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Abstract

We develop an empirical framework to identify and estimate the effects of treatments on

outcomes of interest when the treatments are the result of strategic interaction (e.g., bargain-

ing, oligopolistic entry, peer effects). We consider a model where agents play a discrete game

of complete information and strategic substitutability, whose equilibrium actions (i.e., binary

treatments) determine a post-game outcome in a nonseparable model with endogeneity. Due to

the simultaneity in the first stage, the model as a whole is incomplete and the selection process

fails to exhibit the conventional monotonicity. Without imposing parametric restrictions or large

support assumptions, this poses challenges in recovering treatment parameters. To address these

challenges, we establish a monotonic pattern of the equilibria in the first-stage game in terms

of the number of treatments selected. Based on this finding, we derive bounds on the average

treatment effects (ATE’s) under nonparametric shape restrictions and the existence of excluded

exogenous variables. We show that the instrument variation that compensates strategic substi-

tution helps solve the multiple equilibria problem. We apply our method to data on airlines and

air pollution in cities in the U.S. We find that (i) the causal effect of each airline on pollution is

positive, and (ii) the effect is increasing in the number of firms but at a decreasing rate.
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1 Introduction

We develop an empirical framework to identify and estimate the heterogeneous effects of treat-

ments on outcomes of interest, where the treatments are the result of agents’ strategic interaction

(e.g., bargaining, oligopolistic entry, decisions in the presence of peer effects or strategic effects).

Treatments are determined as an equilibrium of a game and these strategic decisions of players

endogenously affect common or player-specific outcomes. For example, one may be interested in

the effects of entry of newspapers on local political behavior, entry of carbon-emitting companies

on local air pollution and health outcomes, the presence of potential entrants in nearby markets

on pricing or investment decisions of incumbents, the exit decisions of large supermarkets on local

health outcomes, or the provision of limited resources when individuals make participation decisions

under peer effects and their own gains from the treatment.1 As reflected in some of these examples,

our framework allows us to study the externalities of strategic decisions, such as societal outcomes

resulting from firm behavior. Ignoring strategic interaction in the treatment selection process may

lead to biased, or at least less informative, conclusions about the effects of interest.

We consider a model in which agents play a discrete game of complete information and strategic

substitutability, whose equilibrium actions (i.e., a profile of binary endogenous treatments) deter-

mine a post-game outcome in a nonseparable model with endogeneity. We are interested in the

various treatment effects of this model. In recovering these parameters, the setting of this study

poses several challenges. First, the first-stage game posits a structure in which binary dependent

variables are simultaneously determined in threshold crossing models, thereby, making the model,

as a whole, incomplete. This is related to the problem of multiple equilibria in the game. Second,

due to this simultaneity, the selection process for each treatment in the profile does not exhibit the

conventional monotonic property à la Imbens and Angrist (1994). Furthermore, we want to remain

flexible with other components of the model. That is, we make no assumptions on the joint distri-

butions of the unobservables nor parametric restrictions on the players’ payoff functions and how

1The entry and pollution is our leading example introduced in Section 2; the other examples are discussed in detail
in Appendix A.
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treatments affect the outcome. In addition, we do not impose any arbitrary equilibrium selection

mechanism to deal with the multiplicity of equilibria, nor require that players be symmetric. In

nonparametric models with multiplicity and/or endogeneity, identification may be achieved using

excluded instruments with large support. Although such a strong requirement can be met in prac-

tice, estimation and inference can still be problematic (Andrews and Schafgans (1998), Khan and

Tamer (2010)). Thus, we avoid such assumptions for instruments and other exogenous variables.

The first contribution of this study is to establish that under strategic substitutability, regions

that predict the equilibria of the treatment selection process in the first-stage game can present a

monotonic pattern in terms of the number of treatments selected.2 The second contribution of this

study is to show, after restoring the generalized monotonicity in the selection process, how the model

structure and the data can provide information about treatment parameters, such as the average

treatment effects (ATE’s). We first establish the bounds on the ATE and other related parameters

with possibly discrete instruments. We also show that tighter bounds on the ATE can be obtained

by introducing (possibly discrete) exogenous variables excluded from the first-stage game. This is

especially motivated when the outcome variable is affected by externalities generated by the players.

We can derive sharp bounds as long as the outcome variable is binary. To deal with the multiple

equilibria problem, we assume that instruments vary sufficiently to offset the effect of strategic

substitutability. We provide a simple testable implication for the existence of such instrument

variation in the case of mutually independent payoff unobservables. This requirement on variation

is qualitatively different and substantially weaker than a typical large support assumption. A

marked feature of our analyses is that for the sharp bounds on the ATE, player-specific instruments

are not necessary.

Partial identification in single-agent nonparametric triangular models with binary endogenous

variables has been studied in Shaikh and Vytlacil (2011) and Chesher (2005), among others. Shaikh

and Vytlacil (2011) provide bounds on the ATE in this setting. In a more general model, Vytlacil

and Yildiz (2007) achieve point identification with an exogenous variable that is excluded from the

selection equation and has a large support. Our bound analysis builds on these papers, but we

allow for multi-agent strategic interaction as a key component of the model. Some studies have

2To estimate payoff parameters, Berry (1992) partly characterizes equilibrium regions. To calculate the bounds
on these parameters, Ciliberto and Tamer (2009) simulate their moment inequalities model that are implied by the
shape of these regions, especially the regions for multiple equilibria. While their approaches are sufficient for their
analyses, full analytical results are critical for the identification analysis in this current study.
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extended a single-treatment model to a multiple-treatment setting (e.g., Heckman et al. (2006), Jun

et al. (2011)), but their models maintain monotonicity in the selection process and none of them

allow simultaneity among the multiple treatments resulting from agents’ interaction, as we do in

this study.

In interesting recent work, Heckman and Pinto (2018), and Lee and Salanié (2018) extend

the monotonicity of the selection process in multi-valued treatments settings. Lee and Salanié

(2018) consider more general non-monotonicity than Heckman and Pinto (2018) and do mention

entry games as one example of the treatment selection processes they allow. However, they assume

known payoffs and bypass the multiplicity of equilibria by assuming a threshold-crossing equilibrium

selection mechanism, both of which we do not assume in this study. In addition, Lee and Salanié

(2018)’s focus is on the identification of marginal treatment effects with continuous instruments. In

another related work, Chesher and Rosen (2017) consider a wide class of generalized instrumental

variable models in which our model may fall and propose a systematic method of characterizing

sharp identified sets for admissible structures. This present study’s characterization of the identified

sets is analytical, which help investigate how the identification is related to exogenous variation in

the model and to the equilibrium characterization in the treatment selection. Also, calculating the

bounds on the treatment parameters using their approach involves projections of identified sets

that may require parametric restrictions. Lastly, Han (2019a,b) consider identification of dynamic

treatment effects and optimal treatment regimes in a nonparametric dynamic model, in which the

dynamic relationship causes non-monotonicity in the determination of each period’s outcome and

treatment.

Without triangular structures, Manski (1997), Manski and Pepper (2000) and Manski (2013)

also propose bounds on the ATE with multiple treatments under various monotonicity assumptions,

including an assumption on the sign of the treatment response. We take an alternative approach

that is more explicit about treatments interaction while remaining agnostic about the direction of

the treatment response. Our results suggest that provided there exist exogenous variation excluded

from the selection process, the bounds calculated from this approach can be more informative than

those from their approach.

Identification in models for binary games with complete information has been studied in Tamer
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(2003), Ciliberto and Tamer (2009), and Bajari et al. (2010), among others.3 This present study

contributes to this literature by considering an evaluation problem with treatments generated by

binary games and post-game outcomes that are often not of players’ direct concern. As related work

that considers post-game outcomes, Ciliberto et al. (2018) introduce a model in which firms make

simultaneous decisions of entry and pricing upon entry. Consequently, their model can be seen as a

multi-agent extension of a sample selection model. On the other hand, the model considered in this

study is a multi-agent extension of a model for endogenous treatments. As counterfactual policy

analyses are the main goal, Ciliberto and Tamer (2009) and Ciliberto et al. (2018) recover model

primitives as their parameters of interest and impose parametric assumptions. In contrast, our

parameters of interest are treatment effects as functionals of the primitives (but excluding the game

parameters), and thus, allow our model to remain essentially nonparametric. In addition, a different

approach to partial identification under multiplicity is employed, as their approach is not applicable

to the particular setting of this study even if we are willing to assume a known distribution for the

unobserved payoff types.

To demonstrate the applicability of our method, we take the bounds we propose to data on

airline market structure and air pollution in cities in the U.S. Aircrafts and airports land operations

are a major source of emissions, and thus, quantifying the causal effect of air transport on pollution

is of importance to policy makers. We explicitly allow the market structure to be determined

endogenously as the outcome of an entry game. We do not impose any structure on how airline

competition affects pollution and allow for heterogenous effects across firms. To implement our

application, we combine data from two sources. The first contains airline information from the

Department of Transportation, which we use to construct a dataset of airlines’ presence in each

market. We then merge it with air pollution data in each airport from air monitoring stations

compiled by the Environmental Protection Agency. In our preferred specification, our outcome

variable is a binary measure of the level of particulate matter in the air.

We consider three sets of ATE exercises to investigate different aspects of the relationship

between market structure and pollution. The first quantifies the effects of each airline operating as

a monopolist compared to a situation in which the market is not served by any airline. We find that

the effect of each airline on pollution is positive and statistically significant and that the effect is

3See also Galichon and Henry (2011) and Beresteanu et al. (2011) for a more general setup that includes complete
information games as an example.
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heterogeneous across airlines. The second set of exercises examines the ATE’s of all potential market

structures on pollution. We find that the probability of high pollution is increasing with the number

of airlines in the market, but at a decreasing rate. Finally, the third set of exercises quantifies the

ATE of a single airline under all potential configurations of the market. We observe that in all

cases, Delta entering a market has a positive effect on pollution and this effect is decreasing with

the number of rivals. The results from the last two set of exercises are consistent with the results

of a Cournot oligopolistic model in which incumbents accommodate new entrants by reducing the

quantity they produce.

This paper is organized as follows. Section 2 summarizes the analysis of this study using a

stylized example. Section 3 presents a general theory. Section 3.1 introduces the model and the

parameters of interest; Section 3.2 presents the generalized monotonicity for equilibrium regions

for many players; and Section 3.4 delivers the partial identification results of this study. Section

4 the empirical application on airlines and pollution. In the Appendix, Section A provides more

examples to which our setup can be applied. Section B presents a numerical illustration. Section C

contains discussions and four extensions of our main results. Finally, Section D collects the proofs

of theorems and lemmas.

2 A Stylized Example

We first illustrate the main results of this study with a stylized example. Suppose we are interested

in the effects of airline competition on local air quality (or health). Let Yi denote the binary indicator

of air pollution in market i. Only for illustration, we assume there are two potential airlines. Let

D1,i and D2,i be binary variables that indicate the decisions to enter market i by Delta and United,

respectively. We allow D1,i and D2,i to be correlated with unobserved characteristics of the local

market that affect Yi. Moreover, we allow D1,i and D2,i to be outcomes from multiple equilibria.

The endogeneity and the presence of multiple equilibria are our key challenges in this study.

Let Yi(d1, d2) be the potential air quality had Delta and United’s decisions been (D1, D2) =

(d1, d2); for example, Yi(1, 1) is the potential air quality from duopoly, Yi(1, 0) is with Delta being a

monopolist, and so on. Let Xi be a vector of market characteristics that affect Yi. Our parameter of

interest is the ATE, E[Yi(d1, d2)− Yi(d′1, d′2)|Xi = x], which captures the effect of market structure

on pollution. One interesting ATE is E[Yi(1, d2)−Yi(0, d2)|Xi = x] for each d2, where we can learn
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the interaction effects of treatments, e.g., how much the average effect of Delta’s entry is affected

by United’s entry: E [Yi(1, 1)− Yi(0, 1)] − E [Yi(1, 0)− Yi(0, 0)] (suppressing Xi). In our empirical

application (Section 4), we consider this and other related parameters in a more realistic model,

where there are more than two airlines.

Let Z1,i and Z2,i be cost shifters for Delta and United, respectively, which serve as instru-

ments. As a benchmark, we first consider naive bounds analogous to Manski (1990) using excluded

instruments which satisfy

Yi(d1, d2) ⊥ (Z1,i, Z2,i)|Xi (2.1)

for all (d1, d2). To simplify notation, we suppress the index i henceforth, let D ≡ (D1, D2) and

Z ≡ (Z1, Z2), and write E[·|w] ≡ E[·|W = w] for a generic r.v. W . As an illustration, we focus on

calculating bounds on E[Y (1, 1)|X = x]. Note that

E[Y (1, 1)|x] = E[Y (1, 1)|z, x] = E[Y |D = (1, 1), z, x] Pr[D = (1, 1)|z, x]

+
∑

d′ 6=(1,1)

E[Y (1, 1)|D = d′, z, x] Pr[D = d′|z, x], (2.2)

where the first equality is by (2.1). Manski-type bounds can be obtained by observing that the

counterfactual term E[Y (1, 1)|D = d′, z, x] = Pr[Y (1, 1) = 1|D = d′, z, x] is bounded above by one

and below by zero. By further using the variation in Z, which is excluded from Y (1, 1), the lower

and upper bounds on E[Y (1, 1)|x] can be written as

LManski(x) ≡ sup
z∈Z

Pr[Y = 1,D = (1, 1)|z, x],

UManski(x) ≡ inf
z∈Z
{Pr[Y = 1,D = (1, 1)|z, x] + 1− Pr[D = (1, 1)|z]} .

The goal of our analysis is to derive tighter bounds than LManski(x) and UManski(x) by introducing

further assumptions motivated by economic theory.

To illustrate, we introduce the following semi-triangular model with linear indices. From the next

section, we generalize this model and introduce fully nonparametric models that allow continuous
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Y . Consider

Y = 1[µ1D1 + µ2D2 + βX ≥ ε], (2.3)

D1 = 1[δ2D2 + γ1Z1 ≥ U1], (2.4)

D2 = 1[δ1D1 + γ2Z2 ≥ U2], (2.5)

where (ε, U1, U2) are continuously distributed unobservables that can be arbitrarily correlated,

(U1, U2) are uniform, and assume

(ε, U1, U2) ⊥ (Z1, Z2)|X, (2.6)

δ1 < 0 and δ2 < 0, (2.7)

sgn(µ1) = sgn(µ2). (2.8)

Note that (2.6) replaces (2.1), (2.7) assumes strategic substitutability, and (2.8) is plausible in the

current example of air quality and entry. Owing to the first stage simultaneity, (2.4)–(2.5), the

model is incomplete, i.e., the model primitives and the covariates do not uniquely predict (Y,D). In

this model, we are not interested in the players’ payoff parameters (δ−s, γs) for s = 1, 2, individual

parameters (µ1, µ2, β) that generate the outcome, nor distributional parameters. Instead, we are

interested in the ATE as a function of (µ1, µ2, β). This is in contrast to Ciliberto et al. (2018),

where payoff and pricing parameters are direct parameters of interest, and thus, our identification

question and strategy (especially how we deal with multiple equilibria) are different from theirs.

For two realizations z, z′ of Z, say low and high entry cost for both airlines, define

h(z, z′, x) ≡ Pr[Y = 1|z, x]− Pr[Y = 1|z′, x], (2.9)

hd(z, z′, x) ≡ Pr[Y = 1,D = d|z, x]− Pr[Y = 1,D = d|z′, x] (2.10)

for d ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} ≡ D. We show that (2.9)–(2.10) recover useful information about

the outcome index function (µ1D1 + µ2D2 + βX), which in turn is helpful in constructing bounds
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Figure 1: Change in Equilibrium Regions with Compensating Strategic Substitutability.

on the ATE. Note that

h(z, z′, x) = h11(z, z′, x) + h10(z, z′, x) + h01(z, z′, x) + h00(z, z′, x)

= Pr[Y = 1,D = (1, 1)|z, x]− Pr[Y = 1,D = (1, 1)|z′, x]

+ Pr[Y = 1,D = (1, 0)|z, x]− Pr[Y = 1,D = (1, 0)|z′, x]

+ Pr[Y = 1,D = (0, 1)|z, x]− Pr[Y = 1,D = (0, 1)|z′, x]

+ Pr[Y = 1,D = (0, 0)|z, x]− Pr[Y = 1,D = (0, 0)|z′, x], (2.11)

where D = (1, 0) and (0, 1) are the airlines’ decisions that may arise as multiple equilibria. The

increase in cost (from z to z′) will make the operation of these airlines less profitable in some

markets, depending on the values of the unobservables U = (U1, U2). This will result in a change in

the market structure in those markets. Specifically, markets “on the margin” may experience one of

the following changes in structure as cost increases: (a) from duopoly to Delta-monopoly; (b) from

duopoly to United-monopoly; (c) from Delta-monopoly to no entrant; (d) from United-monopoly

to no entrant; and (e) from duopoly to no entrant. These changes are depicted in Figure 1, where

each Rd1,d2(z) denotes the maximal region that predicts (d1, d2), given Z = z.4

These changes (a)–(e) are a consequence of the monotonic pattern of equilibrium regions, which

is formally established in Theorem 3.1 of Section 3.2.

In general, besides these five scenarios, there may be markets that used to be Delta-monopoly

but become United-monopoly and vice versa, i.e., markets that exhibit non-monotonic behaviors;

see Section C.2 for details. Owing to possible multiple equilibria, we are agnostic about these

4See Section D.1 in the Appendix for a formal definition. The figure is drawn in a way that γ1 and γ2 are negative.

