninformative D∗p still has implications for policy: (i) such set may recommend

the policymaker eliminate sub-optimal regimes from her options;2 (ii) in turn, it warns the

policymaker about her lack of information (e.g., even if she has access to the experimental

data); when D∗p = D as one extreme, “no recommendation” can be given as a non-trivial

2Section E.5 discusses how to do this systematically after embracing sampling uncertainty.
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policy suggestion of the need for better data. As shown in the numerical exercise, the size of

D∗p is related to the strength of Zt (i.e., the size of the complier group at t) and the strength

of the dynamic treatment effects. This is reminiscent of the findings in Machado et al. (2019)

for the average treatment effect in a static model.

3.5 Additional Assumptions

Often, researchers are willing to impose more assumptions based on priors about the data-

generating process, e.g., agent’s behaviors. Examples are uniformity, Markovian structure,

and stationarity. These assumptions are easy to incorporate within the linear program-

ming (3.6); see Appendix D for details. These assumptions tighten the identified set D∗p by

reducing the dimension of simplex Q, and thus producing a denser DAG. The list of iden-

tifying assumptions here is far from complete, and there may be other assumptions on how

(Y ,D,Z, X) are generated.

The first assumption is a sequential version of the uniformity assumption (i.e., the mono-

tonicity assumption) in Imbens and Angrist (1994) and Angrist et al. (1996). Let “w.p.1”

stand for “with probability one.”

Assumption M1. For each t, either Dt(Z
t−1, 1) ≥ Dt(Z

t−1, 0) w.p.1 or Dt(Z
t−1, 1) ≤

Dt(Z
t−1, 0) w.p.1. conditional on (Y t−1,Dt−1,Zt−1, X).

Assumption M1 postulates that there is no defying (or complying) behavior in deci-

sion Dt conditional on (Y t−1,Dt−1,Zt−1, X). In our illustrative example, M1 assumes that

(conditional on the history) there are no individuals with perversive behavior who would

participate in the job training when not eligible but would not participate when eligible. We

exclude the same perversive behavior in attending high school. Without being conditional

on (Y t−1,Dt−1,Zt−1, X), however, there can be a general non-monotonic pattern in the way

that Zt influences Dt. For example, we can have Dt(Z
t−1, 1) ≥ Dt(Z

t−1, 0) for Dt−1 = 1

while Dt(Z
t−1, 1) < Dt(Z

t−1, 0) for Dt−1 = 0. By extending the idea of Vytlacil (2002), we

can show that M1 is the equivalent of imposing a threshold-crossing model for Dt:

Dt = 1{πt(Y t−1,Dt−1,Zt, X) ≥ νt}, (3.9)

where πt(·) is an unknown, measurable, and non-trivial function of Zt. The equivalence is

formally established in Section D. The dynamic selection model (3.9) should not be confused

with the dynamic regime (2.1). Compared to the dynamic regime dt = δt(y
t−1,dt−1), which is

a hypothetical quantity, equation (3.9) models each individual’s observed treatment decision,

in that it is not only a function of (Y t−1,Dt−1) but also νt, the individual’s unobserved

characteristics. We assume that the policymaker has no access to ν ≡ (ν1, ..., νT ). The
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functional dependence of Dt on (Y t−1,Dt−1,Zt−1) reflects the agent’s learning. Sometimes,

we want to further impose uniformity in the formation of Yt on top of Assumption M1:

Assumption M2. Assumption M1 holds, and for each t, either Yt(D
t−1, 1) ≥ Yt(D

t−1, 0)

w.p.1 or Yt(D
t−1, 1) ≤ Yt(D

t−1, 0) w.p.1 conditional on (Y t−1,Dt−1, X).

This assumption postulates uniformity in a way that restricts heterogeneity of the con-

temporaneous treatment effect. However, similarly as before, without being conditional

on (Y t−1,Dt−1, X), there can be a general non-monotonic pattern in the way that Dt

influences Y t. For example, we can have Yt(D
t−1, 1) ≥ Yt(D

t−1, 0) for Yt−1 = 1 while

Yt(D
t−1, 1) ≤ Yt(D

t−1, 0) for Yt−1 = 0. In our illustrative example, this implies that the job

training program should have a homogeneous influence over the labor market performance

across individuals conditional on the history, but it may have heterogeneous influences un-

conditionally. It is also worth noting that Assumption M2 (and M1) does not assume the

direction of monotonicity, but the direction may be recovered from the data. Using a similar

argument as before, Assumption M2 is the equivalent of a dynamic version of a nonparametric

triangular model:

Yt = 1{µt(Y t−1,Dt, X) ≥ εt}, (3.10)

Dt = 1{πt(Y t−1,Dt−1,Zt, X) ≥ νt}, (3.11)

where µt(·) and πt(·) are unknown, measurable, and non-trivial functions of Dt and Zt,

respectively. Again, the equivalence is formally established in Section D. The next assumption

imposes a Markov-type structure in the Yt and Dt processes.

Assumption K. Conditional on X, Yt|(Y t−1,Dt)
d
= Yt|(Yt−1, Dt) and Dt|(Y t−1,Dt−1,Zt)

d
=

Dt|(Yt−1, Dt−1, Zt) for each t.

In terms of the triangular model (3.10)–(3.11), Assumption K implies

Yt = 1{µt(Yt−1, Dt, X) ≥ εt},

Dt = 1{πt(Yt−1, Dt−1, Zt, X) ≥ νt},

which yields the familiar structure of dynamic discrete choice models found in the literature.

Lastly, when there are more than two periods, an assumption that imposes stationarity can

be helpful for identification. Such an assumption can be found in Torgovitsky (2019).
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4 Numerical Studies

We conduct numerical exercises to illustrate (i) the theoretical results developed in Sec-

tions 3.1–3.4, (ii) the role of the assumptions introduced in Section 3.5, and (iii) the overall

computational scale of the problem. For T = 2, we consider the following data-generating

process:

Di1 = 1{π1Zi1 + αi + vi1 ≥ 0}, (4.1)

Yi1 = 1{µ1Di1 + αi + ei1 ≥ 0}, (4.2)

Di2 = 1{π21Yi1 + π22Di1 + π23Zi2 + αi + vi2 ≥ 0}, (4.3)

Yi2 = 1{µ21Yi1 + µ22Di2 + αi + ei2 ≥ 0}, (4.4)

where (v1, e1, v2, e2, α) are mutually independent and jointly normally distributed, the endo-

geneity of Di1 and Di2 as well as the serial correlation of the unobservables are captured by

the individual effect αi, and (Z1, Z2) are Bernoulli, independent of (v1, e1, v2, e2, α). Notice

that the process is intended to satisfy Assumptions SX, K, M1, and M2. We consider a

data-generating process where all the coefficients in (4.1)–(4.4) take positive values. In this

exercise, we consider the welfare Wk = E[Y2(δk(·))].
We consider eight possible regimes shown in Table 1 (i.e., |D| = |K| = 8). We calculate the

lower and upper bounds (Lk,k′ , Uk,k′) on the welfare gap Wk−Wk′ for all pairs k, k′ ∈ {1, ..., 8}
(k < k′). This is to illustrate the role of assumptions in improving the bounds. We conduct

the bubble sort, which makes
(

8

2

)
= 28 pair-wise comparisons, resulting in 28 × 2 linear

programs to run.3 As the researcher, we maintain Assumption K. Then, for each linear

program, the dimension of q is |Q|+ 1 = |S| = |S1| × |S2| = 22× 22× 28× 24 = 65, 536. Note

that the dimension is reduced with additional identifying assumptions. The number of main

constraints is dim(p) = 23×2 − 22 = 60. There are 1 + 65, 536 additional constraints that

define the simplex, i.e.,
∑

s qs = 1 and qs ≥ 0 for all s ∈ S. Each linear program takes less

than a second to calculate Lk,k′ or Uk,k′ with a computer with a 2.2 GHz single-core processor

and 16 GB memory and with a modern solver such as CPLEX, MOSEK, and GUROBI.

