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1. Introduction

This paper examines the identification of a class of bivariate
threshold crossing models that nests bivariate probit models as a
special case. The bivariate probit model was introduced in Heck-
man (1978) as one specification of simultaneous equations models
for latent variables, and is commonly used in applied studies,
such as Evans and Schwab (1995), Neal (1997), Goldman et al.
(2001), Altonji et al. (2005), Bhattacharya et al. (2006), and Rhine
et al. (2006), to name a few. Although the model has drawn much
attention in the literature, relatively little research has been done
to analyze the identification even in this restricted model.

There are three papers in the literature that have studied
identification of bivariate probit models: Freedman and Sekhon
(2010), Wilde (2000), and Meango and Mourifié (2014). Freedman
and Sekhon (2010) provide formal identification results for bivari-
ate probit models, though they assume (and their proof strategy
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Heckman (1978) discusses identification via a maximum likelihood estimation
framework in a model where one of the latent dependent variables is observed in
the simultaneous equations model. In a framework where both are not observed,
however, identification analysis through calculating the second derivative of a
maximum likelihood criterion function is problematic since it is analytically hard
to solve.
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critically relies upon the assumption) that one of the exogenous
regressors has large support. The large support condition is restric-
tive and limits the applicability of their analysis. Wilde (2000)
also considers the identification of bivariate probit models. His
identification analysis is limited to simply counting the number of
unknown parameters and number of informative non-redundant
probabilities in the likelihood function, i.e., the number of equa-
tions. His analysis only establishes a necessary condition for global
identification since there may still exist multiple solutions in a
system of nonlinear equations where the number of equations is
at least as large as the number of unknown parameters. In fact,
Meango and Mourifié (2014) show that, using as many equations
as the number of parameters, there can be multiple solutions in a
bivariate probit model where there are common binary exogenous
regressors but no excluded instruments.’

In this paper, we derive identification results for a class of
models specified by a triangular system of two equations with
binary endogenous variables, where we generalize the bivariate
normality assumption on the latent error terms of a bivariate probit
model through the use of copulas. In particular, instead of requiring
that the joint distribution of latent error terms be bivariate normal,
we allow the marginal distributions to be arbitrary but known,

2 Building upon Meango and Mourifié (2014) and the present paper, Han and
Lee (2017) show that the solution is not unique even when exploiting the full set
of equations implied by the model. These results demonstrate that Wilde’s (2000)
counting exercise is not sufficient for identification analysis.


http://dx.doi.org/10.1016/j.jeconom.2017.04.001
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2017.04.001&domain=pdf
mailto:sukjin.han@austin.utexas.edu
mailto:edward.vytlacil@yale.edu
http://dx.doi.org/10.1016/j.jeconom.2017.04.001

64 S. Han, EJ. Vytlacil / Journal of Econometrics 199 (2017) 63-73

while restricting their dependence structure by imposing that their
copula function belongs to a broad class of parametric copulas that
includes the normal copula as a special case. We then extend the
results to a model where the marginal distributions are unknown.
All results derived in this paper also apply to the special parametric
case of bivariate probit models.

We first provide identification results in a model without com-
mon exogenous regressors, showing that, in such a model, having
a valid exclusion restriction (i.e., instrument) is necessary and
sufficient for global identification of the model. Unlike Freedman
and Sekhon (2010), this result does not require a full support
condition, and holds even if the instrument is binary. While Wilde
(2000) restricts his analysis to bivariate probit models, we show
that a bivariate normal distribution is not necessary for our identi-
fication strategy to work as long as a certain dependence structure
is maintained. We extend the result to allow for the possibility
of exogenous covariates that enter both equations and the pos-
sibility of instruments Z being vector valued without requiring
any element of Z to be binary. Having an exclusion restriction is
sufficient for identification in this context.> In this full model,
we also provide identification results without assuming that the
marginal distributions of the error terms are known. The structural
parameters are shown to be identified under similar conditions
as in the known-marginal case and the marginal distributions
are shown to be additionally identified under a stronger support
condition.