9



latter types of changes except in extreme cases (i.e., one equilibrium is selected with probability

one). We generally do not know the equilibrium selection mechanism in play, much less about

how such mechanism changes as cost Z changes. The key idea in this study is to overcome the

non-monotonicity by shifting the cost sufficiently so that there is no market that switches from one

monopoly to another. We show that the shift in cost that compensates the strategic substitutability

does just that, as is depicted in Figure 1. In this figure, we assume δ2 + γ1z1 > γ1z
′
1 and δ1 +

γ2z2 > γ2z
′
2. In other words, we assume compensating strategic substitutability: |γs(z′s − zs)| ≥

|δ−s| for s = 1, 2. Importantly, we do not require infinite variation in Z.5 In fact, we show that the

compensating strategic substitutability is implied by the following condition, which can be tested

using the data: there exist z, z′ ∈ Z such that Pr[D = (1, 1)|z] + Pr[D = (0, 0)|z′] > 2 −
√

2.

Suppose z, z′ satisfy the compensating strategic substitutability. Then, by (2.6), we can derive

from (2.11) that (suppressing X = x for simplicity)

h(z, z′) = Pr[ε ≤ µ1 + µ2,U ∈ ∆a ∪∆b ∪∆e]

− Pr[ε ≤ µ1,U ∈ ∆a] + Pr[ε ≤ µ1,U ∈ ∆c]

− Pr[ε ≤ µ2,U ∈ ∆b] + Pr[ε ≤ µ2,U ∈ ∆d]

− Pr[ε ≤ 0,U ∈ ∆c ∪∆d ∪∆e], (2.12)

where ∆i (i ∈ {a, ..., e}) are disjoint and each ∆i characterizes those markets on the margin described

above: ∆a corresponds to the set of U ’s that experience (a), ∆b corresponds to (b), and so on. Once

(2.12) is derived, it is easy to see that

sgn{h(z, z′, x)} = sgn(µ1) = sgn(µ2), (2.13)

which is formally shown in Lemma 3.1(i). See Section D.4 in the Appendix for a proof in this

specific two-player case, which simplifies the general proof. The result (2.13) is helpful for our

bound analysis. Again, focus on E[Y (1, 1)|x] and suppose h(z, z′, x) > 0. Then, µ1 > 0 and µ2 > 0,

5Of course, changing each Zs from −∞ to ∞ will trivially achieve our requirement of having no market that
switches from one monopoly to another.
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and thus, we can derive the lower bound on, e.g., E[Y (1, 1)|D = (1, 0), z, x] in (2.2) as

E[Y (1, 1)|D = (1, 0), z, x] = Pr[ε ≤ µ1 + µ2 + βx|D = (1, 0), z, x]

≥ Pr[ε ≤ µ1 + βx|D = (1, 0), z, x] (2.14)

= E[Y |D = (1, 0), z, x],

which is larger than zero, the previous naive lower bound. Similarly, we can calculate the lower

bounds on all E[Y (1, 1)|D = d, z, x] for d 6= (1, 1). Consequently, by (2.2), we have E[Y (1, 1)|x] ≥

Pr[Y = 1|z, x], i.e., the lower bound on E[Y (1, 1)|x] is

L̃(x) ≡ sup
z

Pr[Y = 1|z, x].

Note that L̃(x) ≥ LManski(x). In this case, Ũ(x) = UManski(x). In Section 3.4, we show that L̃(x)

and Ũ(x) are sharp under (2.3)–(2.8).

We can further tighten the bounds if we have exogenous variables that are excluded from the

entry decisions (i.e., from the D1 and D2 equations). The existence of such variables is not necessary

but helpful in tightening the bounds, and can be motivated by the notion of externalities. That

is, there can exist factors that affect Y but do not enter the players’ first-stage payoff functions.

Modify (2.6) and assume

(ε, U1, U2) ⊥ (Z1, Z2, X), (2.15)

where conditioning on other (possibly endogenous) covariates is suppressed. Here, Xi can be the

characteristics of the local market that directly affect pollution or health levels, such as weather

shocks or the share of pollution-related industries in the local economy. We assume that conditional

on other covariates, these factors affect the outcome but the airlines do not take them into account

in their decisions.

To exploit the variation in X (in addition to the variation in Z), let (x, x̃, ˜̃x) be (possibly

different) realizations of X, and define

h̃(z, z′, x, x̃, ˜̃x) ≡ h00(z, z′, x) + h10(z, z′, x̃) + h01(z, z′, x̃) + h11(z, z′, ˜̃x). (2.16)
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Under (2.15) and analogous to (2.13), we can show that if

sgn{h̃(z, z′, x′, x′, x)} = sgn(−µ1) = sgn(−µ2) (2.17)

is positive (negative), then sgn{µ1 + β(x− x′)} = sgn{µ2 + β(x− x′)} is positive (negative). This

is formally shown in Lemma 3.1(ii).

As before, suppose h(z, z′, x) > 0, and thus, µ1 > 0 and µ2 > 0 by (2.13). Now, if h̃(z, z′, x′, x′, x) <

0, then µ1 + βx < βx′ and µ2 + βx < βx′. Therefore, we can derive

E[Y (1, 1)|D = (1, 0), z, x] = Pr[ε ≤ µ1 + µ2 + βx|D = (1, 0), z, x]

≤Pr[ε ≤ µ1 + βx′|D = (1, 0), z, x′]

= Pr[Y = 1|D = (1, 0), z, x′],

where the second equality also uses (2.15) and (2.4)–(2.5). Similarly, we have E[Y (1, 1)|D =

(0, 1), z, x] ≤ Pr[Y = 1|D = (0, 1), z, x′], and consequently, the upper bound on E[Y (1, 1)|x]

becomes

U(x) ≡ inf
z∈Z

{
Pr[Y = 1,D = (1, 1)|z, x] + Pr[Y = 1,D ∈ {(1, 0), (0, 1)}|z, x′] + Pr[D = (0, 0)|z, x]

}
by (2.2), and the lower bound is L(x) = L̃(x). Note that we can further take infimum over x′ such

that h̃(z, z′, x′, x′, x) < 0.

To summarize our illustration, our lower and upper bounds, L(x) and U(x), on E[Y (1, 1)|x]

achieve

L(x) = L̃(x) ≥ LManski(x),

U(x) ≥ Ũ(x) = UManski(x),

where the inequalities are strict if
∑

d6=(1,1) Pr[Y = 1,D = d|z, x] > 0 and Pr[Y = 0,D ∈

{(1, 0), (0, 1)}|z, x′] > 0. Similarly, we can derive lower and upper bounds on other E[Y (d)|x]’s

for d 6= (1, 1), and eventually construct bounds on any ATE. The gain from our approach is also

exhibited in Figure 5 in Section B, where we use the same data generating process as in this section
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and calculate different bounds on the ATE, E[Y (1, 1)|x]− E[Y (0, 0)|x].

3 General Theory

3.1 Setup

Let D ≡ (D1, ..., DS) ∈ D ⊆ {0, 1}S be an S-vector of observed binary treatments and d ≡

(d1, ..., dS) be its realization, where S is fixed. We assume that D is predicted as a pure strategy

Nash equilibrium of a complete information game with S players who make entry decisions or

individuals who choose to receive treatments. Let Y be a scalar observed post-game outcome that

results from profile D of endogenous treatments. It can be an outcome common to all players or an

outcome specific to each player. Let (X,Z1, ..., ZS) be observed exogenous covariates. We consider

a model of a semi-triangular system:

Y = θ(D, X, εD), (3.1)

Ds = 1 [νs(D−s, Zs) ≥ Us] , s ∈ {1, ..., S}, (3.2)

where s is indices for players or interchangeably for treatments, andD−s ≡ (D1, ..., Ds−1, Ds+1, ..., DS).

Without loss of generality, we normalize the scalar Us to be distributed as Unif(0, 1), and νs :

RS−1+dzs → (0, 1] and θ : RS+dx+dε → R are unknown functions that are nonseparable in their

arguments. We allow the unobservables (εD, U1, ..., US) to be arbitrarily dependent on one another.

Although the notation suggests that the instruments Zs’s are player/treatment-specific, they are

not necessarily required to be so for the analyses in this study; see Section C.4 for a discussion. The

exogenous variables X are variables excluded from all the equations for Ds. The existence of X is

not necessary but useful for the bound analysis of the ATE. There may be covariates W common

to all the equations for Y and Ds, which is suppressed for succinctness. Implied from the complete

information game, player s’s decision Ds depends on the decisions of all others D−s in D−s, and

thus, D is determined by a simultaneous system. The unit of observation, a market or geographical

region, is indexed by i and is suppressed in all the expressions.

Assumption P. A pure-strategy Nash equilibrium exists in (3.2).

This assumption is not innocuous but clarifies the definition of the treatment parameters. It
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may be possible to extend the setup of this study to incorporate mixed strategies, following the

argument in Ciliberto and Tamer (2009). This extension, however, will change the definition of the

treatment parameters and thus the identification strategy. We leave this as interesting future work.

The potential outcome of receiving treatments D = d can be written as

Y (d) = θ(d, X, εd), d ∈ D,

and εD =
∑

d∈D 1[D = d]εd. We are interested in the ATE and related parameters. Using the

average structural function (ASF) E[Y (d)|x], the ATE can be written as

E[Y (d)− Y (d′)|x] = E[θ(d, x, εd)− θ(d′, x, εd′)], (3.3)

for d,d′ ∈ D. Another parameter of interest is E[Y (d)− Y (d′)|D = d′′, z, x] for d,d′,d′′ ∈ D. This

parameter is related to the average treatment effect on the treated (ATT), but unlike the ATT or

the treatment of the untreated in the single-treatment case, d′′ does not necessarily equal d or d′

here. One might also be interested in the sign of the ATE, which in this multi-treatment case is

essentially establishing an ordering among the ASF’s.

As an example of the ATE, we may choose d = (1, ..., 1) and d′ = (0, ..., 0) to measure the

cancelling-out effect or more general nonlinear effects. Another example would be choosing d =

(1,d−s) and d′ = (0,d−s) for given d−s, where we use the notation d = (ds,d−s) by switching

the order of the elements for convenience. Sometimes, we instead want to focus on learning about

complementarity between two treatments, while averaging over the remaining S−2 treatments; see

Section C.3.

In identifying these treatment parameters, suppose we attempt to recover the effect of a single

treatment Ds in model (3.1)–(3.2) conditional on D−s = d−s, and then recover the effects of

multiple treatments by transitively using these effects of single treatments. This strategy is not

valid since D−s is a function of Ds and also because of multiplicity. Therefore, the approaches in

the literature with single-treatment, single-agent triangular models are not directly applicable.
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3.2 Monotonicity in Equilibria

As an important step of the analysis, we establish that the equilibria of the treatment selection

process in the first-stage game present a monotonic pattern when the instruments move. Specifically,

we consider the regions in the space of the unobservables that predict equilibria and establish their

monotonic pattern in terms of instruments. The analytical characterization of the equilibrium

regions when there are more than two players (S > 2) can generally be complicated (Ciliberto and

Tamer (2009, p. 1800)); however, under a mild uniformity assumption (Assumption M1), our result

is obtained under strategic substitutability. Let Zs be the support of Zs. We make the following

assumptions on the first-stage nonparametric payoff function for each s ∈ {1, ..., S}.

Assumption SS. For every zs ∈ Zs, νs(d−s, zs) is strictly decreasing in each element of d−s.

Assumption M1. For any given zs, z
′
s ∈ Zs, either νs(d−s, zs) ≥ νs(d−s, z

′
s) ∀d−s ∈ D−s, or

νs(d−s, zs) ≤ νs(d−s, z′s) ∀d−s ∈ D−s.

Assumption SS asserts that the agents’ treatment decisions are produced in a game with strategic

substitutability. The strictness of the monotonicity is not important for our purpose but convenient

in making statements about the equilibrium regions. In the language of Ciliberto and Tamer (2009),

we allow for heterogeneity in the fixed competitive effects (i.e., how each of other entrants affects

one’s payoff), as well as heterogeneity in how each player is affected by other entrants, which is

ensured by the nonseparability between d−s and zs in νs(d−s, zs); this heterogeneity is related to

the variable competitive effects. Assumption M1 is required in this multi-agent setting, and the

uniformity is across d−s. Note that this assumption is weaker than a conventional monotonicity

assumption that νs(d−s, zs) is either non-decreasing or non-increasing in zs for all d−s. Assumption

M1 is justifiable especially when zs is chosen to be of the same kind for all players. For example, in

an entry game, if zs is chosen to be each player’s cost shifters, the payoffs would decrease in their

costs for any given opponents.

As the first main result of this study, we establish the geometric property of the equilibrium

regions. For j = 0, ..., S, let Rj(z) ⊂ U ≡ (0, 1]S denote the region that predicts all equilibria

with j treatments selected or j entrants, defined as a subset of the space of the entry unobservables

U ≡ (U1, ..., US); see Section D.1 for a formal definition. Then, define the region of all equilibria
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with at most j entrants as

R≤j(z) ≡
j⋃

k=0

Rk(z).

Although this region is hard to express explicitly in general, it has a simple feature that serves our

purpose. For given j, choose zs, z
′
s ∈ Zs such that

Pr[D = (1, ..., 1)|Z = (zs, z−s)] > Pr[D = (1, ..., 1)|Z = (z′s, z−s)] (3.4)

for all s. This condition is to merely fix z, z′ that change the joint propensity score, and the direction

of change is without loss of generality. Such z, z′ exist by the relevance of the instruments, which

is assumed below. Let Z be the support of Z ≡ (Z1, ..., ZS).

Theorem 3.1. Under Assumptions P, SS, and M1 and for z, z′ ∈ Z that satisfy (3.4), we have

R≤j(z) ⊆ R≤j(z′) ∀j. (3.5)

Theorem 3.1 establishes a generalized version of monotonicity in the treatment selection process.

This theorem plays a crucial role in calculating the bounds on the treatment parameters and in

showing the sharpness of the bounds.6 It is worth noting that although the monotonicity is restored

for sets defined in terms of the number of entrants, the ATE we recover is aware of the identity of

entrants as shown below.

Remark 3.1. Strategic substitutability (Assumption SS) is important in obtaining the generalized

monotonicity (Theorem 3.1). With strategic complementarity, multiple equilibria occur among equi-

libria with different numbers of entrants, and therefore the machinery used in our identification

analysis no longer applies.

6Relatedly, Berry (1992) derives the probability of the event that the number of entrants is less than a certain
value, which can be written as Pr[U ∈ R≤j(z)] using our notation. However, his result is not sufficient for our
study and relies on stronger assumptions, such as restricting the payoff functions to only depend on the number of
opponents.
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3.3 Main Assumptions

To characterize the bounds on the treatment parameters, we make the following assumptions. Unless

otherwise noted, the assumptions hold for each s ∈ {1, ..., S}.

Assumption IN. (X,Z) ⊥ (εd,U) ∀d ∈ D.

Assumption E. The distribution of (εd,U) has strictly positive density with respect to Lebesgue

measure on RS+1 ∀d ∈ D.

Assumption EX. For each d−s ∈ D−s, νs(d−s, Zs)|X is nondegenerate.

Assumptions IN, EX and all the following analyses can be understood as conditional on W , the

common covariates in X and Z = (Z1, ..., ZS). Assumption EX is related to the exclusion restriction

and the relevance condition of the instruments Zs.

We now impose a shape restriction on the outcome function θ(d, x, εd) via restrictions on

ϑ(d, x;u) ≡ E[θ(d, x, εd)|U = u]

a.e. u. This restriction on the conditional mean is weaker than the one directly imposed on

θ(d, x, εd). Let X be the support of X. Recall that we use the notation d = (ds,d−s) by switching

the order of the elements for convenience.

Assumption M. For every x ∈ X , either ϑ(1,d−s, x;u) ≥ ϑ(0,d−s, x;u) a.e. u ∀d−s ∈ D−s ∀s

or ϑ(1,d−s, x;u) ≤ ϑ(0,d−s, x;u) a.e. u ∀d−s ∈ D−s ∀s. Also, Y ∈ [Y , Y ].

Assumption M holds in, but is not restricted to, the leading case of binary Y with a threshold

crossing model that satisfies uniformity.

Assumption M∗. (i) θ(d, x, εd) = 1[µ(d, x) ≥ εd] where εd is scalar and Fεd|U = Fεd′ |U for any

d,d′ ∈ D; (ii) for every x ∈ X , either µ(1,d−s, x) ≥ µ(0,d−s, x) ∀d−s ∈ D−s ∀s or µ(1,d−s, x) ≤

µ(0,d−s, x) ∀d−s ∈ D−s ∀s.

Assumption M∗ implies Assumption M. The second statement in Assumption M is satisfied with

binary Y .7 The first statement in Assumption M can be stated in two parts, corresponding to (i)

and (ii) of Assumption M∗: (a) for every x and d−s, either ϑ(1,d−s, x;u) ≥ ϑ(0,d−s, x;u) a.e. u,

7Another example would be when Y ∈ [0, 1], as in Example 1.
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or ϑ(1,d−s, x;u) ≤ ϑ(0,d−s, x;u) a.e. u; (b) for every x, each inequality statement in (a) holds

for all d−s. For an outcome function with a scalar index, θ(d, x, εd) = θ̃(µ(d, x), εd), part (a) is

implied by εd = εd′ = ε (or more generally, Fεd|U = Fεd′ |U ) for any d,d′ ∈ D and E[θ̃(t, εd)|U = u]

being strictly increasing (decreasing) in t a.e. u.8 Functions that satisfy the latter assumption

include strictly monotonic functions, such as transformation models θ̃(t, ε) = r(t + ε) with r(·)

being possibly unknown strictly increasing, or their special case θ̃(t, ε) = t+ ε, allowing continuous

dependent variables; and functions that are not strictly monotonic, such as models for limited

dependent variables, θ̃(t, ε) = 1[t ≥ ε] or θ̃(t, ε) = 1[t ≥ ε](t − ε). However, there can be functions

that violate the latter assumption but satisfy part (a). For example, consider a threshold crossing

model with a random coefficient: θ(d, x, ε) = 1[φ(ε)dβ> ≥ xγ>], where φ(ε) is nondegenerate. When

βs ≥ 0, then E[θ(1,d−s, x, ε)−θ(0,d−s, x, ε)|U = u] = Pr
[

xγ>

βs+d−sβ>−s
≤ φ(ε) ≤ xγ>

d−sβ>−s
|U = u

]
, and

thus, nonnegative a.e. u, and vice versa. Part (a) also does not impose any monotonicity of θ in εd

(e.g., εd can be a vector). It is worth noting that part (a) is not consistent with the possibility that

agents make treatment decisions by directly observing the potential outcomes (i.e., the structure of

Roy models). For instance, Fεd|U = Fεd′ |U (for any d,d′ ∈ D) does not hold in Roy models, because

Us needs to be a function of εd’s (possibly for all d ∈ D) under the structure. However, ruling out

this structure is consistent with the notion of externality we propose in this paper.