Figure 3 reports the bounds (Lk,k′ , Uk,k′) on Wk − Wk′ for all (k, k′) ∈ {1, ..., 8} under

Assumption M1 (in black) and Assumption M2 (in red). In the figure, we can determine the

sign of the welfare gap for those bounds that exclude zero. The difference between the black

and red bounds illustrates the role of Assumption M2 relative to M1. That is, there are more

3There are more efficient algorithms than the bubble sort, such as the quick sort, although they must be
modified to incorporate the distinct feature of our problem: the possible incomparability that stems from
partial identification. Note that for comparable pairs, transitivity can be applied and thus the total number
of comparisons can be smaller.
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Figure 3: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red)
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Figure 4: Sharp Directed Acyclic Graph under M2

bounds that avoid the zero vertical line with M2, which is consistent with the theory. It is

important to note that, because M2 does not assume the direction of monotonicity, the sign

of the welfare gap is not imposed by the assumption but recovered from the data.4 Each set

of bounds generates an associated DAGs (produced as an 8 × 8 adjacency matrix). Given

the solutions of the linear programs, the adjacency matrix and thus the graph is simple

to produce automatically using a standard software such as MATLAB. We proceed with

Assumption M2 for brevity.

Figure 4 (identical to Figure 1 in the Introduction) depicts the sharp DAG generated from

(Lk,k′ , Uk,k′)’s under Assumption M2, based on Theorem 3.1(i). Then, by Theorem 3.1(ii),

the identified set of δ∗(·) is

D∗p = {δ7(·), δ8(·)}.

The common feature of the elements in D∗p is that it is optimal to allocate δ2 = 1 for all

y1 ∈ {0, 1}. Finally, the following is one of the topological sorts produced from the DAG:

(δ8(·), δ4(·), δ7(·), δ3(·), δ5(·), δ1(·), δ6(·), δ2(·)).

We also conducted a parallel analysis but with a slightly different data-generating process,

where (a) all the coefficients in (4.1)–(4.4) are positive except µ22 < 0 and (b) Z2 does not

exist. In Case (a), we obtain D∗p = {δ2(·)} as a singleton, i.e., we point identify δ∗(·) = δ2(·).
The DAG for Case (b) is shown in Figure 5. We still obtain an informative DAG even with

4The direction of the monotonicity in M2 can be estimated directly from the data by using the fact
that sign(E[Yt|Zt = 1,Y t−1,Dt−1] − E[Yt|Zt = 1,Y t−1,Dt−1]) = sign(E[Yt(D

t−1, 1)|Y t−1,Dt−1] −
E[Yt(D

t−1, 0)|,Y t−1,Dt−1]) almost surely. This result is an extension of Shaikh and Vytlacil (2011) to
our multi-period setting.
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Figure 5: Sharp Directed Acyclic Graph under M2 (with only Z1)

a single instrument. In this case, we obtain D∗p = {δ6(·), δ7(·), δ8(·)}.

5 Application

We apply the framework of this paper to understand returns to schooling and post-school

training as a sequence of treatments and to conduct a policy analysis. Schooling and post-

school training are two major interventions that affect various labor market outcomes, such as

earnings and employment status (Ashenfelter and Card (2010)). These treatments also have

influences on health outcomes, either directly or through the labor market outcomes, and

thus of interest for public health policies (Backlund et al. (1996), McDonough et al. (1997),

Case et al. (2002)). We find that the Job Training Partnership Act (JTPA) is an appropriate

setting for our analysis. The JTPA program is one of the largest publicly-funded training

programs in the United States for economically disadvantaged individuals. Unfortunately, the

JTPA only concerns post-school trainings, which have been the main focus in the literature

(Bloom et al. (1997), Abadie et al. (2002), Kitagawa and Tetenov (2018)). In this paper, we

combine the JTPA Title II data with those from other sources regarding high school education

to create a data set that allows us to study the effects of a high school (HS) diploma (or

its equivalents) and the subsidized job trainings as a sequence of treatments. We consider

high school diplomas rather than college degrees because the former is more relevant for the

disadvantaged population of Title II of the JTPA program.

We are interested in the dynamic treatment regime δ(·) = (δ1, δ2(·)), where δ1 is a HS

diploma and δ2(y1) is the job training program given pre-program earning type y1. The

motivation of having δ2 as a function of y1 comes from acknowledging the dynamic nature

of how earnings are formed under education and training. The first-stage allocation δ1 will
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Regime # δ1 δ2(1, δ1) δ2(0, δ1)

1 0 0 0

2 1 0 0

3 0 1 0

4 1 1 0

5 0 0 1

6 1 0 1

7 0 1 1

8 1 1 1

Figure 6: Estimated DAG of Wδ = E[Y2(δ(·))] and Estimated Set for δ∗ (red)

affect the pre-program earning. This response may contain information about unobserved

characteristics of the individuals. Therefore, the allocation of δ2 can be informed by being

adaptive to y1. Then, the counterfactual earning type in the terminal stage given δ(·) can

be expressed as Y2(δ(·)) = Y2(δ1, δ2(Y1(δ1))) where Y1(δ1) is the counterfactual earning type

in the first stage given δ1. We are interested in the optimal regime δ∗ that maximizes each

of the following welfares: the average terminal earning E[Y2(δ(·))] and the average lifetime

earning E[Y1(δ1)] + E[Y2(δ(·))].
For the purpose of our analysis, we combine the JTPA data with data from the US

Census and the National Center for Education Statistics (NCES), from which we construct

the following set of variables: Y2 above or below median of 30-month earnings, D2 the job

training program, Z2 a random assignment of the program, Y1 above or below 80th percentile

of pre-program earnings, D1 the HS diploma or GED, and Z1 the number of high schools per

square mile.5 The instrument Z1 for the HS treatment appears in the literature (e.g., Neal

(1997)). The number of individuals in the sample is 9,223. We impose Assumptions SX and

M2 throughout the analysis.

The estimation of the DAG and the identified set D∗p is straightforward given the condi-

tions in Theorem 3.1 and the linear programs (3.6). The only unknown object is p, the joint

distribution of (Y ,D,Z), which can be estimated as p̂, a vector of p̂y,d|z =
∑N

i=1 1{Y i =

y,Di = d,Zi = z}/
∑N

i=1 1{Zi = z}.
Figure 6 reports the estimated partial ordering of welfare Wδ = E[Y2(δ(·))] (left) and the

resulting estimated set D̂ (right, highlighted in red) that we estimate using {(Y i,Di,Zi)}9,223
i=1 .

5For Y1, the 80th percentile cutoff is chosen as it is found to be relevant in defining subpopulations that
have contrasting effects of the program. There are other covariates in the constructed dataset, but we omit
them for the simplicity of our analysis. These variables can be incorporated as pre-treatment covariates so
that the first-stage treatment is adaptive to them.
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Regime # δ1 δ2(1, δ1) δ2(0, δ1)

1 0 0 0

2 1 0 0

3 0 1 0

4 1 1 0

5 0 0 1

6 1 0 1

7 0 1 1

8 1 1 1

Figure 7: Estimated DAG of Wδ = E[Y1(δ1)] + E[Y2(δ(·))] and Estimated Set for δ∗ (red)

Although there exist welfares that cannot be ordered, we can conclude with certainty that

allocating the program only to the low earning type (Y2 = 0) is welfare optimal, as it is

the common implication of Regimes 5 and 6 in D̂. Also, the second best policy is to either

allocate the program to the entire population or none, while allocating it only to the high

earning type (Y2 = 1) produces the lowest welfare. This result is consistent with the eligibil-

ity of Title II of the JTPA, which concerns individuals with “barriers to employment” where

the most common barriers are unemployment spells and high-school dropout status (Abadie

et al. (2002)). Possibly due to the fact that the first-stage instrument Z1 is not strong enough,

we have the two disconnected sub-DAGs and thus the two elements in D̂, which are agnostic

about the optimal allocation in the first stage or the complementarity between the first- and

second- stage allocations.