We make use of copulas to characterize the joint distribution of
the latent error terms, which allows us to separate the error terms’
dependence structure from their marginal distributions. Our anal-
ysis shows that identification is obtained through a condition on
the copula, with the shape of the marginal distributions playing
no role in the analysis. The condition we impose on the copula is
that it satisfies a particular dependence ordering with respect to
a single dependence parameter. Specifically, the condition is that
the copula is ordered by a dependence parameter that is infor-
mative about the degree of dependence in the sense of the first-
order stochastic dominance “FOSD”. We show that this condition
is satisfied by a broad range of single-parameter copulas including
the normal copula. Thus, the assumption used in the literature that
the latent variables follow a bivariate normal distribution is not
critical in deriving identification results in this type of models.*

We also introduce a novel dependence ordering concept that
characterizes minimal structure on the copula that is required for
our identification results. This ordering is more general than the
FOSD ordering but slightly less interpretable.

Our use of copulas is related to Lee (1983), who uses a normal
copula to generalize normal selection models. Chiburis (2010) is
also related to our analysis. He introduces a normal copula to char-
acterize the joint distribution of latent variables in a similar setting
as in this paper, although no rigorous identification analysis is
conducted for our class of models. To facilitate their inference pro-
cedure in a censored linear quantile regression model, Fan and Liu
(2015) introduce one-parameter ordered families of Archimedean
copulas in characterizing dependence between the dependent
variable and censoring variable, but the ordering concept which
defines their class of copulas differs from ours. Copulas have also
been used to model the joint distributions of error terms in switch-
ing regime models (Fan and Wu, 2010) or the joint distribution of

3 As mentioned, the results of Meango and Mourifié (2014) and Han and Lee
(2017) show that an exclusion restriction is also necessary for identification when
the common exogenous covariates are binary.

4 This contrasts with the identification result in a model related to ours, i.e., the
sample selection model by Heckman (1979), where identification can be achieved
solely by the functional form of the joint normal errors as long as there are
common exogenous covariates. Excluded instruments only become necessary for
identification in that model once the normality assumption is relaxed, which is not
the case in our model.

potential outcomes in randomized experiment settings (Fan and
Park, 2010), where bounds on the distribution of treatment effects
are derived. There are also recent papers that generalize a bivariate
probit model using a copula structure (Winkelmann, 2012) or using
nonparametric index functions instead of linear functions (Marra
and Radice, 2011), or both (Radice et al., 2015), but all of these
papers rely on the counting exercise for identification analysis.

The paper is organized as follows. In Section 2, we introduce
the model and preliminary assumptions. Section 3 introduces de-
pendence orderings and related concepts that are used to define
the class of models we analyze. Section 4 shows identification of a
simple, special case of our model, which is useful for subsequent
analyses. Section 5 extends the identification analysis to the full
model. Section 6 extends the results of the previous section to the
case of nonparametric marginal distributions. Section 7 concludes
with discussions on estimation and inference.

2. The model

Let Y denote the binary outcome variable and D the observed bi-

nary endogenous treatment variable. Let . )1() : =(1,X1,.... %)
k+1)x

denote the vector of regressors that determine both Y and D, and
let 121 = (Zy,...,7)) denote a vector of regressors that directly

X
affects D but not Y (variables excluded from the model for Y,
i.e., instruments for D). We consider a bivariate triangular system
for (Y, D):

Y =1[X'8+ 8D —¢ > 0],

D=1Xa+Zy —v >0], (2.1)
where o = (@, a1,..., ), B = (Bo, B1,-.., B), and y =
(1, ¥25 ..., Y1). As an example of this model, Y might be an

employment status or voting decision, D an indicator for having
a bachelor degree, and Z college tuition. As another example, Y
could be an indicator for patient death, D a medical treatment, and
Z some randomization scheme. In these examples, X represents
other individual characteristics.

We will maintain the following assumptions.

Assumption 1. (X,Z) L (e,v), where “L” denotes statistical
independence.

Assumption 2. F, and F, are known marginal distributions of &
and v, respectively, that are strictly increasing, are absolutely con-
tinuous with respect to Lebesgue measure, and such that E[e] =
E[v] = 0and Var(e) = Var(v) = 1.