Part (b) of Assumption M imposes uniformity, as we deal with more than one treatment. Uni-

formity is required across different values of d−s and s. For instance, in the empirical application

of this study, this assumption seems reasonable, since an airline’s entry is likely to increase the

expected pollution regardless of the identity or the number of existing airlines. On the other hand,

in Example 1 in the Appendix regarding media and political behavior, this assumption may rule

out the “over-exposure” effect (i.e., too much media exposure diminishes the incumbent’s chance

of being re-elected). In any case, knowledge on the direction of the monotonicity is not necessary

in this assumption, unlike Manski (1997) or Manski (2013), where the semi-monotone treatment

response is assumed for possible multiple treatments.

Lastly, we require that there exists variation in Z that offsets the effect of strategic substitutabil-

ity. Similar as before, using the notation d−s = (ds′ ,d−(s,s′)) where d−(s,s′) is d without s-th and

8A single-treatment version of the latter assumption appears in Vytlacil and Yildiz (2007) (Assumption A-4),
which is weaker than assuming θ̃(t, ε) is strictly increasing (decreasing) a.e. ε; see Vytlacil and Yildiz (2007) for
related discussions.
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s′-th elements, note that Assumption SS can be restated as νs(0,d−(s,s′), zs) > νs(1,d−(s,s′), zs) for

every zs. Given this, we assume the following compensating strategic substitutability.

Assumption EQ. There exist z, z′ ∈ Z, such that νs(0,d−(s,s′), z
′
s) ≤ νs(1,d−(s,s′), zs) ∀d−(s,s′)

∀s, s′.

For example, in an entry game with Zs being cost shifters, Assumption EQ may hold with z′s > zs

∀s. In this example, players may become less profitable with an increase in cost from government

regulation. In particular, players’ decreased profits cannot be overturned by the market being less

competitive, as one player is absent due to unprofitability. Recall that Assumption EQ is illustrated

in Figure 1 with νs(0, z′s) = γsz
′
s < νs(1, zs) = δ−s+γszs for s = 1, 2. Assumption EQ is key for our

analysis. To see this, let RMj (·) denote the region that predicts multiple equilibria with j treatments

selected or j entrants. In the proof of a lemma that follows, we show that Assumption EQ holds

if and only if RMj (z) ∩ RMj (z′) = ∅. That is, we can at least ensure that there is no market where

firms’ decisions change from one realization of multiple equilibria to another realization of multiple

equilibria with the same number of entrants. To the extent of our analysis, this liberates us from

concerns about a possible change in equilibrium selection when changing Z.9 Assumption EQ has

a simple testable sufficient condition, provided that the unobservables in the payoffs are mutually

independent. Let dj ∈ Dj denote an equilibrium profile with j treatments selected or j entrants,

i.e., a vector of j ones and S− j zeros, where Dj is a set of all equilibrium profiles with j treatments

selected.

Assumption EQ∗. There exist z, z′ ∈ Z, such that

Pr[D = dj |z] + Pr[D = dj−2|z′] > 2−
√

2. (3.6)

for all dj ∈ Dj, dj−2 ∈ Dj−2 and 2 ≤ j ≤ S.

When S = 2, the condition is stated as Pr[D = (1, 1)|z] + Pr[D = (0, 0)|z′] > 2 −
√

2. As is

detailed in the proof, this essentially restricts the sum of radii of two circular isoquant curves to be

less than the length of the diagonal of U : (1 − Pr[D = (1, 1)|z]) + (1 − Pr[D = (0, 0)|z′]) <
√

2.

This ensures the required variation in Assumption EQ.

9In Section C.5, we discuss an assumption, partial conditional symmetry, which can be imposed alternative to
Assumption EQ.
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Lemma 3.1. Under Assumptions P, SS, M1, and Us ⊥ Ut for all s 6= t, Assumption EQ∗ implies

Assumption EQ.

The mutual independence of Us’s (conditional on W ) is useful in inferring the relationship

between players’ interaction and instruments from the observed choices of players. The intuition for

the sufficiency of Assumption EQ∗ is as follows. As long as there is no dependence in unobserved

types, (3.6) dictates that the variation of Z is large enough to offset strategic substitutability,

because otherwise, the payoffs of players cannot move in the same direction, and thus, will not

result in the same decisions. The requirement of Z variation in (3.6) is significantly weaker than

the large support assumption invoked for an identification at infinity argument to overcome the

problem of multiple equilibria.

3.4 Partial Identification of the ATE

Under the above assumptions, we now present a generalized version of the sign matching results

(2.13) and (2.17) in Section 2. We need to introduce additional notation. For realizations x of X

and z, z′ of Z, define

h(z, z′, x) ≡ E[Y |z, x]− E[Y |z′, x], (3.7)

hdj (z, z
′, x) ≡ E[Y |D = dj , z, x] Pr[D = dj |z]

− E[Y |D = dj , z′, x] Pr[D = dj |z′]. (3.8)

Since
∑S

j=0

∑
dj∈Dj Pr[D = dj |·] = 1, h(z, z′, x) =

∑S
j=0

∑
dj hdj (z, z

′, x). Let x̃ = (x0, ..., xS) be

an (S + 1)-dimensional array of (possibly different) realizations of X, i.e., each xj for j = 0, ..., S is

a realization of X, and define

h̃(z, z′, x̃) ≡
S∑
j=0

∑
dj∈Dj

hdj (z, z
′, xj).

For 1 ≤ k ≤ j, define a reduction of dj = (dj1, ..., d
j
S) as dj−k = (dj−k1 , ..., dj−kS ), such that dj−ks ≤ djs

∀s. Symmetrically, for 1 ≤ k ≤ S − j, define an extension of dj as dj+k = (dj+k1 , ..., dj+kS ), such

that dj+ks ≥ djs ∀s. For example, given d2 = (1, 1, 0), a reduction d1 is either (1, 0, 0) or (0, 1, 0) but

not (0, 0, 1), a reduction d0 is (0, 0, 0), and an extension d3 is (1, 1, 1). As seen from this example,
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a particular reduction and extension depends on the identity of entrants. Let D<(dj) and D>(dj)

be the set of all reductions and extensions of dj , respectively, and let D≤(dj) ≡ D<(dj)∪ {dj} and

D≥(dj) ≡ D>(dj) ∪ {dj}. These sets will be used in expressing the bounds on the ATE. Recall

ϑ(d, x;u) ≡ E[θ(d, x, ε)|U = u]. Now, we state the main lemma of this section.

Lemma 3.2. In model (3.1)–(3.2), suppose Assumptions P, SS, M1, IN, E, EX, and M hold, and

h(z, z′, x) and h(z, z′, x̃) are well-defined. For z, z′ such that (3.4) and Assumption EQ hold, and

for j = 1, ..., S, it satisfies that

(i) sgn{h(z, z′, x)} = sgn
{
ϑ(dj , x;u)− ϑ(dj−1, x;u)

}
a.e. u ∀dj−1 ∈ D<(dj);

(ii) for ι ∈ {−1, 0, 1}, if sgn{h̃(z, z′, x̃)} = sgn{−ϑ(dk, xk;u) + ϑ(dk−1, xk−1;u)} = ι ∀dk−1 ∈

D<(dk) ∀k 6= j (k ≥ 1), then sgn{ϑ(dj , xj ;u)− ϑ(dj−1, xj−1;u)} = ι a.e. u ∀dj−1 ∈ D<(dj).

Parts (i) and (ii) parallel (2.13) and (2.17), respectively. Using Lemma 3.2, we can learn about

the ATE. First, note that the sign of the ATE is identified by Lemma 3.2(i), since E[Y (d)|x] =

E[ϑ(d, x;U)]. Next, we establish the bounds on E[Y (dj)|x] for given dj for some j = 0, ..., S.

We first present the bounds using the variation in Z only, i.e., by using Lemma 3.2(i). To this

end, we fix X = x and suppress it in all relevant expressions. To gain efficiency we define the

integrated version of h as

H(x) ≡ E
[
h(Z,Z ′, x)

∣∣(Z,Z ′) ∈ ZEQ,j ∀j = 0, ..., S − 1
]
, (3.9)

where ZEQ,j is the set of (z, z′) that satisfy (3.4) and Assumption EQ given j, and h(z, z′, x) = 0

whenever it is not well-defined. We focus on the caseH(x) > 0; H(x) < 0 is symmetric andH(x) = 0

is straightforward. Using Lemma 3.2(i), one can readily show that Ldj (x) ≤ E[Y (dj)|x] ≤ Udj (x)

with

Udj (x) ≡ inf
z∈Z

{
Pr[Y = 1,D ∈ D≥(dj)|z, x] + Pr[D ∈ D\D≥(dj)|z, x]

}
, (3.10)

Ldj (x) ≡ sup
z∈Z

{
Pr[Y = 1,D ∈ D≤(dj)|z, x]

}
. (3.11)

We can simplify these bounds and show that they are sharp under the following assumption.

Assumption C. (i) µd(·) and νd−s(·) are continuous; (ii) Z is compact.
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Under Assumption C, for given dj , there exist vectors z̄ ≡ (z̄1, ..., z̄S) and z ≡ (z1, ..., zS) that

satisfy

z̄ = arg maxz∈Z maxd∈D≥(dj) Pr[D = d|z],

z = arg minz∈Z mind∈D≥(dj) Pr[D = d|z].
(3.12)

The following is the first main result of this study, which establishes the sharp bounds on E[Y (dj)|x],

where X = x is fixed in the model.

Theorem 3.2. Given model (3.1)–(3.2) with fixed X = x, suppose Assumptions P, SS, M1, IN,

E, EX, M∗, EQ and C hold. In addition, suppose H(x) is well-defined and H(x) ≥ 0. Then, the

bounds Udj and Ldj in (3.10) and (3.11) simplify to

Udj (x) = Pr[Y = 1,D ∈ D≥(dj)|z̄, x] + Pr[D ∈ D\D≥(dj)|z̄, x],

Ldj (x) = Pr[Y = 1,D ∈ D≤(dj)|z, x],

and these bounds are sharp.

With binary Y (Assumption M∗), sharp bounds on the mean treatment parameters can be

obtained, which is reminiscent of the findings of studies that consider single-treatment models (e.g.,

Shaikh and Vytlacil (2011)).

When the variation of X is additionally exploited in the model, the bounds will be narrower

than the bounds in Theorem 3.2. We now proceed with this case, utilizing Lemma 3.2 (i) and (ii).

First, analogous to (3.9), we define the integrated version of h̃(z, z′, x̃) as

H̃(x̃) ≡ E
[
h̃(Z,Z ′, x̃)

∣∣(Z,Z ′) ∈ ZEQ,j ∀j = 0, ..., S − 1
]
,

where h̃(z, z′, x̃) = 0 whenever it is not well-defined. Then, we define the following sets of two

consecutive elements (xj , xj−1) of x that satisfy the conditions in Lemma 3.2: for j = 1, ..., S,

define X 0
j,j−1(ι) ≡ {(xj , xj−1) : sgn{H̃(x̃)} = ι, x0 = · · · = xS} and for t ≥ 1,

X tj,j−1(ι) ≡ {(xj , xj−1) : sgn{H̃(x̃)} = ι, (xk, xk−1) ∈ X t−1
k,k−1(−ι) ∀k 6= j} ∪ X t−1

j,j−1(ι),

where the sets are understood to be empty whenever h̃(z, z′, x̃) is not well-defined for any pM≤j (z) <
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pM≤j (z
′) ∀j. Note that X tj,j−1(ι) ⊂ X t+1

j,j−1(ι) for any t. Define Xj,j−1(ι) ≡ limt→∞X tj,j−1(ι).10 Then,

by Lemma 3.2, if (xj , xj−1) ∈ Xj,j−1(ι), then

sgn{ϑ(dj , xj ;u)− ϑ(dj−1, xj−1;u)} = ι a.e. u ∀dj−1 ∈ D<(dj). (3.13)

In conclusion, for bounds on the ATE E[Y (dj)|x], we can introduce the sets XL
dj

(x;d′) and XU
dj

(x;d′)

for d′ 6= dj as follows: for d′ ∈ D<(dj) ∪ D>(dj),

XLdj (x;d′) ≡
{
xj′ : (xk, xk−1) ∈ Xk,k−1(−1) ∪ Xk,k−1(0) for j′ + 1 ≤ k ≤ j, xj = x

}
∪
{
xj′ : (xk, xk−1) ∈ Xk,k−1(1) ∪ Xk,k−1(0) for j + 1 ≤ k ≤ j′, xj = x

}
, (3.14)

XUdj (x;d′) ≡
{
xj′ : (xk, xk−1) ∈ Xk,k−1(1) ∪ Xk,k−1(0) for j′ + 1 ≤ k ≤ j, xj = x

}
∪
{
xj′ : (xk, xk−1) ∈ Xk,k−1(−1) ∪ Xk,k−1(0) for j + 1 ≤ k ≤ j′, xj = x

}
. (3.15)

The following theorem summarizes our results:

Theorem 3.3. In model (3.1)–(3.2), suppose the assumptions of Lemma 3.2 hold. Then the sign

of the ATE is identified, and the upper and lower bounds on the ASF and ATE with d, d̃ ∈ D are

Ld(x) ≤ E[Y (d)|x] ≤ Ud(x)

and Ld(x) − Ud̃(x) ≤ E[Y (d) − Y (d̃)|x] ≤ Ud(x) − Ld̃(x), where for any given dj ∈ Dj ⊂ D for

some j,

Udj (x) ≡ inf
z∈Z

{
E[Y |D = dj , z, x] Pr[D = dj |z] + Pr[D ∈ Dj\{dj}|z]Y

+
∑

d′∈D<(dj)∪D>(dj)

inf
x′∈XU

dj
(x;d′)

E[Y |D = d′, z, x′] Pr[D = d′|z]

}
,

Ldj (x) ≡ sup
z∈Z

{
E[Y |D = dj , z, x] Pr[D = dj |z] + Pr[D ∈ Dj\{dj}|z]Y

+
∑

d′∈D<(dj)∪D>(dj)

sup
x′∈XL

dj
(x;d′)

E[Y |D = d′, z, x′] Pr[D = d′|z]

}
.

10In practice, the formula for X tj,j−1 provides a natural algorithm to construct the set Xj,j−1 for the computation
of the bounds. The calculation of each X tj,j−1 is straightforward, as it is a search over a two-dimensional space for
(xj , xj−1) once the set X t−1

j,j−1 from the previous step is obtained. Practitioners can employ truncation t ≤ T for some

T and use X Tj,j−1 as an approximation for Xj,j−1.
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See Sections 4 and B for concrete examples of the expression of Udj (x) and Ldj (x). The terms

Pr[D = d
′ |z]Y and Pr[D = d

′ |z]Y appear in the expression of the bounds because Lemma 3.2

cannot establish an order between ϑ(d, x;u)’s for d ∈ Dj , which is related to the complication due

to multiple equilibria, which occurs for d ∈ Dj . When the variation in Z is only used in deriving the

bounds, Xk,k−1(ι) should simply reduce to X 0
k,k−1(ι) in the definition of XL

dj
(x;d′) and XU

dj
(x;d′).

When Y is binary with no X, such bounds are equivalent to (3.10) and (3.11). The variation in

X given Z yields substantially narrower bounds than the sharp bounds established in Theorem 3.2

under Assumption C. However, the resulting bounds are not automatically implied to be sharp from

Theorem 3.2, since they are based on a different DGP and the additional exclusion restriction.

Remark 3.2. Maintaining that Y is binary, sharp bounds on the ATE with variation in X can be

derived assuming that the signs of ϑ(d, x;u)− ϑ(d′, x′;u) are identified for d ∈ D and d′ ∈ D<(d)

and x, x′ ∈ X via Lemma 3.2. To see this, define

X̃Ud (x;d′) ≡
{
x′ : ϑ(d, x;u)− ϑ(d′, x′;u) ≤ 0 a.e. u

}
,

X̃Ld (x;d′) ≡
{
x′ : ϑ(d, x;u)− ϑ(d′, x′;u) ≥ 0 a.e. u

}
,

which are identified by assumption. Then, by replacing X id(x;d′) with X̃ id(x;d′) (for i ∈ {U,L}) in

Theorem 3.3, we may be able to show that the resulting bounds are sharp. Since Lemma 3.2 implies

that X i
dj

(x;d′) ⊂ X̃ i
dj

(x;d′) but not necessarily X i
dj

(x;d′) ⊃ X̃ i
dj

(x;d′), these modified bounds and

the original bounds in Theorem 3.3 do not coincide. This contrasts with the result of Shaikh and

Vytlacil (2011) for a single-treatment model, and the complication lies in the fact that we deal

with an incomplete model with a vector treatment. When there is no X, Lemma 3.2(i) establishes

equivalence between the two signs, and thus, X i
dj

(x;d′) = X̃ i
dj

(x;d′) for i ∈ {U,L}, which results in

Theorem 3.2. Relatedly, we can also exploit variation in W , namely, variables that are common to

both X and Z (with or without exploiting excluded variation of X). This is related to the analysis

of Chiburis (2010) and Mourifié (2015) in a single-treatment setting. One caveat of this approach

is that, similar to these papers, we need to additionally assume that W ⊥ (ε,U).