Figure 7 reports the estimated partial ordering and the estimated set withWδ = E[Y1(δ1)]+

E[Y2(δ(·))]. Despite the partial ordering, D̂ is a singleton for this welfare and δ∗ is estimated

to be Regime 6. According to this regime, the average lifetime earning is maximized by

allocating HS education to all individuals and the training program to individuals with low

pre-program earnings. As discussed earlier, additional policy implications can be obtained

by inspecting suboptimal regimes. Interestingly, Regime 8, which allocates the treatments

regardless, is inferior to Regime 6. This can be useful knowledge for policy makers especially

because Regime 8 is the most “expensive” regime. Similarly, Regime 1, which does not allo-

cate any treatments regardless and thus is the least expensive regime, is superior to Regime

3, which allocates the program to high-earning individuals. The estimated DAG shows how

more expensive policies do not necessarily achieve greater welfare. Moreover, these conclu-

sions can be compelling as they are drawn without making arbitrary parametric restrictions

nor strong identifying assumptions.
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Finally, as an alternative approach, we use {(Y i,Di, Z2i)}9,223
i=1 for estimation, that is, we

drop Z1 and only use the exogenous variation from Z2. This reflects a possible concern that

Z1 may not be as valid as Z2. Then, the estimated DAG looks identical to the left panel

of Figure 6 whether the targeted welfare is E[Y2(δ(·))] or E[Y1(δ1)] + E[Y2(δ(·))]. Clearly,

without Z1, the procedure lacks the ability to determine the first stage’s best treatment.

Note that, even though the DAG for E[Y2(δ(·))] is identical for the case of one versus two

instruments, the inference results will reflect such difference by producing a larger confidence

set for the former case.

A Extensions

A.1 Continuous Yt and X

Suppose the outcomes Yt’s and pre-treatment covariate vector X are continuously distributed

on [yl, yu] and X , respectively. Consider the treatment allocation δ̃t with continuous yt ∈
[yl, yu] and binary dt ∈ {0, 1}:

δ̃t(y
t−1,dt−1) = dt ∈ {0, 1} (A.1)

for t = 2, ..., T and δ̃1(x) = d1 ∈ {0, 1} with continuous x. This rule may not be a feasible or

practical strategy considering the cost of incrementally customizing the allocation based on

continuous characteristics yt−1. Instead, the planner may want to employ a regime that is

only discretely adaptive to the continuous outcomes. This can be achieved by a threshold-

crossing allocation rule: for each t = 2, ..., T ,

δ̃t(y
t−1,dt−1;γt−1) = δt(1{y1 ≥ γ1}, ..., 1{yt−1 ≥ γt−1},dt−1), (A.2)

δ̃1(x; γ0) = δ1(1{γ′01x ≥ γ02}) (A.3)

where γt−1 ≡ (γ1, ..., γt−1) and γ0 ≡ (γ′01, γ02) are threshold parameter vectors and δt(·) is the

original treatment allocation rule (2.1)–(2.2) based on discrete outcomes and covariates. This

threshold-crossing rule is a popular decision rule in practice due to its intuitive form and is

considered in earlier theoretical studies such as in Murphy (2003) and Kitagawa and Tetenov

(2018). Note that the full regime (δ̃1(·; γ0), δ̃2(·; γ1), ..., δ̃T (·;γT−1)) can be characterized by

(δ(·),γ) where δ(·) the original regime with discrete outcomes and γ ≡ (γ0, γ1, ..., γT−1) .

Therefore, we proceed with latter in the following analysis.

Based on (δ,γ) ∈ D × Γ, we define the welfare Wδ,γ analogous to (2.5). For example,

Wδ,γ = E[YT (δ,γ)] where YT (δ,γ) is defined as (2.3)–(2.4) but each δt(·) and δ1(·) replaced
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with δ̃t(·;γt−1) and δ̃1(x; γ0) defined above, respectively. We wish to find (δ∗,γ∗) that maxi-

mize welfare Wδ,γ :

(δ∗,γ∗) = arg max
δ(·)∈D,γ∈Γ

Wδ,γ .

This maximization problem, equivalently the identification of (δ∗,γ∗), is challenging because

Wδ,γ may not be point identified. Therefore, analogous to the partial identification approach

in the main text, we proceed as follows. For a given pair (δ,γ) and (δ′,γ ′) in D × Γ, let

L(δ,γ, δ′,γ ′) be the lower bound on the welfare gap

Wδ,γ −Wδ′,γ′ .

Then, the identified set for (δ∗,γ∗) can be characterized as

{(δ′,γ ′) : L(δ,γ, δ′,γ ′) ≤ 0 for all (δ,γ) ∈ D × Γ and (δ,γ) 6= (δ′,γ ′)}. (A.4)

Note that, for given γ ∈ Γ, the maximization of Wδ,γ with respect to δ can be solved by

establishing the partial ordering of Wδ,γ with respect to δ. Therefore, for policy, it would

also be useful to inspect the partial ordering of Wδ,γ for any given γ. This analysis can be

done by constructing the DAG for Wδ,γ using the lower bound L(δ, δ′;γ) on the welfare gap

Wδ,γ −Wδ′,γ .

We first consider the calculation of L(δ, δ′;γ) for given γ, which can be done by solving

a sequence of LPs. The challenge is that the continuous outcome variables generate infinite-

dimensional programs, which are infeasible to solve in practice. We overcome this challenge

by means of approximation. Let Ỹ t ≡ {Yt(dt)}dt ∈ [yl, yu]
2t and D̃t ≡ {Dt(z

t)}zt ∈ {0, 1}2t

be vectors that constitute S̃t ≡ (Ỹ t, D̃t), which is defined analogous to that in the text,

and let yt(d
t) and dt(z

t) be the realized mappings of Yt(d
t) and Dt(z

t). Also, define Ỹ ≡
(Ỹ 1, ..., Ỹ T ) and D̃ ≡ (D̃1, ..., D̃T ). The key element in the formulation is the following

conditional cumulative distribution function:

q(ỹ, d̃, x) ≡ Pr[Ỹ ≤ ỹ|D̃ = d̃, X = x]

≡ Pr[Yt(d
t) ≤ yt(d

t) ∀dt and t|Dt(z
t) = dt(z

t) ∀zt and t,X = x],

where “≤” between vectors is understood as element-wise inequalities. The infinite-dimensional

object q(·) is the decision variable in the optimization. LetQ be the infinite-dimensional space

of all q(·, ·, ·)’s.
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To construct the constraints of the program, consider the distribution of the data:

Pr[Y ≤ y,D = d|Z = z, X = x]

= Pr[Yt(d
t) ≤ yt, Dt(z

t) = dt ∀t|X = x]

= Pr[Dt(z
t) = dt ∀t|X = x] Pr[Yt(d

t) ≤ yt ∀t|Dt(z
t) = dt ∀t,X = x]

=
∑
x∈X

p(x)
∑

d̃:dt(zt)=dt∀t

Pr[D̃ = d̃|X = x]×

×
∫ yu

yl

· · ·
∫ yu

yl

{∫ y1

yl

· · ·
∫ yT

yl

q(ỹ, d̃, x)dy1(d1) · · · dyT (dT )

}
dỹ−1 · · · dỹ−T

≡ Ty,d|z ◦ q,

where ỹ−t is ỹt without yt(d
t) (with some ambiguity of notation),

∫ yu
yl

(·)dỹ−t is the corre-

sponding multivariate integral, and Ty,d|z : Q → R is the operator of q(·, ·, ·). Then, the

continuum of constraints can be written as

(Ty ◦ q)(x) = p(y, x) ∀(y, x) ∈ [yl, yu]
T ×X ,

where Ty is a vector of operators Ty,d|z’s across (d, z) for q(·, ·, x) and p(y, x) is a dp-vector

of Pr[Y ≤ y,D = d|Z = z, X = x]’s across (d, z). Fix γ ∈ Γ. Since the welfare is also an

integral of q(·, ·, ·), we can write

Wδ,γ = Tδ,γ ◦ q

for an operator Tδ,γ : Q → R. Consequently, for δ, δ′ ∈ D, we have the following program:

U(δ, δ′;γ) = maxq∈Q(Tδ,γ − Tδ′,γ) ◦ q,
L(δ, δ′;γ) = minq∈Q(Tδ,γ − Tδ′,γ) ◦ q,

s.t. (Ty ◦ q)(x) = p(y, x) ∀(y, x) ∈ [yl, yu]
T ×X .