Assumption 3. (¢,v) ~ F,(e,v) = C(F.(¢),F,(v); p) where
C(-,-,; p)is a copula known up to scalar parameter p € £2 such
that C : (0,1)> — (0, 1) is twice differentiable in its arguments
and p.

Assumption 4. (X', Z’) does not lie in a proper linear subspace of
Rk as®

Assumption 1 imposes that X and Z are exogenous. This as-
sumption, which is commonly imposed in the literature on binary
choice models, excludes heteroskedasticity of the error terms.
Assumption 2 characterizes the restrictions imposed on the
marginal distributions of ¢ and v. The moment restrictions are
merely normalizations as long as the second moments of ¢ and
v are finite. Under these normalizations, the intercept parameter
is present in the model and the correlation coefficient is the only

5A proper linear subspace of R¥*! is a linear subspace with a dimension strictly
less than k + I. The assumption is that, if M is a proper linear subspace of R**!, then
Pr((X',Z") e M] < 1.
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distributional parameter present in the model. While we assume
that the marginal distributions of ¢ and v are known, the re-
strictions placed on these marginal distributions are weak. This
assumption of known marginal distributions is relaxed in Section 6.
In Assumption 3, the copula associated with the joint distribution
is unique by Sklar’s theorem. This assumption specifies that the
joint dependence between ¢ and v is fully characterized by a scalar
parameter p. In the special case of a bivariate normal distribution
discussed below, p is the usual correlation coefficient of (¢, v) with
2 = (—1, 1), excluding the endpoints. Note that the endogeneity
of D comes from allowing p to be nonzero. Assumption 4 is the
standard full rank condition found in most identification analyses.
Let ¥ be the parameter space of ¥ = (o«/, B/, 81, ¥/, p).

To keep our identification analyses simple for the case of known
marginal (Sections 4 and 5), we assume that the reduced-form
parameters («, y ) are (globally) identified by the standard identifi-
cation exercise of a single-equation threshold crossing model with
known distribution: Since v L (X, Z), it follows that Pr[D = 1|X =
X, Z=2z]=F,Xa+27zy) or

Xa+7Zy =F '(PrD=1X =x,Z = z]). (2.2)

Therefore, as long as (X', Z’) does not lie in a proper linear sub-
space of Rt as. (Assumption 4), we globally identify (c,y)
from Eq. (2.2).

3. Dependence orderings for copulas

In order to obtain meaningful identification results, we im-
pose additional dependence structure on the copula function of
Assumption 3. We show that this structure is embodied in many
well-known copulas, including the normal copula. In order to state
our condition, we first define the following dependence order-
ing properties. See Joe (1997) for further discussions on various
dependence ordering properties of multivariate distributions or
copulas.

Definition 3.1 (Stochastically Increasing). For r.v.s W; and W5,
W, is SI in W; or the conditional distribution Fyp(w1|wy) is SI, if
Pr{W; > w|W, = wy] = 1 — Fyp(w1|wy) is increasing in w; for
all w1.

The stochastically increasing “SI” property is a positive depen-
dence condition as W; is more likely to take on larger values
as W, increases. This condition is related to the FOSD in the lit-
erature. Specifically, the condition can be equivalently stated as
“F12(w1|wy) first-order stochastically dominates Fy(wq|w}) for
any w, > w,". For negative dependence, stochastically decreas-
ing “SD” property can be defined analogously, where Pr{W; >
w1|W, = wy] is decreasing in w,. In the following, we define a
concept of dependence ordering between two distributions where
one is more SI (or less SD) than the other.

pefinition 3.2 (Strictly More SI or Less SD). Let Fypp(wq|w;) and
Fij2(w1]w,) be respective conditional distributions of the first r.v.
given the second that are SI (or SD). Suppose that F”Nz(wllwz) and
F1j2(wq|w,) are continuous in w; for all w,. :Fhen Fyp is strictly
more SI (or less SD) than Fypp if ¥(wy, wy) = Fl‘lzl(Fuz(uillwzﬂwz)
is strictly increasing in w»,° which is denoted as Fip=<sFypa.

This ordering is equivalent to having a ranking in the degree of
FOSD characterized above. Let (Wy, W,) ~ F and (Wy, W,) ~ F.