Remark 3.3. When X does not have enough variation, we can calculate the bounds on the ATE.

To see this, suppose we do not use the variation in X and suppose H(x) ≥ 0. Then ϑ(dj , x;u) ≥

ϑ(dj−1, x;u) ∀dj−1 ∈ D<(dj) ∀j = 1, ..., S by Lemma 3.2(i) and by transitivity, ϑ(d
′
, x;u) ≥
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ϑ(d, x;u) with d′ being an extension of d. Therefore, we have

E[Y (d)|x] ≤ E[Y |D = d, z, x] Pr[D = d|z] +
∑

d′∈D>(d)

E[Y |D = d′, z, x] Pr[D = d′|z]

+
∑

d′∈D\D≥(d)

E[Y (dj)|D = d′, z, x] Pr[D = d′|z]. (3.16)

Without using variation in X, we can bound the last term in (3.16) by Y ∈ [Y , Y ]. This is done

above with θ(d, x, ε) = 1[µ(d, x) ≥ εd] and ϑ(d, x;u) = Fε|U (µ(d, x)|u).

4 Empirical Application: Airline Markets and Pollution

In this section, we take the bounds proposed in Section 3.4 to data on airline market structure and

air pollution in the top 100 metropolitan statistical areas in the U.S.

In 2013, aircrafts were responsible for about 3 percent of total U.S. carbon dioxide emissions and

nearly 9 percent of carbon dioxide emissions from the U.S. transportation sector, and it is one of

the fastest growing sources.11 Airplanes remain the single largest source of carbon dioxide emissions

within the U.S. transportation sector, which is not yet subject to greenhouse gas regulations. In

addition to aircrafts, airport land operations are also a big source of pollution: 43 of the 50 largest

airports are in ozone nonattainment areas and 12 are in particulate matter nonattainment areas.12

There is growing literature showing the effects of air pollution on various health outcomes (see,

Schlenker and Walker (2015), Chay and Greenstone (2003), Knittel et al. (2011)). In particular,

Schlenker and Walker (2015) show that the causal effect of airport pollution on the health of local

residents—using a clever instrumental variable approach—is sizable. Their study focuses on the

12 major airports in California and implicitly assume that the level of competition (or market

structure) is fixed. Using high-frequency data, they exploit weather shocks in the East coast—that

might affect airport activity in California through network effects—to quantify the effect of airport

pollution on respiratory and cardiovascular health complications. In contrast, we take the link

between airport pollution and health outcomes as given and are interested in quantifying the effects

11See https://www.c2es.org/content/reducing-carbon-dioxide-emissions-from-aircraft/7/
12Ozone is not emitted directly but is formed when nitrogen oxides and hydrocarbons react in the atmosphere in

the presence of sunlight. In United States environmental law, a non-attainment area is an area considered to have air
quality worse than the National Ambient Air Quality Standards as defined in the Clean Air Act.
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of different (endogenous) market structures of the airline industry on air pollution.13

In our analysis we combine data from two sources. The first contains airline information from the

Department of Transportation. These data have been used extensively in the literature to analyze

the airline industry (see, e.g., Borenstein (1989), Berry (1992), Ciliberto and Tamer (2009), and more

recently, Li et al. (2018) and Ciliberto et al. (2018)). The second source contains air pollution data

in each airport from air monitoring stations compiled by the Environmental Protection Agency.

We discuss the definition and construction of the variables in Section E of the Appendix. We

experimented with two measures of pollution (fine particulate matter and ozone levels) which we

discuss in the Appendix and obtain qualitatively and quantitatively similar results in all cases.14

In order to save space, we only show results using particulate matter concentration as our outcome

variable.

We assume that, in each market, airlines choose to be “in” or “out” in a simultaneous entry

game of perfect information, as introduced in Section 3.1. Therefore, we treat market structure –i.e.,

the profile of airlines that operate in a market– as our endogenous treatment. We then model air

pollution as a function of the market structure as in equation (3.1), where the vector D represents

the market structure, and X includes market specific covariates that affect pollution directly (i.e.,

not through airline activity). We use the share of pollution-related activity in the local economy.15

This is likely to be excluded from (3.2) if we condition on the size of the market.16 Hence, we allow

for market-level covariates, W , which affect both the participation decisions and pollution (e.g., the

size of the market as measured by population or the level of economic activity). Finally, we consider

two sets of instruments: the airport presence of an airline as in Berry (1992) and a firm-market

proxy for cost as in Ciliberto and Tamer (2009). For reasons we discuss below, we use the latter in

our baseline results.

To simplify the estimation, we discretize all continuous variables into binary variables. We

13In this section, we refer to market structure as the particular configuration of airlines present in the market. In
other words, market structure not only refers to the number of firms competing in a given market but to the actual
identities of the firms. Thus, we will regard a market in which, say, United and American operate as different from a
market in which Southwest and Delta operate, despite both markets having two carriers.

14This is not surprising given that the two pollution measures are highly correlated.
15Note that our definition of market is a city-pair; hence, all of our variables are, in fact, weighted averages over

the two cities.
16The idea here is that the size of the market, among other things, determines whether a firm might enter it, but

not the type of economic activity in the cities. Hence, conditional on the market’s GDP, a market with a higher share
of polluting industries will have a higher level of pollution but this share would not affect the airline market structure.
That is, we are implicitly assuming that pollution activity generates the same business air travel as non-polluting
activities, conditional on size.
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experimented with several specifications of the covariates, X and W , and instruments, Z. In

particular, we tried different discretizations of each variable (including allowing for more than two

points in their supports and different cutoffs). Clearly, there is a limit to how finely we can cut

the data even with a large sample size such as ours. The coarser discretization occurs when each

covariate (and instrument) is binary and this seems to produce reasonable results; hence, we stick

with this discretization in all of our exercises and use the median of each variable as the threshold.1718

Of particular interest is the discretization of the instruments. Recall that our procedure relies on

there being enough variation in the instruments as stated in Assumption EQ. When the payoff

unobservables are mutually independent, there is a simple testable implication for the existence of

such instrument variation as we have discussed in Section 3.3. When we consider the binary version

of our cost instrument, the conditions in Assumption EQ* are satisfied in our data by setting the

vectors z and z′ to be low cost and high cost for all airlines, respectively.19

Before moving to the results, we discuss the plausibility of the other identifying assumptions.

Assumptions SS and M1 relate to the shape of the profit functions. The strategic substitutability

assumption (SS) is likely to hold in our case, as firms’ profits are likely to decrease with competition

(see, e.g., the argument in Section 3.1 in Berry (1992)). The instrument monotonicity assumption

(M1) is also likely to hold since as firms costs move from low to high their profits are expected to

decrease regardless of the market structure. Assumptions IN and EX are related to the validity

of the instruments and the exogeneity of X. Given our choice of Z and X, both assumptions

are plausible as we argue in Section E of the Appendix in which we introduce the data. Finally,

Assumption M*(i) is imposed as a threshold crossing model for pollution. Assumption M*(ii) is

also likely to be satisfied in our context, by assuming that after entering firms play a Cournot game

to set their prices and quantities (i.e., the number of passengers flown in each market). Then it is

expected that more passengers will be served in equilibrium as a result of an additional firm entering

the market, and thus pollution worsens, regardless of the market structure.

To illustrate our estimation procedure, we consider three types of ATE exercises. The first

17We find that, in general, our qualitative results are robust to alternative definitions of the thresholds like the
mean, median, or mode of each continuous variable.

18Also, after some experimentation, we obtained reasonable results when both X and W are scalars: share of pollu-
tion related industries in the market and total GDP in the market, respectively. Hence, we consider this parsimonious
model in our baseline specification.

19When we use the (binary) market presence instrument, there are instances in which the instrument variation is
not enough to satisfy Assumption EQ*. Thus, in what follows we use only use our cost instrument.
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examines the effects of a single (monopolist) airline on pollution vis-a-vis a market that is not served

by any airline. The second set of exercises examine the total effect of the industry on pollution under

all possible market configurations. Finally, the third type of exercises examine how the (marginal)

effect of a given airline changes when the firm faces different levels of competition. Notice that in all

cases we quantify “reduced-form” effects, in that they summarize structural effects resulting from

a given market structure. The idea is that following entry, firms compete by choosing their prices,

frequency, and which airplanes to operate. Different market structures will have different impacts

on these variables, which in turn, affect the level of pollution.

4.1 Estimation and Results

Using the notation from Section 3.1, let the elements of the treatment vector d = (dDL, dAA, dUA, dWN, dmed, dlow)

be either 0 or 1, indicating whether each firm (American (AA), Delta (DL), United (UA), Southwest

(WN), a medium-size airline, and a low-cost carrier) is active in the market. We compute the upper

and lower bounds on the ATE using the result from Theorem 3.3 and the fact that our Y variable

is binary. Specifically, given two treatment vectors d and d̃ we can bound the ATE

L(d, d̃;x,w) ≤ E[Y (d)− Y (d̃)|x,w] ≤ U(d, d̃;x,w)

where the upper bound can be characterized by

U(d, d̃;x,w) ≡ Pr[Y = 1,D = d|z, x, w] +
∑

d′∈Dj\{d}

Pr[D = d′|Z = z,W = w]

+
∑

d′∈D<(d)∪D>(d)

Pr[Y = 1,D = d′|Z = z, X = x′(d′),W = w]

− Pr[Y = 1,D = d̃|Z = z, X = x,W = w]

−
∑

d′′∈D<(d̃)∪D>(d̃)

Pr[Y = 1,D = d′′|Z = z, X = x′′(d′′),W = w]
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for every z, x′(d′) ∈ XUd (x;d′) for d′ 6= d, and x′′(d′′) ∈ XL
d̃

(x;d′′) for d′′ 6= d̃ and the lower bound

can be characterized by

L(d, d̃;x,w) ≡ Pr[Y = 1,D = d|Z = z, X = x,W = w]

+
∑

d′∈D<(d)∪D>(d)

Pr[Y = 1,D = d′|Z = z, X = x′(d′),W = w]

− Pr[Y = 1,D = d̃|Z = z, X = x,W = w]−
∑

d′′∈Dj\{d̃}

Pr[D = d′′|Z = z,W = w]

−
∑

d′′∈D<(d̃)∪D>(d̃)

Pr[Y = 1,D = d′′|Z = z, X = x′′(d′′),W = w]

for every z, x′(d′) ∈ XLd (x;d′) for d′ 6= d, and x′′(d′′) ∈ XU
d̃

(x;d′′) for d′′ 6= d̃. We estimate the pop-

ulation objects above using their sample counterparts. We also compute confidence sets by deriving

unconditional moment inequalities from our conditional moment inequalities and implementing the

Generalized Moment Selection test proposed by Andrews and Soares (2010). The confidence sets

are obtained by inverting the test.20

Monopoly Effects. Here we examine the ATE of a change in market structure from no airline

serving a market to a monopolist serving it. Intuitively, we want to understand the change in the

probability of being a high-pollution market when an airline starts operating on it. Recall that we

allow each firm to have different effects on pollution; hence, we estimate the effects of each one of

the six firms in our data becoming a monopolist. Thus, we are interested in the ATE’s of the form

E[Y (dmonop) − Y (dnoserv)|X,W ] where dmonop is one of the six vectors in which only one element

is 1 and the rest are 0’s, and dnoserv is a vector of all 0’s. The results are shown in Figure 2,

where the solid black intervals are our estimates of the identified sets and the thin red lines are the

95% confidence sets. We see that all ATE’s are positive and statistically significant different from

0, except for the low-cost carriers. While there no major differences on the effects of the major

carriers, with the exception of Delta which seems to induce a higher increase in the probability of

high pollution, the medium and low-cost carriers induce a smaller effect.

Total Market Structure Effect. We now turn to our second set of exercises. Here, we quantify

the effect of the airline industry on the likelihood of a market having high levels of pollution. To do

so, we estimate ATE’s of the form E[Y (d)−Y (dnoserv)|X,W ] for all potential market configurations

20For details of this procedure, see Dickstein and Morales (2018).
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Figure 2: Effect of a Monopolistic Market Structure

This plot shows the ATE’s of a change in market structure from no airline serving a market to a monopolist

serving it. The solid black intervals are our estimates of the identified sets and the thin red lines are the 95%

confidence sets.

d and where dnoserv is defined as before. Figure 3 depicts the results. The left-most set of intervals

corresponds to the 6 different monopolistic market structures, and by construction, coincide with

those from Figure 2. The next set corresponds to all possible duopolistic structures (15 possibilities),

and so on. Not surprisingly, we observe that the effect on the probability of being a high-pollution

market is increasing in the number of firms operating in the market. More interesting is the non-

linearity of the effect: the effect increases at a decreasing rate. This would be consistent with a

model in which firms accommodate new entrants by decreasing their frequency, which is analogous

to the prediction of a Cournot competition model, as we increase the number of firms. To further

investigate this point, in the next set of exercises, we examine the effect of one firm as we change

the competition it faces.

Marginal Carrier Effect. In our last set of exercises, we investigate how the marginal effect

(i.e., the effect of introducing one more firm into the market) changes under different market con-

figurations. In particular, we are interested in the effect of Delta entering the market, given that

the current market structure (excluding Delta) is d–DL ≡ (dAA, dUA, dWN, dmed, dlow). Thus, we
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Figure 3: Total Market Structure Effect

This plot shows the ATE’s of the airline industry under all possible market configurations. The solid black

intervals are our estimates of the identified sets and the thin red lines are the 95% confidence sets. The bars

in each cluster correspond to all possible market configurations, respectively.

estimate E[Y ((1,d–DL))− Y ((0,d–DL))|X,W ].21

Figure 4 shows the identified sets and confidence sets of the marginal effect of Delta on the

probability of high pollution under all possible market configuration for Delta’s rivals. In the Figure,

the left-most exercise is the effect of Delta as a monopolist and coincides, by construction, with the

left-most exercise in Figure 2. The second exercise (from the left) corresponds to the additional

effect of Delta on pollution when there is already one firm operating in the market, which yields five

different possibilities. The next exercise shows the effect of Delta when there are two firms already

operating in the market yielding 10 possibilities, and so on. Again, the estimated marginal ATE’s

in all cases are positive and statistically significant. Interestingly, although we cannot entirely reject

the null hypothesis that all the effects are the same, it seems that the marginal effect of Delta is

decreasing in the number of rivals it faces. Intuitively, this suggests a situation in which after Delta

enters the market, it (or its rivals) operates with a frequency that is decreasing with the number

of rivals (again, as we would expect in a Cournot competition model) and is consistent with the

21We obtain qualitatively similar results when estimating the marginal effects of the other five carriers, and hence,
we omit the graphs to save space.
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Figure 4: Marginal Effect of Delta under Different Market Structures

This plot shows the ATE’s of Delta entering the market given all possible rivals market configurations. The

solid black intervals are our estimates of the identified sets and the thin red lines are the 95% confidence sets.

The bars in each cluster correspond to all possible market configurations, respectively.

findings in our previous set of exercises.

The conclusions from the total market and marginal ATE’s are also interesting from a policy

perspective. For example, a merger of two airlines in which duplicate routes are eliminated would

imply a decrease in total pollution in the affected markets, but by less than what one would have

naively anticipated from removing one airline while keeping everything else constant. In other

words, there are two effects of removing an airline from a market. The first is a direct affect:

pollution decreases by the amount of pollution by the carrier that is no longer present in the

market. However, the remaining firms in the market will react strategically to the new market

structure. In our exercises, we find that this indirect effect implies an increase in pollution. The

overall effect is a net decrease in pollution. Moreover, given the non-linearities of the ATE’s we

estimate it looks like the overall effect, while negative, might be negligible in markets with four or

more competitors.

While it is unclear that merger analysis, which is typically concerned with price increases post-

merge or cost savings of the merging firms, should also consider externalities such as pollution,

(social) welfare analysis should. Hence, our findings may serve as guidance to policy discussion on
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air traffic regulation.
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A More Examples

Example 1 (Media and political behavior). In this example, the interest is in how media affects

political participation or electoral competitiveness. In county or market i, either Yi ∈ [0, 1] can

denote voter turnout, or Yi ∈ {0, 1} can denote whether an incumbent is re-elected or not. Let

Ds,i denote the market entry decision by local newspaper type s, which is correlated with unobserved

characteristics of the county. In this example, Zs,i can be the neighborhood counties’ population size

and income, which is common to all players (Z1,i = · · · = ZS,i). Lastly, Xi can include changes in

voter ID regulations. Using a linear panel data model, Gentzkow et al. (2011) show that the number

of newspapers in the market significantly affects the voter turnout but find no evidence whether

it affects the re-election of incumbents. More explicit modeling of the strategic interaction among

newspaper companies can be important to capture competition effects on political behavior of the

readers.