(A.5)

Because q(·, ·, ·) ∈ Q is an infinite-dimensional object (unlike q in the case of discrete Yt)

and the constraints are also infinite dimensional, the program (A.5) is infinite-dimensional.

To gain feasibility, we transform this infinite-dimensional program into a (finite-dimensional)

linear program as follows. First, we approximate q(·, d̃, ·) using the method of sieve. In

particular, the Bernstein polynomial is a suitable choice for sieve basis, because equality and

inequality constraints on q(·, ·, ·) can be easily imposed as equality and inequality constraints
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on the coefficients of the basis functions. Consider

q(ỹ, d̃, x) ≈
K∑
k=1

θd̃kbk(ỹ, x),

where bk(ỹ, x) ≡ bk,K(ỹ, x) is a multivariate Bernstein polynomial with its coefficient θd̃k ≡
θd̃k,K ≡ q(k1/K, ...,kT/K, d̃, kx/K) with the following definition: k ≡ (k1, ...,kT , kx) is a

vector of indices where kt ≡ {kt(dt)}dt , kt/K stands for elementwise devision, and
∑K
k=1

stands for multiple summations, each of which is the sum from each element of k up to

K. By replacing q(·, ·, ·) with this Bernstein expansion in (A.5), we obtain a semi-infinite

linear program where the decision variables are simply θd̃k for all k, d̃ and there are the

continuum of constraints. Next, we combine the continuum of constraints using the following

result: for any measurable function h : [yl, yu]
T × X → Rdp , E ‖h(Y , X)‖ = 0 if and only if

h(y, x) = 0 almost everywhere in [yl, yu]
T × X . Therefore, the constraints can be replaced

with E ‖(TY ◦ q)(X)− p(Y , X)‖ = 0. Consequently, we obtain a (finite-dimensional) linear

program. We refer the reader to Section 7 of Han and Yang (2022) for the full details of

the Bernstein approximation and the transformation of constraints. Finally, an analogous

approach can be used to calculate L(δ,γ, δ′,γ ′) for each pair of (δ,γ) and (δ′,γ ′) in D× Γ.

In practice, we can use grid Γ̄ ⊆ Γ for Γ to characterize the identified set (A.4).

A.2 Time-Varying Covariates

Earlier, we assume for simplicity that potentially endogenous covariates are time-invariant

and determined before treatments. Extending the setting to time-varying covariates is

straightforward. When covariates are discrete, the allocation rule (2.1) can simply be modi-

fied to δt(y
t−1,dt−1,xt−1) and δ1(x0) where xt for t = 2, ..., T is time-varying covariates and

x0 is pre-treatment covariates. When time-varying covariates are continuous, the threshold-

crossing rule introduced in (A.2) may be modified to 1{γt1yt+γ′t2xt ≥ γt3} for each t = 2, ..., T .

That is, for each t = 2, ..., T ,

δ̃t(y
t−1,dt−1,xt−1;γt−1) = δt(1{y1 + γ′11x1 ≥ γ12}, ..., 1{yt + γ′t−1,1xt ≥ γt−1,2},dt−1), (A.6)

δ̃1(x0; γ0) = δ1(1{γ′01x0 ≥ γ02}), (A.7)

where γt−1 ≡ (γ1, ..., γt−1) with γt ≡ (γ′t1, γt2) and γ0 ≡ (γ′01, γ02). With time-varying covari-

ates, the main assumption (Assumption SX) may be modified as follows: Z ⊥ (Y (d),D(z))|X, X0

where X = (X1, ..., XT ). The construction of the linear program is very similar to the ones

in the earlier cases and therefore omitted.

28



A.3 Stochastic Regimes

For each t = 2, ..., T , define an adaptive stochastic treatment rule ρt : {0, 1}t−1×{0, 1}t−1 →
[0, 1] that allocates the probability of treatment:

ρt(y
t−1, rt−1) = rt ∈ [0, 1] (A.8)

and ρ1(x) = r1 ∈ [0, 1]. Then, the vector of these ρt’s is a dynamic stochastic regime

ρ(·) ≡ ρT (·) ∈ Dstoch where Dstoch is the set of all possible stochastic regimes. Dynamic

stochastic regimes are considered in, e.g., Murphy et al. (2001), Murphy (2003), and Manski

(2004). A deterministic regime is a special case where ρt(·) takes the extreme values of 1 and

0. Therefore, D ⊂ Dstoch where D is the set of deterministic regimes. We define YT (ρ(·)) with

ρ(·) ∈ Dstoch as the counterfactual outcome YT (δ(·)) where the deterministic rule δt(·) = 1 is

randomly assigned with probability ρt(·) and δt(·) = 0 otherwise for all t ≤ T . Finally, define

Wρ ≡ E[YT (ρ(·))],

where E denotes an expectation over the counterfactual outcome and the random mechanism

defining a rule, and define ρ∗(·) ≡ arg maxρ(·)∈Dstoch
Wρ. The following theorem show that a

deterministic regime is achieved as being optimal even though stochastic regimes are allow.

Theorem A.1. Suppose Wρ ≡ E[YT (ρ(·))] for ρ(·) ∈ Dstoch and Wδ ≡ E[YT (δ(·))] for

δ(·) ∈ D. It satisfies that

δ∗(·) ≡ arg max
δ(·)∈D

Wδ = arg max
ρ(·)∈Dstoch

Wρ.

By the law of iterative expectation, we have

E[YT (ρ(·))] = E
[
E
[
E
[
· · ·E

[
E[YT (r)|Y T−1(rT−1)]

∣∣Y T−2(rT−2)
]
· · ·
∣∣Y1(r1)

]∣∣X]] , (A.9)

where the bridge variables r = (r1, ..., rT ) satisfy

r1 = ρ1(x),

r2 = ρ2(Y1(ρ1), ρ1),

r3 = ρ3(Y 2(ρ2),ρ2),

...

rT = ρT (Y T−1(ρT−1),ρT−1).

Given (A.9), we prove the theorem by showing that the solution ρ∗(·) can be justified by
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backward induction in a finite-horizon dynamic programming. To illustrate this with deter-

ministic regimes when T = 2, we have

δ∗2(y1, d1) = arg max
d2

E[Y2(d)|Y1(d1) = y1], (A.10)

and, by defining V2(y1, d1) ≡ maxd2 E[Y2(d)|Y1(d1) = y1],

δ∗1(x) = arg max
d1

E[V2(Y1(d1), d1)|X = x]. (A.11)

Then, δ∗(·) is equal to the collection of these solutions: δ∗(·) = (δ∗1, δ
∗
2(·)).

Proof. First, given (A.9), the optimal stochastic rule in the final period can be defined as

ρ∗T (yT−1, rT−1) ≡ arg max
rT∈[0,1]

E[YT (r)|Y T−1(rT−1) = yT−1].

Define a value function at period T as VT (yT−1, d̃
T−1

) ≡ maxrT E[YT (r)|Y T−1(rT−1) = yT−1].

Similarly, for each t = 1, ..., T − 1, let

ρ∗t (y
t−1, rt−1) ≡ arg max

rt∈[0,1]
E[Vt+1(Y t(rt), rt)|Y t−1(rt−1) = yt−1]

and Vt(y
t−1, rt−1) ≡ maxrt E[Vt+1(Y t(rt), rt)|Y t−1(rt−1) = yt−1]. Finally, let

ρ∗1(x) ≡ arg max
r1∈[0,1]

E[V2(Y1(r1), r1)|X = x].

Then, ρ∗(·) = (ρ∗1(·), ..., ρ∗T (·)). Since {0, 1} ⊂ [0, 1], the same argument can apply for the

deterministic regime using the current framework but each maximization domain being {0, 1}.
This analogously defines δ∗t (·) ∈ {0, 1} for all t, and then δ∗(·) = (δ∗1(·), ..., δ∗T (·)), similarly

as in Murphy (2003).