Example 2 (Incumbents’ response to potential entrants). In this example, we are interested in how

market i’s incumbents respond to the threat of entry of potential competitors. Let Yi be an incumbent

firm’s pricing or investment decision and Ds,i be an entry decision by firm s in “nearby” markets,

which can be formally defined in each context. For example, in airline entry, nearby markets are

defined as city pairs that share the endpoints with the city pair of an incumbent (Goolsbee and

Syverson (2008)). That is, potential entrants are airlines that operate in one (or both) of the

endpoints of the incumbent’s market i, but who have not connected these endpoints. Then the
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parameter E[Yi(d) − Yi(d′)] captures the incumbent’s response to the threat, specifically whether it

responds by lowering the price or making an investment. As in Example 1, Zs,i are cost shifters and

Xi are other factors affecting price of the incumbent, excluded from nearby markets, conditional of

Wi. The characteristics of the incumbent’s market can be a candidate of Xi, such as the distance

between the endpoints of the incumbent’s market in the airline example.

Example 3 (Food desert). Let Yi denote a health outcome, such as diabetes prevalence, in region i,

and Ds,i be the exit decision by large supermarket s in the region. Then E[Yi(d)− Yi(d′)] measures

the effects of absence of supermarkets on health of the residents. Conditional on other factors Wi,

the instrument Zs,i can include changes in local government’s zoning plans and Xi can include the

region’s health-related variables, such as the number of hospitals and the obesity rate. This problem

is related to the literature on “food desert” (e.g., Walker et al. (2010)).

Example 4 (Ground water and agriculture). In this example, we are interested in the impact of

access to groundwater on economic outcomes in rural areas (Foster and Rosenzweig (2008)). In

each Indian village i, symmetric wealthy farmers (of the same caste) make irrigation decisions Ds,i,

i.e., whether or not to buy motor pumps, in the presence of peer effects and learning spillovers.

Since ground water is a limited resource that is seasonally recharged and depleted, other farmers’

entry may negatively affects one’s payoff. The adoption of the technology affects Yi, which can be

the average of local wages of peasants or prices of agricultural products, or a village development or

poverty level. In this example, continuous or binary instrument Zs,i can be the depth to groundwater,

which is exogenously given (Sekhri (2014)), or provision of electricity for pumping in a randomized

field experiment. Xi can be village-level characteristics that villagers do not know ex ante or do not

concern about.22

22Especially in this example, the number of players/treatments Si is allowed to vary across villages. We assume in
this case that players/treatments are symmetric (in a sense that becomes clear later) and ν1(·) = · · · = νSi(·) = ν(·).
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B Numerical Study

To illustrate the main results of this study in a simulation exercise, we calculate the bounds on the

ATE using the following data generating process:

Yd = 1[µ̃d + βX ≥ ε],

D1 = 1[δ2D2 + γ1Z1 ≥ V1],

D2 = 1[δ1D1 + γ2Z2 ≥ V2],

where (ε, V1, V2) are drawn, independent of (X,Z), from a joint normal distribution with zero

means and each correlation coefficient being 0.5. We draw Zs (s = 1, 2) and X from a multinomial

distribution, allowing Zs to take two values, Zs = {−1, 1}, and X to take either three values,

X = {−1, 0, 1}, or fifteen values, X = {−1,−6
7 ,−

5
7 , ...,

5
7 ,

6
7 , 1}. Being consistent with Assumption

M, we choose µ̃11 > µ̃10 and µ̃01 > µ̃00. Let µ̃10 = µ̃01. With Assumption SS, we choose δ1 < 0

and δ2 < 0. Without loss of generality, we choose positive values for γ1, γ2, and β. Specifically,

µ̃11 = 0.25, µ̃10 = µ̃01 = 0 and µ̃00 = −0.25. For default values, δ1 = δ2 ≡ δ = −0.1, γ1 = γ2 ≡ γ = 1

and β = 0.5.

In this exercise, we focus on the ATE E[Y (1, 1)− Y (0, 0)|X = 0], whose true value is 0.2 given

our choice of parameter values. For h(z, z′, x), we consider z = (1, 1) and z′ = (−1,−1). Note that

H(x) = h(z, z′, x) and H̃(x, x′, x′′) = h̃(z, z′, x, x′, x′′), since Zs is binary. Then, we can derive the

sets XUd (0;d′) and XLd (0;d′) for each d ∈ {(1, 1), (0, 0)} and d′ 6= d in Theorem 3.3.

Based on our design, H(0) > 0, and thus, the bounds when we use Z only are, with x = 0,

max
z∈Z

Pr[Y = 1,D = (0, 0)|z, x] ≤ Pr[Y (0, 0) = 1|x] ≤ min
z∈Z

Pr[Y = 1|z, x],

and

max
z∈Z

Pr[Y = 1|z, x] ≤ Pr[Y (1, 1) = 1|x] ≤ min
z∈Z
{Pr[Y = 1,D = (1, 1)|z, x] + 1− Pr[D = (1, 1)|z, x]} .

Using both Z and X, we obtain narrower bounds. For example, when |X | = 3, with H̃(0,−1,−1) <
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0, the lower bound on Pr[Y (0, 0) = 1|X = 0] becomes

max
z∈Z
{Pr[Y = 1,D = (0, 0)|z, 0] + Pr[Y = 1,D ∈ {(1, 0), (0, 1)}|z,−1]} .

With H̃(1, 1, 0) < 0, the upper bound on Pr[Y (1, 1) = 1|X = 0] becomes

min
z∈Z
{Pr[Y = 1,D = (1, 1)|z, 0] + Pr[Y = 1,D ∈ {(1, 0), (0, 1)}|z, 1] + Pr[D = (0, 0)|z, 0]} .

For comparison, we calculate the bounds in Manski (1990) using Z. These bounds are given by

max
z∈Z

Pr[Y = 1,D = (0, 0)|z, x] ≤ Pr[Y (0, 0) = 1|x]

≤ min
z∈Z
{Pr[Y = 1,D = (0, 0)|z, x] + 1− Pr[D = (0, 0)|z]} ,

and

max
z∈Z

Pr[Y = 1,D = (1, 1)|z, x] ≤ Pr[Y (1, 1) = 1|x]

≤ min
z∈Z
{Pr[Y = 1,D = (1, 1)|z, x] + 1− Pr[D = (1, 1)|z]} .

We also compare the estimated ATE using a standard linear IV model in which the nonlinearity of

the true DGP is ignored:

Y = π0 + π1D1 + π2D2 + βX + ε, D1

D2

 =

 γ10

γ20

+

 γ11 γ12

γ21 γ22


 Z1

Z2

+

 V1

V2

 .

Here, the first stage is the reduced-form representation of the linear simultaneous equations model

for strategic interaction. Under this specification, the ATE becomes E[Y (1, 1) − Y (0, 0)|X = 0] =

π1 + π2, which is estimated via two-stage least squares (TSLS).

The bounds calculated for the ATE are shown in Figures 5–8. Figure 5 shows how the bounds on

the ATE change, as the value of γ changes from 0 to 2.5. The larger γ is, the stronger the instrument

Z is. The first conspicuous result is that the TSLS estimate of the ATE is biased because of the

problem of misspecification. Next, as expected, Manski’s bounds and our proposed bounds converge

39



to the true value of the ATE as the instrument becomes stronger. Overall, our bounds, with or

without exploiting the variation of X, are much narrower than Manski’s bounds.23 Notice that the

sign of the ATE is identified in the whole range of γ, as predicted by the first part of Theorem

3.3, in contrast to Manski’s bounds. Using the additional variation in X with |X | = 3 decreases

the width of the bounds, particularly with the smaller upper bounds on the ATE in this simulation

design. Figure 6 depicts the bounds using X with |X | = 15, which yields narrower bounds than

when |X | = 3, and substantially narrower than those only using Z.

Figure 7 shows how the bounds change as the value of β changes from 0 to 1.5, where a larger

β corresponds to a stronger exogenous variable X. The jumps in the upper bound are associated

with the sudden changes in the signs of H̃(−1, 0,−1) and H̃(0, 1, 1). At least in this simulation

design, the strength of X is not a crucial factor for obtaining narrower bounds. In fact, based on

other simulation results (omitted in the paper), we conclude that the number of values X can take

matters more than the dispersion of X (unless we pursue point identification of the ATE).

Finally, Figure 8 shows how the width of the bounds is related to the extent to which the

opponents’ actions D−s affect one’s payoff, captured by δ. We vary the value of δ from −2 to 0, and

when δ = 0, the players solve a single-agent optimization problem. Thus, heuristically, the bound

at this point would be similar to the ones that can be obtained when Shaikh and Vytlacil (2011)

is extended to a multiple-treatment setting with no simultaneity. In the figure, as the value of δ

becomes smaller, the bounds get narrower.

C Discussions and Extensions

C.1 Point Identification of the ATE

When there exist player-specific excluded instruments with large support, we point identify the

ATE’s. To invoke an identification-at-infinity argument, the following assumptions are instead

23Although we do not make a rigorous comparison of the assumptions here, note that the bounds by Manski and
Pepper (2000) under the semi-MTR is expected to be similar to ours. However, their bounds need to assume the
direction of the monotonicity.
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needed to hold:

γ1 and γ2 are nonzero, (C.1)

Z1|(X,Z2) and Z2|(X,Z1) has an everywhere positive Lebesgue density. (C.2)

These assumptions impose a player-specific exclusion restriction and large support. Under (C.1)–

(C.2), we can easily show that the ATE in (3.3) is point identified. In this case, the structure

we impose, especially on the outcome function (such as the threshold-crossing structure, or more

generally Assumption M in Section 3.3 below) is not needed.

The identification strategy is to exploit the large variation of player specific instruments based

on (C.1)–(C.2), which simultaneously solves the multiple equilibria and the endogeneity problems.

For example, to identify E[Y (1, 1)|x], consider

E[Y |D = (1, 1), z, x] = E[Y (1, 1)|D = (1, 1), z, x]

= E[Y (1, 1)|δ2 + γ1z1 ≥ U1, δ1 + γ2z2 ≥ U2, x]→ E[Y (1, 1)|x],

where the second equation is by (2.6) and Y (1, 1) = µ1 +µ2 +βX, and the convergence is by (C.1)–

(C.2) with z1 → ∞ and z2 → ∞. The identification of E[Y (0, 0)|x], E[Y (1, 0)|x] and E[Y (0, 1)|x]

can be achieved by similar reasoning. Note that D = (1, 0) or D = (0, 1) can be predicted as an

outcome of multiple equilibria. However, when either (z1, z2) → (∞,−∞) or (z1, z2) → (−∞,∞)

occurs, a unique equilibrium is guaranteed as a dominant strategy, i.e., D = (1, 0) or D = (0, 1),

respectively.

C.2 Non-Monotonicity of Treatment Selection

In the case of a single binary treatment, the standard selection equation exhibits monotonicity

that facilitates various identification strategies (e.g., Imbens and Angrist (1994), Heckman and

Vytlacil (2005), Vytlacil and Yildiz (2007) to name a few). Relatedly, Vytlacil (2002) shows the

equivalence between imposing the selection equation with threshold-crossing structure and assuming

the local ATE (LATE) monotonicity. This equivalence (and thus, previous identification strategies)

is inapplicable to our setting due to the simultaneity in the first stage (3.2). To formally state this, let

D(z) be a potential treatment vector, had Z = z been realized. When cost Z = (Z1, Z2) increases
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from z to z′, it may be that some markets witness Delta entering and United going out of business

(i.e., D(z) = (0, 1) andD(z′) = (1, 0)), while other markets witness the opposite (i.e., D(z) = (1, 0)

and D(z′) = (0, 1)). The direction of monotonicity is reversed in the two groups of markets, and

thus, Pr[D(z) ≥ D(z′)] 6= 1 and Pr[D(z) ≤ D(z′)] 6= 1 where the inequality for vectors is pair-

wise inequalities, which violates the LATE monotonicity.24 Despite this non-monotonic pattern,

Theorem 3.1 restores generalized monotonicity, i.e., monotonicity in terms of the algebra of sets.

This generalized monotonicity, combined with the compensating strategic substitutability (??),

allows us to use a strategy analogous to the single-treatment case for our bound analysis. This

also suggests that we can introduce a generalized version of the LATE parameter in the current

framework, although we do not pursue it in this study.

Related to our study, Lee and Salanié (2018) introduce a framework for treatment effects with

general non-monotonicity of selection, and consider the simultaneous treatment selection as one of

the examples. Although they engage in a similar discussion on non-monotonicity, their approach to

gain tractability for identification is different from ours. When they allow the identity of players be-

ing observed as in our setting, they show that their treatment measurability condition (Assumption

2.1) introduced to restore monotonicity is satisfied, provided they assume a threshold-crossing equi-

librium selection mechanism. In contrast, we avoid making assumptions on equilibrium selection,

but require compensating variation of instruments. In addition, for this particular example, they

assume the first-stage is known (i.e., payoff functions are known), and focus on point identification

of the MTE with continuous instruments.

C.3 Partial ATE

Define a partial counterfactual outcome as follows: with a partition D = (D1,D2) ∈ D1 ×D2 = D

and its realization d = (d1,d2),

Y (d1,D2) ≡
∑

d2∈D2

1[D2 = d2]Y (d1,d2). (C.3)

24The same argument applies with a scalar multi-valued treatment D̃ ∈ {1, 2, 3, 4}, which has a one-to-one map with
D ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Then, some markets can experience D̃(z) = 2 and D̃(z′) = 3 while others experience
D̃(z) = 3 and D̃(z′) = 2, and thus, it is possible to have Pr[D̃(z) ≥ D̃(z′)] 6= 1 and Pr[D̃(z) ≤ D̃(z′)] 6= 1.
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This is a counterfactual outcome that is fully observed once D1 = d1 is realized. Then for each

d1 ∈ D1, the partial ASF can be defined as

E[Y (d1,D2)] =
∑

d2∈D2

E[Y (d1,d2)|D2 = d2] Pr[D2 = d2] (C.4)

and the partial ATE between d and d′ as

E[Y (d1,D2)− Y (d′1,D2)]. (C.5)

Using this concept, we can consider complementarity concentrated on, e.g., the first two treatments:

E [Y (1, 1,D2)− Y (0, 1,D2)] > E [Y (1, 0,D2)− Y (0, 0,D2)] .

C.4 Model with Common Z

Consider model (3.1)–(3.2) but with instruments common to all players/treatments, i.e., Z1 = · · · =

ZS :

Y = θ(D, X, εD),

Ds = 1 [νs(D−s, Z1) ≥ Us] , s ∈ {1, ..., S}.

This setting can be motivated by such instruments as appeared in Example 1. Given this model,

Assumptions SS, M1, IN, EX and C will be understood with Z1 = · · · = ZS imposed.25 Then

the bound analysis for the ATE including sharpness will naturally follow. The intuition of this

straightforward extension is as follows. As a generalized version of monotonicity in the treatment

selection process is restored (Theorem 3.1), model (3.1)–(3.2) can essentially be seen as a triangular

model with an ordered-choice type of a first-stage. Therefore an instrument that “shift” the entire

first-stage process is sufficient for the purpose of our analyses. Player-specific instruments do intro-

duce an additional source of variation, as it is crucial for the point identification of the ATE that

employs identification at infinity.

25Assumption EQ may be slightly harder to justify with a common instrument.
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C.5 Partial Symmetry: Interaction Within Groups

In some cases, strategic interaction may occur within groups of players (i.e., treatments). In the

airline example, it may be the case that larger airlines interact with one another as a group, so do

smaller airlines as a different group, but there may be no interaction across the groups.26 In general

for K groups of players/treatments, we consider, with player index s = 1, ..., Sg and group index

g = 1, ..., G,

Y = θ(D1, ...,DG, X, εD), (C.6)

Dg,s = 1
[
νsg(Dg,−s, Zg,s) ≥ Ug,s

]
, (C.7)

where each Dg ≡ (Dg,1, ..., Dg,Sk) is the treatment vector of group g and D ≡ (D1, ...,DG). This

model generalizes the model (3.1)–(3.2). It can also be seen as a special case of exogenously endowing

an incomplete undirected network structure, where players interact with one another within each

of complete sub-networks. In this model, each group can differ in the number (Sg) and identity

of players (under which the entry decision is denoted by Dg,s). Also, the unobservables Ug ≡

(Ug,1, ..., Ug,S) can be arbitrarily correlated across groups, in addition to the fact that Ug,s’s can be

correlated within group g and U ≡ (U1, ...,UG) can be correlated with εD. This partly relaxes the

independence assumption across markets, which is frequently imposed in the entry game literature.

When G = 1, the model (C.6)–(C.7) coincides to (3.1)–(3.2).

To calculate the bounds on the ATE E[Y (d)−Y (d′)|x] we apply the results in Theorem 3.3, by

adapting the assumptions in Sections 3.2 and 3.3 to the current extension. Although Assumption

EQ can also be adapted accordingly, we consider an alternative assumption that may be valid in

the current setting. Under this assumption, Assumption EQ is no longer needed for identification.27

Let D−g ≡ (Dg, ...,Dg−1,Dg+1, ...,DG) and let its realization be d−g .

Assumption SY. For g = 1, ..., G and every x ∈ X , ϑ(dg,d
−
g , x;u) = ϑ(d̃g,d

−
g , x;u) a.e. u for

any permutation d̃g of dg.

This assumption is a partial conditional symmetry assumption. It requires symmetry in the

functions within each group g, as long as the observed characteristics X remain the same. When

26We can also easily extend the model so that smaller airlines take larger airlines’ entry decisions as given and play
their own entry game, which may be more reasonable to assume.

27Also, Y can be unbounded and thus the second statement in Assumption M is not needed.
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G = 1, SY is related to an assumption found in Manski (2013).

Under Assumption SY, the bound on the ASF can be calculated by iteratively applying the

previous results to each group. Assumptions SS, EX and M can be modified so that they hold for

treatments with within-group interaction. In particular, Assumption EX can be modified as follows:

for each dg,−s ∈ Dg,−s, νsg(dg,−s, Zg,s)|X,Z−g is nondegenerate, where Z ≡ (Zg,Z
−
g ). That is, there

must be group-specific instruments that are excluded from other groups.28

We briefly show how to modify the previous bound analysis with binary Y and no X for sim-

plicity.

Analogous to the previous notation, let Djg be the set of equilibria with j entrants in group g

and let D≤jg ≡
⋃j
k=0D

k
g . Suppose G = 2, and d1 ∈ {0, 1}S1 and d2 ∈ {0, 1}S2 . Consider the ASF

E[Y (d)] = E[Y (d1,d2)] with d1 ∈ Dj−1
1 and d2 ∈ Dk−1

2 for some j = 1, ..., S1 and k = 1, ..., S2. To

calculate its bounds, we can bound E[Y (d)|D = d′, z] in an expansion similar to (D.30) for d̃ 6= d

by sequentially applying the analysis of Section 3.4 in each group. First, consider d̃ = (d̃1,d2) with

d̃1 ∈ Dj1. We apply Lemma 3.2 for the D1 portion after holding D2 = d2. Suppose

Pr[Y = 1|D2 = d2,Z1 = z1,Z2 = z2]− Pr[Y = 1|D2 = d2,Z1 = z′1,Z2 = z2] ≥ 0,

Pr[D1 ∈ D>j−1
1 |Z1 = z1]− Pr[D1 ∈ D>j−1

1 |Z1 = z′1] > 0,

then we have µ(d̃1,d2) ≥ µ(d1,d2). The proof of Lemma 3.2 can be adapted by holding D2 = d2 in

this case, because there is no strategic interaction across groups and therefore the multiple equilibria

problem only occurs within each group. Note that this strategy still allows for dependence between

D1 and D2 even after conditioning on Z due to dependence between U1 and U2. Then,

Pr[Y (d1,d2) = 1|D = (d̃1,d2), z] = Pr[ε ≤ µ(d1,d2)|D = (d̃1,d2), z]

≤ Pr[ε ≤ µ(d̃1,d2)|D = (d̃1,d2), z] (C.8)

= Pr[Y = 1|D = (d̃1,d2), z].

Next, consider d = (d1,d2) and d̃ = (d̃1, d̃2) with d̃2 ∈ Dk2 and the other elements as previously

determined. Then, by applying Lemma 3.2 this time for D2 after holding D1 = d̃1, we have

28We maintain Assumption R in the current setting since the assumption is equivalent to assuming a rank invariance
within each group, i.e., εdg,d−g = εd̃g,d−g ∀dg, d̃g ∈ {0, 1}Sg and g = 1, ..., G.
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µ(d̃1, d̃2) ≥ µ(d̃1,d2) by supposing

Pr[Y = 1|D1 = d̃1,Z1 = z1,Z2 = z2]− Pr[Y = 1|D1 = d̃1,Z1 = z1,Z2 = z′2] ≥ 0,

Pr[D2 ∈ D>j−1
2 |Z2 = z2]− Pr[D2 ∈ D>j−1

2 |Z2 = z′2] > 0.

Then,

Pr[Y (d1,d2) = 1|D = (d̃1, d̃2), z] ≤ Pr[ε ≤ µ(d̃1,d2)|D = (d̃1, d̃2), z]

≤ Pr[ε ≤ µ(d̃1, d̃2)|D = (d̃1, d̃2), z] (C.9)

= Pr[Y = 1|D = (d̃1, d̃2), z],

where the first inequality is by (C.8). Note that in deriving the upper bound in (C.9), it is important

that at least the two groups share the same signs of within-group h’s and h̃’s.

C.6 Player-Specific Outcomes

So far, we considered a scalar Y that may represent an outcome common to all players in a given

market or a geographical region. The outcome, however, can also be an outcome that is specific

to each player. In this regard, consider a vector of outcomes Y = (Y1, ..., YS) where each element

Ys is a player-specific outcome. An interesting example of this setting may be where Y is also an

equilibrium outcome from strategic interaction not only through D but also through itself. In this

case, it would become important to have a vector of unobservables even after assuming e.g., rank

invariance, since we may want to include εD = (ε1,D, ..., εS,D), where εs,D is an unobservable directly

affecting Ys.
29 We may also want to include a vector of observables of all players X = (X1, ..., XS),

where Xs directly affects Ys. Then, interaction among Ys can be modeled via a reduced-form

representation:

Ys = θs(D,X, εD), s ∈ {1, ..., S}.

In the entry example, the first-stage scalar unobservable Us may represent each firm’s unobserved

fixed cost (while Zs captures observed fixed cost). The vector of unobservables in the player-specific

29In this case, Assumption M should be imposed on εs,D for each s.
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outcome equation represents multiple shocks, such as the player’s demand and variable cost shocks,

and other firms’ variable cost and demand shocks. Unlike in a linear model, it would be hard to

argue that these errors are all aggregated as a scalar variable in this nonlinear outcome model, since

it is not known in which fashion they enter the equation.

D Proofs

In terms of notation, when no confusion arises, we sometimes change the order of entry and write

v = (vs,v−s) for convenience. For a multivariate function f(v), the integral
´
A f(v)dv is understood

as a multi-dimensional integral over a set A contained in the space of v. Vectors in this paper are

row vectors. Also, we write Yd ≡ Y (d) for simplicity in this section.

D.1 Formal Notation for Equilibrium Regions

We begin by introducing some notation for equilibrium profiles. For k = 1, ..., S, let ek be an

S-vector of all zeros except for the k-th element which is equal to one, and let e0 ≡ (0, ..., 0). For

j = 0, ..., S, define ej ≡
∑j

k=0 ek, which is an S-vector where the first j elements are unity and

the rest are zero. For a set of positive integers, define a permutation function σ : {n1, ..., nS} →

{n1, ..., nS}, which has to be a one-to-one function.30 Let Σ be a set of all possible permutations.

Define a set of all possible permutations of ej = (ej1, ..., e
j
S) as

Dj ≡
{
dj : dj = (σ(ej1), ..., σ(ejS)) for σ(·) ∈ Σ

}
(D.1)

for j = 0, ..., S. Note Dj is constructed to be a set of all equilibrium profiles with j treatments

selected or j entrants, and it partitions D =
⋃S
j=0Dj . There are S!/j!(S − j)! distinct dj ’s in Dj .

For example with S = 3, d2 ∈ D2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} and d0 ∈ D0 = {(0, 0, 0)}. Note

d0 = e0 = (0, ..., 0) and dS = eS = (1, ..., 1).

Let D(z) ≡ (D1(z), ..., DS(z)) where z ≡ (z1, ..., zS) and Ds(z) is the potential treatment

decision had the player s been assigned Z = z. We are interested in characterizing a region R of

30For example, (
n1 n2 n3 n4 n5

σ(n1) σ(n2) σ(n3) σ(n4) σ(n5)

)
=

(
1 2 3 4 5
2 1 5 3 4

)
.
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U ≡ (U1, ..., US) in U ≡ (0, 1]S that satisfies U ∈ R⇔D(z) ∈ Dj for some j. For each equilibrium

profile, we define regions of U that are Cartesian products in U . With a slight abuse of notation,

let dj−s ≡ (σ(ej1), ..., σ(ejs−1), σ(ejs+1), ..., σ(ejS−1)) for 0 ≤ j ≤ S − 1:

Rd0(z) ≡
S∏
s=1

(
νs(d0

−s, zs), 1
]
, RdS (z) ≡

S∏
s=1

(
0, νs(dS−1

−s , zs)
]

and, given dj = (σ(ej1), ..., σ(ejS)) for some σ(·) ∈ Σ31 and j = 1, ..., S − 1,

Rdj (z)

≡

U : (Uσ(1), ..., Uσ(S)) ∈

{
j∏
s=1

(
0, νσ(s)(dj−1

−σ(s), zσ(s))
]}
×


S∏

s=j+1

(
νσ(s)(dj−σ(s), zσ(s)), 1

]


(D.2)

For example, for σ(·) such that d1 = (σ(1), σ(0), σ(0)) = (0, 1, 0),

R010(z) =
(
ν1(1, 0, z1), 1

]
×
(
0, ν2(0, 0, z2)

]
×
(
ν3(0, 1, z3), 1

]
.

Define the region of all equilibria with j treatments selected or j entrants as

Rj(z) ≡
⋃

dj∈Dj
Rdj (z). (D.3)

D.2 Proof of Theorem 3.1

We prove the theorem by showing the following lemma:

Lemma D.1. Under Assumptions SS, for j = 0, ..., S − 1, R≤j(z) is expressed as a union across

σ(·) ∈ Σ of Cartesian products, each of which is a product of intervals that are either (0, 1] or(
νσ(s)(dj−σ(s), zσ(s)), 1

]
for some s = 1, ...S.

Given this lemma, (3.5) holds by Assumption M1, because for given s,
(
νs(dj−s, zs), 1

]
⊆
(
νs(dj−s, z

′
s), 1

]
for any dj−s where the direction of inclusion is given by (3.4). Now we prove Lemma D.1.

Consider djs = 1 for an s-th element djs in dj (j ≥ 1). Then there exists dj−1 such that dj−1
s = 0.

31Sometime we use the notation djσ to emphasize the permutation function σ(·) from which dj is generated.
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Suppose not. Then dj−1
s = 1 ∀dj−1, and thus we can construct dj−1 that is equal to dj , which

is contradiction. Therefore, in calculating Rj(z) ∪Rj−1(z), according to (D.2), what is involved

is the union of intervals associated with djs = 1 and dj−1
s = 0, while sharing the same opponent

dj−1
−s :

(
0, νs(dj−1

−s , zs)
]
∪
(
νs(dj−1

−s , zs), 1
]

= (0, 1]. This implies that Rj(z) ∪ Rj−1(z) is not a

function of z through νs(dj−1
−s , zs) for any, and nor is R≤j(z) ≡

⋃j
k=0Rk(z). On the other hand,

when djs = 0 for given s, the associated interval is
(
νs(dj−s, zs), 1

]
as shown in (D.2). Therefore,

R≤j(z) ≡
⋃j
k=0Rk(z) is a function of z only through νs(dj−s, zs) for some s. This proves Lemma

D.1.

D.3 Proof of Lemma 3.1

The following proposition is useful later:

Proposition D.1. Let R and Q be sets defined by Cartesian products: R =
∏S
s=1 rs and Q =∏S

s=1 qs where rs and qs are intervals in R. Then R ∩Q =
∏S
s=1 rs ∩ qs.

The proof of this proposition follows directly from the definition of R and Q.

The first part proves that Assumption EQ is equivalent to Rdj (z) ∩Rd̃j (z
′) = ∅ for all dj 6= d̃j

and j. For any dj and d̃j (dj 6= d̃j), the expression of Rdj (z) ∩Rd̃j (z
′) can be inferred as follows.

Under Assumption M1, we can simplify the notation of the payoff function as νsj (zs) ≡ νs(dj−s, zs)

when we compare it for different values of zs. First, there exists s∗ such that djs∗ = 1 and d̃js∗ = 0

(without loss of generality), otherwise it contradicts dj 6= d̃j . That is, Us∗ ∈
(

0, νs
∗
j−1(zs∗)

]
in Rdj (z)

and Us∗ ∈
(
νs
∗
j (z′s∗), 1

]
in Rd̃j (z

′). For other s 6= s∗, the pair is realized to be one of the four types:

(i) djs = 1 and d̃js = 0; (ii) djs = 0 and d̃js = 1; (iii) djs = 1 and d̃js = 1; (iv) djs = 0 and d̃js = 0.

Then the corresponding pair of intervals for Rdj (z) and Rd̃j (z
′), respectively, falls into one of the

four types: (i)
(

0, νsj−1(zs)
]

and
(
νsj (z

′
s), 1

]
; (ii)

(
νsj (zs), 1

]
and

(
0, νsj−1(z′s)

]
; (iii)

(
0, νsj−1(zs)

]
and

(
0, νsj−1(z′s)

]
; (iv)

(
νsj (zs), 1

]
and

(
νsj (z

′
s), 1

]
. Then by Proposition D.1, Rdj (z) ∩Rd̃j (z

′) is a

product of the intersections of the interval pairs. But the intersection resulting from
(

0, νs
∗
j−1(zs∗)

]
and

(
νs
∗
j (z′s∗), 1

]
is empty if and only if νs

∗
j−1(zs∗) ≤ νs

∗
j (z′s∗). Therefore, Rdj (z) ∩ Rd̃j (z

′) = ∅ for

all dj and d̃j (dj 6= d̃j) if and only if (z, z′) are such that νsj−1(zs) ≤ νsj (z′s) for all s. Additionally,

note that Rdj (z) ∩Rd̃j (z
′) = ∅ implies

R∗dj (z) ∩R∗
d̃j

(z′) = R∗dj (z
′) ∩R∗

d̃j
(z) = ∅ (D.4)
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for dj 6= d̃j , where R∗d(z) is the region that predicts equilibrium d.32 This last display is useful

later in other proofs later.

Moreover, note that any region RMj (z) of multiple equilibria for Dj given z is defined by the

intersection of the following interval pairs (and no more): (i)
(

0, νsj−1(zs)
]

and
(
νsj (zs), 1

]
; (ii)(

0, νsj−1(zs)
]

and
(

0, νsj−1(zs)
]
; (iii)

(
νsj (zs), 1

]
and

(
νsj (zs), 1

]
. Therefore, by Assumption SS

(i.e., νsj−1(zs) > νsj (zs)), such a region is defined by the following corresponding intersections: (i)(
νsj (zs), ν

s
j−1(zs)

]
; (ii)

(
0, νsj−1(zs)

]
; (iii)

(
νsj (zs), 1

]
. Therefore RMj (z) ∩RMj (z′) = ∅ if and only if

Rdj (z) ∩Rd̃j (z
′) = ∅ for dj 6= d̃j .

We now prove that, when (3.6) holds, it satisfies RMj (z) ∩ RMj (z′) = ∅ for all j. We first prove

the claim for S = 2 and then generalize it. The probabilities in (3.6) equal

Pr[D = (1, 1)|Z = z] = Pr[U ∈ R11(z)],

Pr[D = (0, 0)|Z = z′] = Pr[U ∈ R00(z′)].

Under independent unobserved types, these probabilities are equivalent to the volume of R11(z) and

R00(z′), respectively. We consider two isoquant curves that are subsets of the surface of circles in U :

a curve C11(z) that is strictly convex from its origin (0, 0) and delivers the same volume as R11(z)

and a curve C00(z′) that is strictly convex from its origin (1, 1) for R00(z′). Note that any region

of multiple equilibria lies between the curve and its opposite origin. That is, RM1 (z) lies between

C11(z) and (1, 1), and RM1 (z′) lies between C00(z′) and (0, 0). Therefore, if C11(z) ∩ C00(z′) = ∅

then RM1 (z) ∩RM1 (z′) = ∅, because the curves are strictly convex.

The remaining argument is to prove that C11(z) ∩C00(z′) = ∅. In order for this to be true, the

sum of the radii of C11(z) and C00(z′) should not be great than
√

2, the length of the space diagonal

of U = (0, 1]2. But note that the radius can be identified from the data by considering an extreme

scenario along each isoquant curve. First, consider the situation that player 1 is unprofitable to

enter irrespective of player 2’s decisions with z. Then U = R̃11(z)∪ R̃10(z) and it is easy to see that

1− Pr[U ∈ R̃11(z)] the radius of C11(z). Second, consider a situation that player 1 is profitable to

enter irrespective of player 2’s decisions with z′. Then U = R̃00(z′)∪R̃01(z′) and 1−Pr[U ∈ R̃00(z′)]

32Note that R∗d(z) is unknown to the econometrician even if all the players’ payoffs had been known, since the
equilibrium selection rule is unknown. This is in contrast to Rd(z) defined in Section D.1, which is purely determined
by the payoffs νsd−s

(zs),
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is the radius of C00(z′). Therefore, C11(z) ∩ C00(z′) = ∅ is implied by

√
2 > (1− Pr[U ∈ R̃11(z)]) + (1− Pr[U ∈ R̃00(z′)])

= (1− Pr[U ∈ R11(z)]) + (1− Pr[U ∈ R00(z′)]),

where the equality is by the definition of the isoquant curves.

To prove the general case for S ≥ 2, we iteratively apply the result from the previous case

of one less player, starting from S = 2. Suppose S = 3. Consider R111(z) and R001(z′). By

definition, these regions are analogous to the regions in the S = 2 case above on the surface

{(U1, U2, 0)} ⊂ U = (0, 1]3. Similarly, the following is the pairs of regions and corresponding

surfaces that are analogous to S = 2: R110(z) and R000(z′) on {(U1, U2, 1)}, R111(z) and R010(z′) on

{(U1, 0, U3)}, R101(z) and R000(z′) on {(U1, 1, U3)}, R111(z) and R100(z′) on {(0, U2, U3)}, R011(z)

and R000(z′) on {(1, U2, U3)}. But note that any region of multiple equilibria can be partitioned

and projected on the regions of multiple equilibria on these surface; see Figures 9 and 10. Therefore,

RMj (z) ∩RMj (z′) = ∅ for all j if

√
2 > (1− Pr[U ∈ Rdj (z)]) + (1− Pr[U ∈ Rdj−2(z′)])

= (1− Pr[D = dj |z]) + (1− Pr[D = dj−2|z′]) (D.5)

for all dj and dj−2 and j ∈ {2, 3}. Next, for S = 4, focusing on the surfaces of the hypercube U =

(0, 1]4, we can apply the result from S = 3, and so on. Therefore, in general, RMj (z) ∩RMj (z′) = ∅

for all j if (D.5) for any dj ∈ Dj , dj−2 ∈ Dj−2 and 2 ≤ j ≤ S.