Now, for the maximization problems above, let W̃t(r
t,yt−1) represent the objective func-

tion at t for 2 ≤ t ≤ T with W̃1(r1) for t = 1. By the definition of the stochastic regime, it

satisfies that

W̃t(r
t,yt−1) = rtWt(1, r

t−1,yt−1) + (1− rt)Wt(0, r
t−1,yt−1)

= rt
{
Wt(1, r

t−1,yt−1)−Wt(0, r
t−1,yt−1)

}
+Wt(0, r

t−1,yt−1).

Therefore, Wt(1, r
t−1,yt−1) ≥ Wt(0, r

t−1,yt−1) or 1 = arg maxrt∈{0,1} W̃t(r
t,yt−1) if and only

if 1 = arg maxrt∈[0,1] W̃t(r
t,yt−1). Symmetrically, 0 = arg maxrt∈{0,1} W̃t(r

t,yt−1) if and only

if 0 = arg maxrt∈[0,1] W̃t(r
t,yt−1). This implies that ρ∗t (·) = δ∗t (·) for all t = 1, ..., T , which
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proves the theorem.

B Matrices in Section 3.3

We show how to construct matrices Ak and B in (3.2) and (3.4) for the linear programming

(3.6). The construction of Ak and B uses the fact that any linear functional of Pr[Y (d) =

y|X = x] or Pr[Y (d) = y,D(z) = d|X = x] can be characterized as a linear combination of

qs(x). Although the notation of this section can be somewhat heavy, if one is committed to

the use of linear programming instead of an analytic solution, most of the derivation can be

systematically reproduced in a standard software, such as MATLAB and Python.

Consider B first. By Assumption SX, we have

py,d|z,x = Pr[Y (d) = y,D(z) = d|X = x]

= Pr[S : Yt(d
t) = yt, Dt(z

t) = dt ∀t|X = x]

=
∑

s∈Sy,d|z

qs(x), (B.1)

where Sy,d|z ≡ {S = β(S̃) : Yt(d
t) = yt, Dt(z

t) = dt ∀t}, S̃ ≡ (S̃1, ..., S̃T ) with S̃t ≡
({Yt(dt)}dt , {Dt(z

t)}zt), and β(·) is a one-to-one map that transforms a binary sequence into

a decimal value. Then, for a 1× dim(q(x)) vector By,d|z of ones and zeros,

py,d|z,x =
∑

s∈Sy,d|z

qs(x) = By,d|zq(x)

and the dim(px)×dim(q(x)) matrixB0 vertically stacksBy,d|z so that px = B0q(x) where px ≡
{py,d|z,x}y,d,z except redundant elements. Finally, we have p = Bq where p ≡ (p′x1 , ..., p

′
xL

)′,

B ≡


B0

. . .

B0

, and q = (q(x1)′, ..., q(xL)′)′ with X ≡ {x1, ..., xL}.

For Ak, recall Wδk is a linear functional of qδk(y) ≡ Pr[Y (δk(·)) = y]. For given δ(·), by

repetitively applying the law of iterated expectation, we can show

Pr[Y (δ(·)) = y]

= Pr[YT (d) = yT |Y T−1(dT−1) = yT−1]

× Pr[YT−1(dT−1) = yT−1|Y T−2(dT−2) = yT−2]× · · · × Pr[Y1(d1) = y1], (B.2)

where, because of the appropriate conditioning in (B.2), the bridge variables d = (d1, ..., dT )
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satisfies

d1 = δ1,

d2 = δ2(y1, d1),

d3 = δ3(y2,d2),

...

dT = δT (yT−1,dT−1).

Therefore, (B.2) can be viewed as a linear functional of Pr[Y (d) = y]. To illustrate, when

T = 2, the welfare defined as the average counterfactual terminal outcome satisfies

E[YT (δ(·))] =
∑
y1

Pr[Y2(δ1, δ2(Y1(δ1), δ1)) = 1|Y1(δ1) = y1] Pr[Y1(δ1) = y1]

=
∑
y1

Pr[Y2(δ1, δ2(y1, δ1)) = 1, Y1(δ1) = y1]. (B.3)

Then, for a chosen δ(·), the values δ1 = d1 and δ2(y1, δ1) = d2 at which Y2(δ1, δ2(y1, δ1)) and

Y1(δ1) are defined is given in Table 1 as shown in the main text. Therefore, E[Y2(δ(·))] can

be written as a linear functional of Pr[Y2(d1, d2) = y2, Y1(d1) = y1].

Now, define a linear functional hk(·) that maps Pr[Y (d) = y] into Pr[Y (δk(·)) = y]

according to (B.2). But note that Pr[Y (d) = y] =
∑

s∈Sy,d
qs by

Pr[Y (d) = y]

= Pr[S : Yt(d
t) = yt ∀t]

=
∑
s∈Sy,d

qs, (B.4)

where Sy,d ≡ {S = β(S̃) : Yt(d
t) = yt ∀t}. Consequently, we have

Wk = f(qδk) = f(Pr[Y (δk(·)) = ·])

= f ◦ hk(Pr[Y (·) = ·,D(z) = ·]),

= f ◦ hk

 ∑
s∈S·,·|z

qs

 ≡ Akq.
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To continue the illustration (3.3) in the main text, note that

Pr[Y (1, 1) = (1, 1)] = Pr[S : Y1(1) = 1, Y2(1, 1) = 1] =
∑
s∈S11

qs,

where S11 ≡ {S = β(S̃1, S̃2) : Y1(1) = 1, Y2(1, 1) = 1}. Similarly, we have

Pr[Y (1, 1) = (0, 1)] = Pr[S : Y1(1) = 0, Y2(1, 1) = 1] =
∑
s∈S01

qs,

where S01 ≡ {S = β(S̃1, S̃2) : Y1(1) = 0, Y2(1, 1) = 1}.

C Proofs

C.1 Proof of Theorem 3.1

Let Qp ≡ {q : Bq = p} ∩ Q be the feasible set. To prove part (i), first note that the sharp

DAG can be explicitly defined as G(K, Ep) with

Ep ≡ {(k, k′) ∈ K : Akq > Ak′q for all q ∈ Qp}.

Here, Akq > Ak′q for all q ∈ Qp if and only if Lk,k′ > 0 as Lk,k′ is the sharp lower bound of

(Ak −Ak′)q in (3.6). The latter is because the feasible set {q : Bq = p and q ∈ Q} is convex

and thus {∆k,k′q : Bq = p and q ∈ Q} is convex, which implies that any point between

[Lk,k′ , Uk,k′ ] is attainable.

To prove part (ii), it is helpful to note that D∗p in (3.5) can be equivalently defined as

D∗p ≡ {δk′(·) : @k ∈ K such that Akq > Ak′q for all q ∈ Qp}

= {δk′(·) : Akq ≤ Ak′q for all k ∈ K and some q ∈ Qp}.

Let D̃∗p ≡ {δk′(·) : @k ∈ K such that Lk,k′ > 0 and k 6= k′}. First, we prove that D∗p ⊂ D̃∗p.
Note that

D\D̃∗p = {δk′ : Lk,k′ > 0 for some k 6= k′}.

Suppose δk′ ∈ D\D̃∗p. Then, for some k 6= k′, (Ak − Ak′)q ≥ Lk,k′ > 0 for all q ∈ Qp.
Therefore, for such k, Akq > Ak′q for all q ∈ Qp, and thus δk′ /∈ D∗p ≡ {arg maxδk Akq : q ∈
Qp}.

Now, we prove that D̃∗p ⊂ D∗p. Suppose δk′ ∈ D̃∗p. Then @k 6= k′ such that Lk,k′ > 0.
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Equivalently, for any given k 6= k′, either (a) Uk,k′ ≤ 0 or (b) Lk,k′ < 0 < Uk,k′ . Consider (a),

which is equivalent to maxq∈Qp(Ak −Ak′)q ≤ 0. This implies that Akq ≤ Ak′q for all q ∈ Qp.
Consider (b), which is equivalent to minq∈Qp(Ak − Ak′)q < 0 < maxq∈Qp(Ak − Ak′)q. This

implies that ∃q ∈ Qp such that Akq = Ak′q. Combining these implications of (a) and (b), it

should be the case that ∃q ∈ Qp such that, for all k 6= k′, Ak′q ≥ Akq. Therefore, δk ∈ D∗p.
�

C.2 Alternative Characterization of the Identified Set

Given the DAG, the identified set of δ∗(·) can also be obtained as the collection of initial

vertices of all the directed paths of the DAG. For a DAG G(K, E), a directed path is a

subgraph G(Kj, Ej) (1 ≤ j ≤ J ≤ 2|K|) where Kj ⊂ K is a totally ordered set with initial

vertex k̃j,1.6 In stating our main theorem, we make it explicit that the DAG calculated by

the linear programming is a function of the data distribution p.