D.4 Proof of Result (2.13)

Introduce

h11(z, z′) ≡ Pr[Y = 1,D = (1, 1)|Z = z]− Pr[Y = 1,D = (1, 1)|Z = z′],

h00(z, z′) ≡ Pr[Y = 1,D = (0, 0)|Z = z]− Pr[Y = 1,D = (0, 0)|Z = z′],

h10(z, z′) ≡ Pr[Y = 1,D = (1, 0)|Z = z]− Pr[Y = 1,D = (1, 0)|Z = z′],

h01(z, z′) ≡ Pr[Y = 1,D = (0, 1)|Z = z]− Pr[Y = 1,D = (0, 1)|Z = z′].
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Then h defined in (2.9) satisfies h = h11 + h00 + h10 + h01. Let R∗10 and R∗01 be the regions that

predict D = (1, 0) and D = (0, 1), respectively, which is unknown since the equilibrium selection

mechanism is unknown. Suppose (z, z′) are such that EQ (or equivalently (??)) holds. Also,

suppose (z, z′) are such that (3.4) holds, then we have R11(z) ⊃ R11(z′) and R00(z) ⊂ R00(z′),

respectively, by Theorem 3.1. Define

∆(z, z′) ≡ {R∗10(z) ∪R∗01(z)} \R1(z′), (D.6)

−∆(z, z′) ≡
{
R∗10(z′) ∪R∗01(z′)

}
\R1(z). (D.7)

Consider partitions ∆(z, z′) = ∆1(z, z′)∪∆2(z, z′) and −∆(z, z′) = −∆1(z, z′)∪−∆2(z, z′) such

that

∆1(z, z′) ≡ R∗10(z)\R1(z′), ∆2(z, z′) ≡ R∗01(z)\R1(z′),

−∆1(z, z′) ≡ R∗10(z′)\R1(z), −∆2(z, z′) ≡ R∗01(z′)\R1(z).

That is, ∆1(z, z′) and −∆1(z, z′) are regions of R∗10 exchanged with the regions for D = (0, 0) and

D = (1, 1), respectively, and +∆2(z, z′) and −∆2(z, z′) are for R∗01.

Before proceeding, we introduce the following general rule that is useful later: for a uniform

random vector Ũ and two sets B and B′ contained in Ũ and for a r.v. ε and set A ⊂ E ,

Pr[ε ∈ A, Ũ ∈ B]− Pr[ε ∈ A, Ũ ∈ B′] = Pr[ε ∈ A, Ũ ∈ B\B′]− Pr[ε ∈ A, Ũ ∈ B′\B]. (D.8)

Since we do not use the variation in X, we suppress it throughout. Let µd ≡ µ0 + µ1d1 + µ2d2 for

simplicity. Now, by Assumption IN,

h10(z, z′) = Pr[ε ≤ µ10,U ∈ R∗10(z)]− Pr[ε ≤ µ10,U ∈ R∗10(z′)]

= Pr[ε ≤ µ10,U ∈ R∗10(z)\R∗10(z′)]− Pr[ε ≤ µ10,U ∈ R∗10(z′)\R∗10(z)]

= Pr[ε ≤ µ10,U ∈ ∆1(z, z′)]− Pr[ε ≤ µ10,U ∈ −∆1(z, z′)]
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where the second equality is by (D.8) and the third equality is by the following derivation:

R∗10(z)\R∗10(z′) =
[{
R∗10(z) ∩R1(z′)c

}
\R∗10(z′)

]
∪
[{
R∗10(z) ∩R1(z′)

}
\R∗10(z′)

]
=
[{
R∗10(z) ∩R1(z′)c

}]
∪
[{
R∗10(z′) ∩R1(z)

}
\R∗10(z′)

]
= ∆1(z, z′),

where the first equality is by the distributive law and U = R1(z′)c ∪R1(z′), the second equality is

by R1(z′)c = R∗10(z′)c∩R∗01(z′)c (the first term) and by Assumption EQ (the second term), and the

last equality is by the definition of ∆1(z, z′) and {R∗10(z′) ∩R1(z)} \R∗10(z′) being empty. Analo-

gously, one can show that R∗10(z′)\R∗10(z) = −∆1(z, z′) using Assumption EQ and the definition of

−∆1(z, z′). Similarly,

h01(z, z′) = Pr[ε ≤ µ01,U ∈ R∗01(z)]− Pr[ε ≤ µ01,U ∈ R∗01(z′)]

= Pr[ε ≤ µ01,U ∈ R∗01(z)\R∗01(z′)]− Pr[ε ≤ µ01,U ∈ R∗01(z′)\R∗01(z)]

= Pr[ε ≤ µ01,U ∈ ∆2(z, z′)]− Pr[ε ≤ µ01,U ∈ −∆2(z, z′)].

Also, by the definitions of the partitions,

h11(z, z′) = Pr[ε ≤ µ11,U ∈ −∆(z, z′) ∪A∗]

= Pr[ε ≤ µ11,U ∈ −∆1(z, z′)] + Pr[ε ≤ µ11,U ∈ −∆2(z, z′)]

+ Pr[ε ≤ µ11,U ∈ A∗]

since −∆(z, z′) and A∗ are disjoint, and

h00(z, z′) =− Pr[ε ≤ µ00,U ∈ ∆(z, z′) ∪A∗]

=− Pr[ε ≤ µ00,U ∈ ∆1(z, z′)]− Pr[ε ≤ µ00,U ∈ ∆2(z, z′)]

− Pr[ε ≤ µ00,U ∈ A∗]
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since ∆(z, z′) and A∗ are disjoint. Now combining all the terms yields

h(z, z′) = Pr[ε ≤ µ11,U ∈ −∆1(z, z′)]− Pr[ε ≤ µ10,U ∈ −∆1(z, z′)]

+ Pr[ε ≤ µ11,U ∈ −∆2(z, z′)]− Pr[ε ≤ µ01,U ∈ −∆2(z, z′)]

+ Pr[ε ≤ µ10,U ∈ ∆1(z, z′)]− Pr[ε ≤ µ00,U ∈ ∆1(z, z′)]

+ Pr[ε ≤ µ01,U ∈ ∆2(z, z′)]− Pr[ε ≤ µ00,U ∈ ∆2(z, z′)].

+ Pr[ε ≤ µ11,U ∈ A∗]− Pr[ε ≤ µ00,U ∈ A∗]

In this expression, each set of U has a corresponding set in the expression (2.12) of the main text:

−∆1(z, z′) = ∆a , −∆2(z, z′) = ∆b, ∆1(z, z′) = ∆c, ∆2(z, z′) = ∆d, and A∗ = ∆e. Then, as

already argued in the text, µ1,d−s − µ0,d−s share the same signs for all s and ∀d−s ∈ {0, 1} and

therefore sgn{h(z, z′)} = sgn
{
µ1,d−s − µ0,d−s

}
.

D.5 Proof of Theorem 3.2

To reduce the notation, we suppress the conditioning of X = x throughout the proof. For a set

D̃ ⊂ D, let p̃D̃(z) ≡ Pr[Y = 1,D ∈ D̃|Z = z] and pD̃(z) ≡ Pr[D ∈ D̃|Z = z]. Then the bounds

(3.10) and (3.11) can be rewritten as

Udj = inf
z∈Z

{
p̃D≥(dj)(z) + pD\D≥(dj)(z)

}
, Ldj = sup

z∈Z
p̃D≤(dj)(z).

Note that p̃D≥(dj)(z) = Pr[Y = 1|Z = z] − p̃D\D≥(dj)(z). Suppose z, z′ are chosen such that

pd(z) − pd(z′) = Pr[U ∈ ∆d(z, z′)] − Pr[U ∈ −∆d(z, z′)] > 0 ∀D≥(dj), where ∆d and −∆d are

defined in (D.20) and (D.21) below. Observe that each term in Udj satisfies

p̃D≥(dj)(z)− p̃D≥(dj)(z
′) =

∑
d∈D≥(dj)

(
Pr[ε ≤ µd,U ∈ ∆d(z, z′)]− Pr[ε ≤ µd,U ∈ −∆d(z, z′)]

)
,

pD\D≥(dj)(z)− pD\D≥(dj)(z
′) = −(pD≥(dj)(z)− pD≥(dj)(z

′))

= −

 ∑
d∈D≥(dj)

Pr[U ∈ ∆d(z, z′)]− Pr[U ∈ −∆d(z, z′)]

 ,
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and thus

p̃D≥(dj)(z) + pD\D≥(dj)(z)−
{
p̃D≥(dj)(z

′) + pD\D≥(dj)(z
′)
}

= −
∑

d∈D≥(dj)

(
Pr[ε > µd,U ∈ ∆d(z, z′)]− Pr[ε > µd,U ∈ −∆d(z, z′)]

)
< 0.

Then this relationship creates a partial ordering of p̃D≥(dj)(z)+pD\D≥(dj)(z) as a function of z. Ac-

cording to this ordering, p̃D≥(dj)(z)+pD\D≥(dj)(z) takes its smallest value as maxd(z)∈D≥(dj) pd(z)(z)

takes its largest value. Therefore, by (3.12),

Udj = inf
z∈Z

{
p̃D≥(dj)(z) + pD\D≥(dj)(z)

}
= p̃D≥(dj)(z̄) + pD\D≥(dj)(z̄).

By a similar argument, Ldj = supz∈Z p̃D≤(dj)(z) = p̃D≤(dj)(z).

To prove that these bounds on E[Ydj ] are sharp, it suffices to show that for sj ∈ [Ldj , Udj ], there

exists a density function f∗ε,U such that the following claims hold:

(A) f∗ε|U is strictly positive on R.

(B) The proposed model is consistent with the data: ∀d,

Pr[D = d|Z = z] = Pr[U∗ ∈ Rd(z)],

Pr[Y = 1|D = d,Z = z] = Pr[ε∗ ≤ µd|U∗ ∈ Rd(z)],

(C) The proposed model is consistent with the specified values of E[Ydj ]: Pr[ε∗ ≤ µdj ] = sj .

An argument similar to the proof of Theorem 3.1 and the partial ordering above establish the

monotonicity of the event U ∈
⋃

d∈D≥(dj)Rd(z) (and U ∈
⋃

d∈D≤(dj)Rd(z)) w.r.t. z. For example,

for z, z′ chosen above, we have that pD≥(dj)(z) − pD≥(dj)(z
′) > 0, and thus

⋃
d∈D≥(dj)Rd(z) ⊃⋃

d∈D≥(dj)Rd(z′), which implies

1

U ∈ ⋃
d∈D≥(dj)

Rd(z)

− 1

U ∈ ⋃
d∈D≥(dj)

Rd(z′)

 = 1

U ∈ ⋃
d∈D≥(dj)

Rd(z)\
⋃

d∈D≥(dj)

Rd(z)

 .
(D.9)

Given 1[D ∈ D≥(dj)] = 1[U ∈
⋃

d∈D≥(dj)Rd(Z)], (D.9) is analogous to a scalar treatment decision

D̃ = 1[D̃ = 1] = 1[Ũ ≤ P̃ ] with a scalar instrument P̃ , where 1[Ũ ≤ p′]− 1[Ũ ≤ p] = 1[p ≤ Ũ ≤ p′]
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for p′ > p. Based on this result and the results for the first part of Theorem 3.2, we can modify the

proof of Theorem 2.1(iii) in Shaikh and Vytlacil (2011) to show (A)–(C).

D.6 Proof of Lemma 3.2

We introduce a lemma that establishes the connection between Theorem 3.1 and Lemma 3.2.

Lemma D.2. Based on the results in Theorem 3.1, h̃(z, z′, x̃) ≡
∑S

j=0 hj(z, z
′, xj) satisfies

h̃(z, z′, x̃) =
S∑
j=1

∑
(1,d−s)∈Dj

ˆ
∆(1,d−s),(0,d−s)

{ϑ((1,d−s), xj ;u)− ϑ((0,d−s), xj−1;u)}du, (D.10)

where ∆d,d̃ = ∆d,d̃(z, z′) is a partition of ∆d(z, z′) defined below.

As a special case of this lemma, h̃(z′, z, x, ..., x) = h(z′, z, x) can be expressed as

h(z′, z, x) =
∑
d−s

ˆ
∆(1,d−s),(0,d−s)

{ϑ((1,d−s), x;u)− ϑ((0,d−s), x;u)}du. (D.11)

We prove Lemma D.2 by drawing on the result of Theorem 3.1. We first establish the relationship

between (Rj(z),Rj(z
′)) and (Rj−1(z),Rj−1(z′)), and then establish refined results for individual

equilibrium regions. By Theorem 3.1, for z and z′ such that (3.4) holds, we have

Rj(z) ⊆ Rj(z′) (D.12)

for j = 0, ..., S, including RS(z) = RS(z′) = U as a trivial case. For those z and z′, introduce

notation

∆j(z, z
′) ≡ Rj(z)\Rj(z

′), (D.13)

−∆j(z, z
′) ≡ Rj(z

′)\Rj(z), (D.14)

and

∆j(z, z′) ≡ Rj(z)\Rj(z′). (D.15)
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Note that, for j = 1, ..., S,

Rj(·) = Rj(·)\Rj−1(·), (D.16)

since Rj(z) ≡
⋃j
k=0Rk(z). Fix j = 1, ..., S. Consider

∆j(z, z
′) =

(
Rj(z) ∩Rj−1(z)c

)
∩
(
Rj(z′) ∩Rj−1(z′)c

)c
=
(
Rj(z) ∩Rj−1(z)c

)
∩
(
Rj(z′)c ∪Rj−1(z′)

)
=
(
Rj(z) ∩Rj−1(z)c ∩Rj(z′)c

)
∪
(
Rj(z) ∩Rj−1(z)c ∩Rj−1(z′)

)
=
{(
Rj(z)\Rj(z′)

)
∩Rj−1(z)c

}
∪
{(
Rj−1(z′)\Rj−1(z)

)
∩Rj(z)

}
= ∆j−1(z′, z) ∩Rj(z),

where the first equality is by plugging in (D.16) into (D.13), the third equality is by the distributive

law, and the last equality is by (D.12) and hence
(
Rj(z)\Rj(z′)

)
∩Rj−1(z)c = ∅. But

∆j−1(z′, z)\Rj(z) = ∆j−1(z′, z)\
(
∆j−1(z′, z) ∩Rj(z)

)
.

Symmetrically, by changing the role of z and z′, consider

−∆j(z, z
′) =

(
Rj(z′) ∩Rj−1(z′)c

)
∩
(
Rj(z) ∩Rj−1(z)c

)c
=
{(
Rj(z′)\Rj(z)

)
∩Rj−1(z′)c

}
∪
{(
Rj−1(z)\Rj−1(z′)

)
∩Rj(z′)

}
= ∆j(z′, z) ∩Rj−1(z′)c,

where the last equality is by (D.12) that Rj−1(z) ⊂ Rj−1(z′). But

∆j(z′, z) ∩Rj−1(z′)c = ∆j(z′, z)\
(
∆j(z′, z)\Rj−1(z′)

)
.

Note that

∆j−1(z′, z)\Rj(z) = ∆j(z′, z)\Rj−1(z′) ≡ A∗, (D.17)

57



because

∆j−1(z′, z)\Rj(z) = Rj−1(z′) ∩Rj−1(z)c ∩Rj(z)c = Rj−1(z′) ∩Rj(z)c

= Rj(z′) ∩Rj(z)c ∩Rj−1(z′) = ∆j(z′, z) ∩Rj−1(z′),

where the second equality is by Rj−1(z) ⊂ Rj(z) and the third equality is by Rj−1(z′) ⊂ Rj(z′).

In sum,

∆j(z, z
′) = ∆j−1(z′, z)\A∗, −∆j(z, z

′) = ∆j(z′, z)\A∗. (D.18)

(D.18) shows how the outflow (∆j(z, z
′)) and inflow (−∆j(z, z

′)) of Rj can be written in terms of

the inflows of Rj−1 and Rj , respectively. And figuratively, A∗ adjusts for the “leakage” when the

change from z to z′ is relatively large. Therefore, by (D.18), we have the inflow and outflow match

result between Rj and Rj−1:

∆j(z, z
′) = −∆j−1(z, z′) (D.19)

Now, we want to decompose this match into matches of flows in individual Rdj ’s. Define

∆dj (z, z
′) ≡ R∗dj (z)\R∗dj (z

′), (D.20)

−∆dj (z, z
′) ≡ R∗dj (z

′)\R∗dj (z). (D.21)

By Assumption EQ (or (D.4)),

∆dj (z, z
′) = R∗dj (z)\Rj(z

′),

−∆dj (z, z
′) = R∗dj (z

′)\Rj(z),

and therefore,

∆j(z, z
′) =

⋃
dj

∆dj (z, z
′),

−∆j(z, z
′) =

⋃
dj

−∆dj (z, z
′),
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since Rj(·) =
⋃

dj R
∗
dj

(·). Also, note that {∆dj (z, z
′)}dj are disjoint since {R∗

dj
(z)}dj are dis-

joint. Therefore, {∆dj (z, z
′)}dj and {−∆dj (z, z

′)}dj are partitions of ∆j(z, z
′) and −∆j(z, z

′),

respectively. Then, suppressing (z, z′), rewrite (D.19) as

⋃
dj

∆dj =
⋃
dj−1

−∆dj−1 .