Theorem C.1. Suppose Assumptions SX and B hold. Then, D∗p defined in (3.5) satisfies

D∗p = {δk̃j,1(·) ∈ D : 1 ≤ j ≤ J}, (C.1)

where k̃j,1 is the initial vertex of the directed path G(Kp,j, Ep,j) of G(K, Ep).

Proof. Let D̃∗ ≡ {δk̃j,1(·) ∈ D : 1 ≤ j ≤ J}. First, note that since k̃j,1 is the initial vertex

of directed path j, it should be that Wk̃j,1
≥ Wk̃j,m

for any k̃j,m in that path by definition.

We begin by supposing D∗p ⊃ D̃∗. Then, there exist δ∗(·; q) = arg maxδk(·)∈D Akq for some

q that satisfies Bq = p and q ∈ Q, but which is not the initial vertex of any directed path.

Such δ∗(·; q) cannot be other (non-initial) vertices of any paths as it is contradiction by

the definition of δ∗(·; q). But the union of all directed paths is equal to the original DAG,

therefore there cannot exist such δ∗(·; q).
Now suppose D∗p ⊂ D̃∗. Then, there exists δk̃j,1(·) 6= δ∗(·; q) = arg maxδk(·)∈D Akq for

some q that satisfies Bq = p and q ∈ Q. This implies that Wk̃j,1
< Wk̃ for some k̃. But k̃

should be a vertex of the same directed path (because Wk̃j,1
and Wk̃ are ordered), but then

it is contradiction as k̃j,1 is the initial vertex. Therefore, D∗p = D̃∗.

C.3 Proof of Theorem E.1

Given Theorem C.1, proving D̃∗ = {δkl,1(·) : 1 ≤ l ≤ LG} will suffice. Recall D̃∗ ≡ {δk̃j,1(·) ∈
D : 1 ≤ j ≤ J} where k̃j,1 is the initial vertex of the directed path G(Kp,j, Ep,j). When all

6For example, in Figure 2(a), there are two directed paths (J = 2) with V1 = {1, 2, 3} (k̃1,1 = 1) and

V2 = {2, 3, 4} (k̃2,1 = 4).
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topological sorts are singletons, the proof is trivial so we rule out this possibility. Suppose

D̃∗ ⊃ {δkl,1(·) : 1 ≤ l ≤ LG}. Then, for some l, there should exist δkl,m(·) for some m 6= 1 that

is contained in D̃∗ but not in {δkl,1(·) : 1 ≤ l ≤ LG}, i.e., that satisfies either (i) Wkl,1 > Wkl,m

or (ii) Wkl,1 and Wkl,m are incomparable and thus either Wkl′,1
> Wkl,m for some l′ 6= l or

Wkl,m is a singleton in another topological sort. Consider case (i). If δkl,1(·) ∈ Dj for some j,

then it should be that δkl,m(·) ∈ Dj as δkl,1(·) and δkl,m(·) are comparable in terms of welfare,

but then δkl,m(·) ∈ D̃∗ contradicts the fact that δkl,1(·) the initial vertex of the topological

sort. Consider case (ii). The singleton case is trivially rejected since if the topological sort

a singleton, then δkl,m(·) should have been already in {δkl,1(·) : 1 ≤ l ≤ LG}. In the other

case, since the two welfares are not comparable, it should be that δkl,m(·) ∈ Dj′ for j′ 6= j.

But δkl,m(·) cannot be the one that delivers the largest welfare since Wkl′,1
> Wkl,m where

δkl′,1(·). Therefore δkl,m(·) ∈ D̃∗ is contradiction. Therefore there is no element in D̃∗ that is

not in {δkl,1(·) : 1 ≤ l ≤ LG}.
Now suppose D̃∗ ⊂ {δkl,1(·) : 1 ≤ l ≤ LG}. Then for l such that δkl,1(·) /∈ D̃∗, either

Wkl,1 is a singleton or Wkl,1 is an element in a non-singleton topological sort. But if it is a

singleton, then it is trivially totally ordered and is the maximum welfare, and thus δkl,1(·) /∈
D̃∗ is contradiction. In the other case, if Wkl,1 is a maximum welfare, then δkl,1(·) /∈ D̃∗

is contradiction. If it is not a maximum welfare, then it should be a maximum in another

topological sort, which is contradiction in either case of being contained in {δkl,1(·) : 1 ≤ l ≤
LG} or not. This concludes the proof that D̃∗ = {δkl,1(·) : 1 ≤ l ≤ LG}. �

D Incorporating Additional Identifying Assumptions

To incorporate additional identifying assumptions in Section 3.5, we extend the main frame-

work of Sections 3.3–3.4. Suppose h is a dq × 1 vector of ones and zeros, where zeros are

imposed by given identifying assumptions. Introduce dq × dq diagonal matrix H = diag(h).

Then, we can define a space for q̄ ≡ Hq as

Q̄ ≡ {q̄ :
∑
s

q̄s(x) = 1 ∀x and q̄s(x) ≥ 0 ∀s, x}. (D.1)

Note that the dimension of this space is smaller than the dimension of Q if h contains zeros.

Then we can modify (3.2) and (3.4) as

Bq̄ = p,

Wk = Akq̄,
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respectively. Let δ∗(·; q̄) ≡ arg maxδk(·)∈DWk = Akq̄. Then, the identified set with the

identifying assumptions coded in h is defined as

D̄∗p ≡ {δ∗(·; q̄) : Bq̄ = p and q̄ ∈ Q} ⊂ D, (D.2)

which is assumed to be empty when Bq̄ 6= p. Importantly, the latter occurs when any of the

identifying assumptions are misspecified. Note that H is idempotent. Define ∆̄ ≡ ∆H and

B̄ ≡ BH. Then ∆q̄ = ∆̄q̄ and Bq̄ = B̄q̄. Therefore, to generate the DAG and characterize

the identified set, Theorem 3.1 can be modified by replacing q, B and ∆ with q̄, B̄ and ∆̄,

respectively.

Then, for example, we can incorporate Assumption M1 by choosing appropriate h. Recall

S̃t ≡ ({Yt(dt)}, {Dt(z
t)}) ∈ {0, 1}2t×{0, 1}2t and Sy,d|z ≡ {S = β(S̃) : Yt(d

t) = yt, Dt(z
t) =

dt ∀t} given (y,d, z). For example, the no-defier assumption can be incorporated in h by

having hs = 0 for s ∈ {S ∈ Sy,d|z : Dt(z
t−1, 1) = 0 and Dt(z

t−1, 0) = 1 ∀t} and hs = 1

otherwise.

Lemma D.1. Suppose Assumption SX holds and Pr[Dt = 1|Y t−1,Dt−1,Zt, X] is a non-

trivial function of Zt. Assumption M1 is equivalent to (3.9) being satisfied conditional on

(Y t−1,Dt−1,Zt−1, X) for each t.

Lemma D.2. Suppose Assumption SX holds, Pr[Dt = 1|Y t−1,Dt−1,Zt, X] is a non-trivial

function of Zt, and Pr[Yt = 1|Y t−1,Dt, X] is a non-trivial function of Dt. Assumption M2

is equivalent to (3.10)–(3.11) being satisfied conditional on (Y t−1,Dt−1,Zt−1, X) for each t.