Note that, for any dj and dj−1, ∆dj does not necessarily coincide with −∆dj−1 . Therefore, we

proceed as follows. For a given d̄j , we further partition ∆d̄j by considering {∆d̄j ,dj−1}dj−1 with

∆d̄j ,dj−1 = ∅ for dj 6= d̄j and dj ∈ D>(dj−1). Likewise, for a given d̄j−1, partition −∆d̄j−1 by

considering {−∆d̄j−1,dj}dj with −∆d̄j−1,dj = ∅ for dj−1 6= d̄j−1 and dj−1 ∈ D<(dj). Then,

∆dj =
⋃
dj−1

∆dj ,dj−1 , (D.22)

−∆dj−1 =
⋃
dj

−∆dj−1,dj , (D.23)

with

∆dj ,dj−1 = −∆dj−1,dj . (D.24)

Now, for a given dj and j = 1, ..., S − 1,

hdj (z, z
′, x)

=

ˆ
R∗

dj
(z)
ϑ(dj , x;u)du−

ˆ
R∗

dj
(z′)

ϑ(dj , x;u)du

=

ˆ
∆

dj

ϑ(dj , x;u)du−
ˆ
−∆

dj

ϑ(dj , x;u)du

=
∑
dj−1

ˆ
∆

dj ,dj−1

ϑ(dj , x;u)du−
∑
dj+1

ˆ
−∆

dj ,dj+1

ϑ(dj , x;u)du

=
∑
dj−1

ˆ
∆

dj ,dj−1

ϑ(dj , x;u)du−
∑
dj+1

ˆ
∆

dj+1,dj

ϑ(dj , x;u)du, (D.25)
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where the second equality is by (D.22)–(D.23), and the third equality is by (D.24). Also, for j = 0,

ˆ
R∗

d0
(z)
ϑ(d0, x;u)du−

ˆ
R∗

d0
(z′)

ϑ(d0, x;u)du

= −
∑
d1

ˆ
∆d1,d0

ϑ(d0, x;u)du, (D.26)

since ∆d0(z, z′) = ∅ by the choice of (z, z′). And, for j = S,

ˆ
R∗

dS
(z)
ϑ(dS , x;u)du−

ˆ
R∗

dS
(z′)

ϑ(dS , x;u)du

=
∑
dS−1

ˆ
∆

dS,dS−1

ϑ(dS , x;u)du, (D.27)

since −∆S(z, z′) = ∅ by the choice of (z, z′). Therefore, by combining (D.25)–(D.27), we have

h(z, z′, x) =

S∑
j=0

∑
dj

{ˆ
R∗

dj
(z)
ϑ(dj , x;u)du−

ˆ
R∗

dj
(z′)

ϑ(dj , x;u)du

}

=
S∑
j=0

∑
dj

{∑
dj−1

ˆ
∆

dj ,dj−1

ϑ(dj , x;u)du−
∑
dj+1

ˆ
∆

dj+1,dj

ϑ(dj , x;u)du

}

=

S∑
j=1

∑
dj

∑
dj−1

ˆ
∆

dj ,dj−1

{ϑ(dj , x;u)− ϑ(dj−1, x;u)}du

=
∑
d−s

ˆ
∆(1,d−s),(0,d−s)

{ϑ((1,d−s), x;u)− ϑ((0,d−s), x;u)}du,

where the last equality is by the definition of ∆dj ,dj−1 . Also, by a similar argument, we can show

that

h̃(z, z′, x̃) =
S∑
j=1

∑
dj

∑
dj−1

ˆ
∆

dj ,dj−1

{ϑ(dj , xj ;u)− ϑ(dj−1, xj ;u)}du

=

S∑
j=1

∑
(1,d−s)∈Dj

ˆ
∆(1,d−s),(0,d−s)

{ϑ((1,d−s), xj ;u)− ϑ((0,d−s), xj−1;u)}du. (D.28)

This completes the proof of Lemma D.2.

Now we prove Lemma 3.2. For part (i), suppose that ϑ(1,d−s, x;u) − ϑ(0,d−s, x;u) > 0 a.e.

u ∀d−s, s. Then by (D.11), h > 0. Conversely, if h > 0 then it should be that ϑ(1,d−s, x;u) −

ϑ(0,d−s, x;u) > 0 a.e. u ∀d−s, s. Suppose not and suppose ϑ(1,d−s, x;u)−ϑ(0,d−s, x;u) ≤ 0 with
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positive measure for some d−s and s. Then by Assumption M, this implies that ϑ(1,d−s, x;u) −

ϑ(0,d−s, x;u) ≤ 0 ∀d−s, s a.e. u, and thus h ≤ 0 which is contradiction. By applying similar

arguments for other signs, we have the desired result. Now we prove part (ii). Note that (D.28) can

be rewritten as

h̃(z, z′, x̃)−
∑
k 6=j

∑
(1,d−s)∈Dk

ˆ
∆(1,d−s),(0,d−s)

{ϑ((1,d−s), xk;u)− ϑ((0,d−s), xk−1;u)} du

=
∑

(1,d−s)∈Dj

ˆ
∆(1,d−s),(0,d−s)

{ϑ((1,d−s), xj ;u)− ϑ((0,d−s), xj−1;u)} du. (D.29)

We prove the case ι = 1; the proof for the other cases follows symmetrically. For k 6= j, when

−ϑ((1,d−s), xk;u) + ϑ((0,d−s), xk−1;u) > 0 a.e. u ∀(1,d−s) ∈ Dk, it satisfies

−
∑

(1,d−s)∈Dk

ˆ
∆(1,d−s),(0,d−s)

{ϑ((1,d−s), xk;u)− ϑ((0,d−s), xk−1;u)} du > 0.

Combining with h̃(z, z′, x̃) > 0 implies that the l.h.s. of (D.29) is positive. This implies that

ϑ((1,d−s), xj ;u) − ϑ((0,d−s), xj−1;u) > 0 a.e. u ∀(1,d−s) ∈ Dj . If not, then it results in a

contradiction as in the previous argument.

D.7 Proof of Theorem 3.3

Consider

E[Ydj |X = x] = E[Y |D = dj ,Z = z, X = x] Pr[D = dj |Z = z]

+
∑
d′ 6=dj

E[Ydj |D = d′,Z = z, X = x] Pr[D = d′|Z = z]. (D.30)

Consider j′ < j for E[Ydj |D = dj
′
,Z, X] in (D.30) with dj

′ ∈ D<(dj). Then, for example, if

(xk, xk−1) ∈ Xk,k−1(−1)∪Xk,k−1(0) for j′+ 1 ≤ k ≤ j, then ϑ(dj , x;u) ≤ ϑ(dj
′
, x′;u) where x = xj
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and x′ = xj′ by transitively applying (3.13). Therefore

E[Ydj |D = dj
′
,Z = z, X = x] = E[θ(dj , x, ε)|U ∈ Rdj′ (z),Z = z, X = x]

=
1

Pr[U ∈ Rdj′ (z)]

ˆ
R

dj
′ (z)

ϑ(dj , x;u)du

≤ 1

Pr[U ∈ Rdj′ (z)]

ˆ
R

dj
′ (z)

ϑ(dj
′
, x′;u)du

= E[θ(dj
′
, x′, ε)|U ∈ Rdj′ (z),Z = z, X = x′]

= E[Y |D = dj
′
,Z = z, X = x′]. (D.31)

Symmetrically, for j′ > j, if (xk, xk−1) ∈ Xk,k−1(1)∪Xk,k−1(0) for j+ 1 ≤ k ≤ j′, then ϑ(dj , x;u) ≤

ϑ(dj
′
, x′;u) where dj

′ ∈ D>(dj), x = xj and x′ = xj′ . Therefore the same bound as (D.31)

is derived. Given these results, to collect all x′ ∈ X that yield ϑ(dj , x;u) ≤ ϑ(dj
′
, x′;u) for

dj
′ ∈ D<(dj) ∪ D>(dj), we can construct a set

x′ ∈
{
xj′ : (xk, xk−1) ∈ Xk,k−1(−1) ∪ Xk,k−1(0) for j′ + 1 ≤ k ≤ j, xj = x

}
∪
{
xj′ : (xk, xk−1) ∈ Xk,k−1(1) ∪ Xk,k−1(0) for j + 1 ≤ k ≤ j′, xj = x

}
.

Then we can further shrink the bound in (D.31) by taking the infimum over all x′ in this set. The

lower bound on E[Ydj |D = dj
′
,Z = z, X = x] can be constructed by simply choosing the opposite

signs in the preceding argument. Since the other terms in (D.30) are observed, we have the desired

bounds in the theorem.

E Airline and Pollution Data

We combine data spanning the period 2000–2015 from two sources: airline data from the U.S. De-

partment of Transportation and pollution data from the Environmental Protection Agency (EPA).

Airline Data. Our first data source contains airline information and combines publicly available

data from the Department of Transportation’s Origin and Destination Survey (DB1B) and Domestic

Segment (T-100) database. These datasets have been used extensively in the literature to analyze

the airline industry (see, e.g., Borenstein (1989), Berry (1992), Ciliberto and Tamer (2009), and

more recently, Li et al. (2018) and Ciliberto et al. (2018)). The DB1B database is a quarterly sample
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of all passenger domestic itineraries. The dataset contains coupon-specific information, including

origin and destination airports, number of coupons, the corresponding operating carriers, number of

passengers, prorated market fare, market miles flown, and distance. The T-100 dataset is a monthly

census of all domestic flights broken down by airline, and origin and destination airports.

Our time-unit of analysis is a quarter and we define a market as the market for air connection

between a pair of airports (regardless of intermediate stops) in a given quarter.33 We restrict the

sample to include the top 100 metropolitan statistical areas (MSA’s), ranked by population at the

beginning of our sample period. We follow Berry (1992) and Ciliberto and Tamer (2009) and define

an airline as actively serving a market in a given quarter, if we observe at least 90 passengers

in the DB1B survey flying with the airline in the corresponding quarter.34 We exclude from our

sample city pairs in which no airline operates in the whole sample period. Notice that we do include

markets that are temporarily not served by any airline. This leaves us with 181,095 market-quarter

observations.

In our analysis, we allow for airlines to have a heterogeneous effect on pollution, and to simplify

computation, in each market we allow for six potential participants: American (AA), Delta (DL),

United (UA), Southwest (WN), a medium-size airline, and a low-cost carrier.35 The latter is not

a bad approximation to the data in that we rarely observe more than one medium-size or low-cost

in a market but it assumes that all low-cost airlines have the same strategic behavior, and so do

the medium airlines. Table 1 shows the number of firms in each market broken down by size as

measured by population. As the table shows, market size alone does not explain market structure,

a point first made by Ciliberto and Tamer (2009).

In our application, we consider two instruments for the entry decisions. The first is the airport

presence of an airline proposed by Berry (1992). For a given airline, this variable is constructed as

the number of markets it serves out of an airport as a fraction of the total number of markets served

by all airlines out of the airport. A hub-and-spoke network allows firms to exploit demand-side and

cost-side economies, which should affect the firm’s profitability. While Berry (1992) assumes that

an airline’s airport presence only affects its own profits (and hence, is excluded from rivals’ profits),

33In cities that operate more than one airport, we assume that flights to different airports in the same metropolitan
area are in separate markets.

34This corresponds to approximately the number of passengers that would be carried on a medium-size jet operating
once a week.

35That is, to limit the number of potential market structures, we lump together all the low cost carriers into one
category, and Northwest, Continental, America West, and USAir under the medium airline type.
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Table 1: Distribution of the Number of Carriers by Market Size

Market size

# firms Large Medium Small Total

0 7.96 8.20 8.62 8.18
1 41.18 22.53 20.58 30.30
2 28.14 23.41 21.25 25.04
3 12.65 20.00 16.67 16.05
4 7.65 14.72 15.17 11.51
5 1.98 9.90 16.48 7.80
6+ 0.52 1.23 2.21 1.12

# markets 79,326 64,191 37,578 181,095

Table 2: Airline Summary Statistics

American Delta United Southwest medium low-cost

Market presence (0/1) mean 0.44 0.57 0.28 0.25 0.56 0.17
sd 0.51 0.51 0.46 0.44 0.51 0.38

Airport presence (%) mean 0.43 0.56 0.27 0.25 0.39 0.10
sd 0.17 0.18 0.16 0.18 0.14 0.08

Cost (%) mean 0.71 0.41 0.76 0.29 0.22 0.04
sd 1.56 1.28 1.43 0.83 0.60 0.17

Ciliberto and Tamer (2009) argue that this may not be the case in practice, since airport presence

might be a measure of product differentiation, rendering it likely to enter the profit function of

all firms through demand. While an instrument that enters all of the profit functions is fine in

our context (see Appendix C.4), we also consider the instrument proposed by Ciliberto and Tamer

(2009), which captures shocks to the fixed cost of providing a service in a market. This variable,

which they call cost, is constructed as the percentage of the nonstop distance that the airline must

travel in excess of the nonstop distance, if the airline uses a connecting instead of a nonstop flight.36

Arguably, this variable only affects its own profits and is excluded from rivals’ profits.

Table 2 presents the summary statistics of the airline related variables. Of the leading airlines, we

see that American and Delta are present in about half of the markets, while United and Southwest

are only present in about a quarter of the markets. American and Delta tend to dominate the

airports in which they operate more than United and Southwest. From the cost variable, we see

that both American and United tend to operate a hub-and-spoke network, while Southwest (and to

a lesser extent Delta) operates most markets nonstop.

36Mechanically, the variable is constructed as the difference between the sum of the distances of a market’s endpoints
and the closest hub of an airline, and the nonstop distance between the endpoints, divided by the nonstop distance.
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Pollution Data. The second component of our dataset is the air pollution data. The EPA

compiles a database of outdoor concentrations of pollutants measured at more than 4,000 monitoring

stations throughout the U.S., owned and operated mainly by state environmental agencies. Each

monitoring station is geocoded, and hence, we are able to merge these data with the airline dataset

by matching all the monitoring stations that are located within a 10km radius of each airport in

our first dataset.

The principal emissions of aircraft include the greenhouse gases carbon dioxide (CO2) and

water vapor (H2O), which have a direct impact on climate change. Aircraft jet engines also produce

nitric oxide (NO) and nitrogen dioxide (NO2) (which together are termed nitrogen oxides (NOx)),

carbon monoxide (CO), oxides of sulphur (SOx), unburned or partially combusted hydrocarbons

(also known as volatile organic compounds or VOC’s), particulates, and other trace compounds

(see, Federal Aviation Administration (2015)). In addition, ozone (O3) is formed by the reaction

of VOC’s and NOx in the presence of heat and sunlight. The set of pollutants other than CO2

are more pernicious in that they can harm human health directly and can result in respiratory,

cardiovascular, and neurological conditions. Research to date indicates that fine particulate matter

(PM) is responsible for the majority of the health risks from aviation emissions, although ozone has

a substantial health impact too.37 Therefore, as our measure of pollution, we will consider both.

Our measure of ozone is a quarterly mean of daily maximum levels in parts per million. In terms

of PM, as a general rule, the smaller the particle the further it travels in the atmosphere, the longer it

remains suspended in the atmosphere, and the more risk it poses to human health. PM that measure

less than 2.5 micrometer can be readily inhaled, and thus, potentially pose increased health risks.

The variable PM2.5 is a quarterly average of daily averages and is measured in micrograms/cubic

meter. For each airport in our sample, we take an average (weighted by distance to the airport) of

the data from all air monitoring stations within a 10km radius. The top panel of Table 3 shows the

summary statistics of the pollution measures.

Other Market-Level Controls. We also include in our analysis market-level covariates that

may affect both market structure and pollution levels. In particular, we construct a measure of

market size by computing the (geometric) mean of the MSA populations at the market endpoints

and a measure of economic activity by computing the average per capita income at the market

37See Federal Aviation Administration (2015).
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Table 3: Market-level Summary Statistics

Mean Std. Dev.

Pollution
Ozone (O3) .0477 .0056
Particulate matter (PM2.5) 8.3881 2.5287

Other controls
Market size (pop.) 2307187.8 1925533.4
Income (per capita) 34281.6 4185.5

# of markets 181,095

endpoints, using data from the Regional Economic Accounts of the Bureau of Economic Analysis.

Finally, as we mentioned in Section 3.4, having access to data on a variable that affects pollution

but is excluded from the airline participation decisions can greatly help in calculating the bounds

of the ATE. Therefore, we construct a variable that measures the economic activity of pollution

related industries (manufacturing, construction, and transportation other than air transportation)

in a given market (MSA) as a fraction of total economic activity in that market, again, using data

from the Regional Economic Accounts of the Bureau of Economic Analysis.
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Figure 5: Bounds on the ATE with different strength of vector Z = (Z1, Z2) of binary instruments
when X takes three different values (|X | = 3).

This figure (and the next) depicts the simulated bounds for E[Y11 − Y00|X = 0] = 0.2 (the straight dotted

line). The horizontal axis is the value of the coefficients on the instruments (γ1 = γ2 = γ). The stronger

the instruments, the narrower the bounds are. The cross lines are Manski (1990)’s bounds. The red solid

lines are our bounds using only the variation of Z, which identify the sign of the ATE. The blue circle lines

are bounds where the variation of X, the exogenous variable excluded from the treatment selection process,

is also used. Lastly, the green solid line is the simulated TSLS estimand assuming a linear simultaneous

equations model.
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Figure 6: Bounds with different strength of vector Z = (Z1, Z2) of binary instrument when X takes
fifteen different values (|X | = 15).

Figure 7: Bounds under Different Strength of X with |X | = 15.

The horizontal axis is the value of the coefficient on the exogenous variable X excluded from the treatment

selection process. The jumps in the bounds when both the variations of Z and X are used (the blue circle

lines) are because different inequalities are involved for different values of the coefficient; see the text for

details.
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Figure 8: Bounds under Different Strength of Interaction with |X | = 3.

The horizontal axis is the value of the coefficients on the opponents’ decisions (δ1 = δ2 = δ). The smaller the

interaction effects, the narrower the bounds are. Again, the jumps in the bounds when both the variations

of Z and X are used (the blue circle lines) are because different inequalities are involved for different values

of the coefficient.
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