D.1 Proof of Lemma D.1

Conditional on (Y t−1,Dt−1,Zt−1, X) = (yt−1,dt−1, zt−1, x), it is easy to show that (3.9)

implies Assumption M1. Suppose πt(y
t−1,dt−1, zt−1, 1, x) > πt(y

t−1,dt−1, zt−1, 1, x) as πt(·)
is a nontrivial function of Zt. Then, we have

1{πt(yt−1,dt−1, zt−1, 1, x) ≥ Vt} ≥ 1{πt(yt−1,dt−1, zt−1, 0, x) ≥ Vt}

w.p.1, or equivalently, Dt(z
t−1, 1) ≥ Dt(z

t−1, 0) w.p.1. Suppose πt(y
t−1,dt−1, zt−1, 1, x) <

πt(y
t−1,dt−1, zt−1, 1, x). Then, by a parallel argument, Dt(z

t−1, 1) ≤ Dt(z
t−1, 0) w.p.1.

Now, we show that Assumption M1 implies (3.9) conditional on (Y t−1,Dt−1,Zt−1, X).

For each t, Assumption SX implies Yt(d
t), Dt(z

t) ⊥ Zt|(Y t−1(dt−1),Dt−1(zt−1),Zt−1, X),

which in turn implies the following conditional independence:

Yt(d
t), Dt(z

t) ⊥ Zt|(Y t−1,Dt−1,Zt−1, X). (D.3)
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Conditional on (Y t−1,Dt−1,Zt−1, X), (3.9) and (D.3) correspond to Assumption S-1 in Vyt-

lacil (2002). Assumption R(i) and (D.3) correspond to Assumption L-1, and Assumption M1

corresponds to Assumption L-2 in Vytlacil (2002). Therefore, the desired result follows by

Theorem 1 of Vytlacil (2002). �

D.2 Proof of Lemma D.2

We are remained to prove that, conditional on (Y t−1,Dt−1, X), (3.10) is equivalent to the

second part of Assumption M2. But this proof is analogous to the proof of Lemma D.1 by

replacing the roles of Dt and Zt with those of Yt and Dt, respectively. Therefore, we have

the desired result. �

E Discussions

In Sections E.1–E.4, we propose some ways to report results of this paper including the partial

ordering. These approaches can be useful especially when the obtained partial ordering is

complicated (e.g., with a longer horizon). We also discuss the cases where the set of possible

regimes can be reduced. Section E.5 briefly discusses inference and Section E.6 shows the

role of the strength of IVs via simulation.

E.1 Set of the n-th Best Policies

When the partial ordering of welfare is the parameter of interest, the identified set of δ∗(·)
can be viewed as a summary of the partial ordering. This view can be extended to introduce

a set of the n-th best regimes, which further summarizes the partial ordering. With slight

abuse of notation, we can formalize it as follows.

Recall K is the set of all regime indices. Motivated from (3.7), let K(1)
p ≡ {k′ : @k ∈

K such that Lk,k′ > 0 and k 6= k′ ∈ K} be the set of maximal elements of the partial ordering

and let D(1)
p ≡ {δk′(·) : k′ ∈ K(1)

p }. Theorem 3.1(ii) can be simply stated as D∗p = D(1)
p . To

define the set of second-best regimes, we first remove all the elements in K(1)
p from the set of

candidate. Accordingly, by defining

K(2)
p ≡ {k′ : @k ∈ K\K(1)

p such that Lk,k′ > 0 and k 6= k′ ∈ K\K(1)
p },

we can introduce the set of second-best regimes: D(2)
p ≡ {δk′(·) : k′ ∈ K(2)

p }. Iteratively, we
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can define the set of n-th best regimes as D(n)
p ≡ {δk′(·) : k′ ∈ K(n)

p } where

K(n)
p =

{
k′ : @k ∈ K\

n−1⋃
j=1

K(j)
p such that Lk,k′ > 0 and k 6= k′ ∈ K\

n−1⋃
j=1

K(j)
p

}
.

The sets D(1)
p , ...,D(n)

p can be recovered from the linear programs (3.6) and are useful policy

benchmarks. For instance, the policy maker can conduct a sensitivity analysis for her chosen

regime (e.g., from a parametric model) by inspecting in which set the regime is contained.

E.2 Topological Sorts as Observational Equivalence

Another way to summarize the partial ordering is to use topological sorts. A topological sort

of a DAG is a linear ordering of its vertices that does not violate the order in the partial

ordering given by the DAG. That is, for every directed edge k → k′, k comes before k′ in this

linear ordering. Apparently, there can be multiple topological sorts for a DAG. Let LG be the

number of topological sorts of DAG G(K, Ep), and let kl,1 ∈ K be the initial vertex of the l-th

topological sort for 1 ≤ l ≤ LG. For example, given the DAG in Figure 2(a), (δ1, δ4, δ2, δ3) is

an example of a topological sort (with kl,1 = 1), but (δ1, δ2, δ4, δ3) is not. Topological sorts

are routinely reported for a given DAG, and there are well-known algorithms that efficiently

find topological sorts, such as Kahn (1962)’s algorithm.

In fact, topological sorts can be viewed as total orderings that are observationally equiv-

alent to the true total ordering of welfares. That is, each q generates the total ordering of

welfares via Wk = Akq, and q’s in {q : Bq = p}∩Q generates observationally equivalent total

orderings. This insight enables us to interpret the partial ordering we establish using the

more conventional notion of partial identification: the ordering is partially identified in the

sense that the set of all topological sorts is not a singleton. This insight yields an alternative

way of characterizing the identified set D∗p of the optimal regime.

Theorem E.1. Suppose Assumptions SX and B hold. The identified set D∗p defined in (3.5)

satisfies

D∗p = {δkl,1(·) : 1 ≤ l ≤ LG},

where kl,1 is the initial vertex of the l-th topological sort of G(K, Ep).

Suppose the DAG we recover from the data is not too sparse. By definition, a topological

sort provides a ranking of regimes that is not inconsistent with the partial welfare ordering.
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Therefore, not only δkl,1(·) ∈ D∗p but also the full sequence of a topological sort(
δkl,1(·), δkl,2(·), ...,dkl,|D|(·)

)
(E.1)

can be useful. A policymaker can be equipped with any of such sequences as a policy

benchmark.

E.3 Bounds on Sorted Welfares

The set of n-th best regimes and topological sorts provide ordinal information about coun-

terfactual welfares. To gain more comprehensive knowledge about the welfares, they can be

accompanied by cardinal information: bounds on the sorted welfares. One might especially

be interested in the bounds on “top-tier” welfares that are associated with the identified

set or the first few elements in the topological sort. Bounds on gains from adaptivity and

regrets can also be computed. These bounds can be calculated by solving linear programs.

For instance, the sharp lower and upper bounds on welfare Wk can be calculated via

Uk = maxq∈QAkq,

Lk = minq∈QAkq,
s.t. Bq = p. (E.2)

E.4 Cardinality Reduction

The typical time horizons we consider in this paper are short. For example, a multi-stage ex-

periment called the Fast Track Prevention Program (Conduct Problems Prevention Research

Group (1992)) considers T = 4. When T is not small, the cardinality of D may be too large,

and we may want to reduce it for computational, institutional, and practical purposes.

One way to reduce the cardinality is to reduce the dimension of the adaptivity. Define

a simpler adaptive treatment rule δt : {0, 1} × {0, 1} → {0, 1} that maps only the lagged

outcome and treatment onto a treatment allocation dt ∈ {0, 1}:

δt(yt−1, dt−1) = dt

for t = 2, ..., T and δ1(x) = d1 ∈ {0, 1}. In this case, we have |D| = 22(T−1) × 2|X | instead of

22T−2 × 2|X |. An even simpler rule, δt(yt−1), appears in Murphy et al. (2001).

Another possibility is to be motivated by institutional or budget constraints. For example,

it may be the case that adaptive allocation is available every second period or only later in

the horizon due to cost considerations. For example, suppose that the policymaker decides

to introduce the adaptive rule at t = T while maintaining static rules for t ≤ T − 1. Finally,
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D can be restricted by budget or policy constraints that, e.g., the treatment is allocated to

each individual at most once.

E.5 Inference

Although we do not fully investigate inference in the current paper, we briefly discuss it. For

simplicity, we focus on the setting where p(x) is known and thus ∆k,k′ is known. To conduct

inference on the optimal regime δ∗(·), we can construct a confidence set (CS) for D∗p with

the following procedure. We consider a sequence of hypothesis tests, in which we eliminate

regimes that are (statistically) significantly inferior to others. This is a statistical analog of

the elimination procedure encoded in (3.7) or (3.8). For each test given K̃ ⊂ K, we construct

a null hypothesis that Wk and Wk′ are not comparable for all k, k′ ∈ K̃. Given (3.6), the

incomparability of Wk and Wk′ is equivalent to Lk,k′ ≤ 0 ≤ Uk,k′ . In constructing this null

hypothesis, it is helpful to invoke strong duality for the primal programs (3.6) and write the

following dual programs:

Uk,k′ = min
λ
p̃′λ, s.t. B̃′λ ≥ ∆′k,k′ (E.3)

Lk,k′ = max
λ
−p̃′λ, s.t. B̃′λ ≥ −∆′k,k′ (E.4)

where B̃ ≡

[
B

1′

]
is a (dp+1)×dq matrix with 1 being a dq×1 vector of ones and p̃ ≡

[
p

1

]
is a (dp + 1)× 1 vector. Let ΛU

k,k′ ≡ {λ : B̃′λ ≥ ∆′k,k′} and ΛL
k,k′ ≡ {λ : B̃′λ ≥ −∆′k,k′}. Then,

we have Uk,k′ = minλ∈ΛU
k,k′

p̃′λ and Lk,k′ = maxλ∈ΛL
k,k′
−p̃′λ. Therefore, the null hypothesis

that Lk,k′ ≤ 0 ≤ Uk,k′ for k, k′ ∈ K̃ can be written as

H0,K̃ : p̃′λ ≥ 0 for all λ ∈ ΛK̃. (E.5)

where ΛK̃ ≡
⋃
k,k′∈K̃ Λk,k′ with Λk,k′ ≡ ΛU

k,k′ ∪ ΛL
k,k′ .

Then, the procedure of constructing the CS, denoted as D̂CS, is as follows: Step 0. Initially

set K̃ = K. Step 1. Test H0,K̃ at level α with test function φK̃ ∈ {0, 1}. Step 2. If H0,K̃ is

not rejected, define D̂CS = {δk(·) : k ∈ K̃}; otherwise eliminate vertex kK̃ from K̃ and repeat

from Step 1. In Step 1, TK̃ ≡ mink,k′∈K̃ tk,k′ can be used as the test statistic for H0,K̃ where

tk,k′ ≡ minλ∈Λk,k′
tλ and tλ is a standard t-statistic. The distribution of TK̃ can be estimated

using bootstrap. In Step 2, a candidate for kK̃ is kK̃ ≡ arg mink∈K̃mink′∈K̃ tk,k′ .

The eliminated vertices (i.e., regimes) are statistically suboptimal regimes, which are al-

ready policy-relevant outputs of the procedure. Note that the null hypothesis (E.5) consists of

multiple inequalities. This incurs the issue of uniformity in that the null distribution depends
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on binding inequalities, whose identities are unknown. Such a problem has been studied in

the literature, as in Hansen (2005), Andrews and Soares (2010), and Chen and Szroeter

(2014). Hansen et al. (2011)’s bootstrap approach for constructing the model confidence set

builds on Hansen (2005). We apply a similar inference method as in Hansen et al. (2011),

but in this novel context and by being conscious about the computational challenge of our

problem. In particular, the dual problem (E.3)–(E.4) and the vertex enumeration algorithm

are introduced to ease the computational burden in simulating the distribution of TK̃. That

is, the calculation of ΛK̃, the computationally intensive step, occurs only once, and then for

each bootstrap sample, it suffices to calculate p̂ instead of solving the linear programs (3.6)

for all k, k′ ∈ K̃.

Analogous to Hansen et al. (2011), we can show that the resulting CS has desirable

properties. Let HA,K̃ be the alternative hypothesis.

Assumption CS. For any K̃, (i) lim supn→∞ Pr[φK̃ = 1|H0,K̃] ≤ α, (ii) limn→∞ Pr[φK̃ =

1|HA,K̃] = 1, and (iii) limn→∞ Pr[δkK̃(·) ∈ D∗p|HA,K̃] = 0.

Proposition E.1. Under Assumption CS, it satisfies that lim infn→∞ Pr[D∗p ⊂ D̂CS] ≥ 1−α
and limn→∞ Pr[δ(·) ∈ D̂CS] = 0 for all δ(·) /∈ D∗p.

The procedure of constructing the CS does not suffer from the problem of multiple test-

ings. This is because the procedure stops as soon as the first hypothesis is not rejected,

and asymptotically, maximal elements will not be questioned before all sub-optimal regimes

are eliminated. The resulting CS can also be used to conduct a specification test for a less

palatable assumption, such as Assumption M2. We can refute the assumption when the CS

under that assumption is empty.

To implement the procedure in practice, we need to compute ΛU
k,k′ and ΛL

k,k′ for all

k, k′ ∈ K. Note that Uk,k′ = minλ∈ΛU
k,k′

p̃′λ = minλ∈Λ̃U
k,k′

p̃′λ and Lk,k′ = minλ∈ΛL
k,k′

p̃′λ =

minλ∈Λ̃L
k,k′

p̃′λ where Λ̃U
k,k′ and Λ̃L

k,k′ are sets of vertices in ΛU
k,k′ and ΛL

k,k′ , respectively. There-

fore, implementing the procedure reduces down to enumerating vertices of the polyhedra

ΛU
k,k′ and ΛL

k,k′ or relevant subsets of them. This can be done by using a version of vertex

enumeration algorithm (e.g., Avis and Fukuda (1992)). However, we note that the enumer-

ation may be computationally extremely challenging especially when the dimension of q is

large (which happens when we do not impose any additional identifying assumptions). There

may be strategies that avoid the full enumeration, but this question is beyond the scope of

the paper.

Inference on the welfare bounds in (E.2) may be conducted by using recent results as in

Deb et al. (2017), who develop uniformly valid inference for bounds obtained via linear pro-

gramming. Inference on optimized welfare Wδ∗ or maxδ(·)∈D̂CS
Wδ can also be an interesting
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problem. Andrews et al. (2019) consider inference on optimized welfare (evaluated at the

estimated policy) in the context of Kitagawa and Tetenov (2018), but with point-identified

welfare under the unconfoundedness assumption. Extending the framework to the current

setting with partially identified welfare and dynamic regimes under treatment endogeneity

would also be interesting future work; e.g., see Han and McCloskey (2022).

E.6 Strength of Instruments

Here we present further simulation results to investigate how the strength of instruments

affect the partial ordering. We maintain the same simulation design and data-generating

process as in Section 4. The original case of Figures 3 and 4 uses (1, 0.8) for the values

of the coefficients (π1, π23) on (Z1, Z2). Figure 8 shows the bounds and the DAG when

(π1, π23) = (0.5, 0.4), that is, the instruments (Z1, Z2) have 50% of strength compared to the

original case. Figure 9 shows the results when (π1, π23) = (0.25, 0.2), that is, the instruments

(Z1, Z2) have only 25% of strength compared to the original case. In both figures, we obtain

informative DAGs under M2. However, note that when we do not assume M2, the weaker

instruments produce completely uninformative partial orderings as suggested from the bounds

on the welfare gaps depicted in black. This exercise suggests the usefulness of M2 when

instruments are weak. Finally, Figure 10 presents the results when (π1, π23) = (1.5, 1.2), that

is, the instruments (Z1, Z2) have 150% of strength compared to the original case. Although

the DAG under M2 is identical to that in the original case, the informative bounds under

M1 implies that the DAG under M1 will be very informative.
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Figure 8: Left: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red); Right: Sharp
DAG under M2 (IV strength: 50% of Figures 3 and 4)

Figure 9: Left: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red); Right: Sharp
DAG under M2 (IV strength: 25% of Figures 3 and 4)
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Figure 10: Left: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red); Right:
Sharp DAG under M2 (IV strength: 150% of Figures 3 and 4)
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