Whe~n Fy2 is strictly more SI (less SD) than Fyj,, then Pr{W; >
w1|W> = wy] increases even more than Pr{W; > wq|W> = wy] as

6 Note that ¥(wy, wy) is increasing in w4 by definition.

w, increases. More formally, if y(w1, w2) is a solution to Pr[W1 >
Y(wi, w2)|Wa = wp] = Pr{Wy > wq|Wy = wy], then ¢r(wq, wy)
takes a larger value to compensate that W, is even more likely
to take on larger values with F than it is with F as w, increases.
The SI dependence ordering has been called the (strictly) “more
regression dependent” or “more monotone regression dependent”
ordering in the statistics literature. Using this definition, we as-
sume that the ordering is indexed with respect to p for the copula
C(-, -; p).Let C(-|-; p) be the conditional copula of C(-, -; p).

Assumption 5 (<s w.r.t. p). The copula C(uq, uy, ; p) of Assump-
tion 3 satisfies

C(uqluz; p1)=sC(uyluy; pz) for any p; < py. (3.1)

This assumption states that the copula satisfies the more SI(less
SD) ordering, or equivalently FOSD ordering, with respect to the
dependence parameter p. Assumption 5 defines a class of copulas
that is sufficient for us to derive identification results; below we
provide a more general class of copulas.

We now introduce a dependence ordering concept that
is more general than the more SI (less SD) ordering. Let
F(w1, wy) and F(w1, wy) be bivariate distributions and F(w) and
F(wq) be marginal distributions. Also let D(wq, wp) = F(w;) —
F(w1, wz) and D(w1, wz) = F(w1) — F(U)], wz).

Definition 3.3 (Strictly More SI or Less SD in Joint Distribution).
Suppose that F(w+, wy) and F(w1, wy) are continuous in (wy, wy).
Then F is strictly more SI (or less SD) in joint distribution than F
if Y*(wy, wa) = F~Y(wy, F(wy, wy)) and ¥**(wy, wy) = D~ '(wy,
D(w1, wy)) are strictly increasing in w,, which is denoted as F <gF.

This ordering is a variant of the more SI (less SD) ordering,
where joint distributions are used in place of conditional distribu-
tions. To the best of our knowledge, no result has been found in the
literature that defines this concept and that shows its connection
to the more SI (less SD) ordering, which is nontrivial (Lemma 3.1
below). This new ordering concept is important in our context,
since it characterizes minimal structure we need on the copula
function for identification. Using this definition, we make the fol-
lowing assumption:

Assumption 6 (<g w.r.t. p). The copula C(us, uy, ; p) of Assump-
tion 3 satisfies

C(U], Uz; p1 )-<5]C(U1, Uy, ,02) for any p1 < p2. (32)

In the next lemma, we establish the connection between <g
and <g-

Lemma 3.1. Assumption 5 implies Assumption 6.

The proofs of this lemma and other results below are found in
Appendix.

The orderings <s and <g are not symmetric in arguments in
general, but are symmetric for symmetric copulas, i.e., copulas that
satisfy C(uq, uy) = C(us, uyq). In this case, we simply write (3.1) as
“C is increasing in <s” and (3.2) as “C is increasing in <g;". There
are many well-known symmetric single-parameter copulas that
satisfy Assumption 5, i.e., that are increasing in <s. By Lemma 3.1,
these copulas are also increasing in <g;. We list below well-known
single-parameter copulas that satisfy Assumption 5; see Joe (1997,
pp. 140-142) for the results. In Appendix, we list other copulas
and show that they satisfy Assumption 5 or the implication of it,

7 This notation and the terminology are commonly used in the literature; see
e.g., Joe (1997) or Fan and Liu (2015).
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namely, Assumption 6. In each example, £2 is defined as the interior
of the parameter space of p.°

Example 3.1. The normal copula: For p € [—1, 1],
Clu, ug; p) = D(@ (1), @~ '(1); p),
where @(-, -, p)is the bivariate standard normal distribution func-
tion and &(-) is the marginal standard normal distribution func-
tion.
Example 3.2. The Plackett family: For p € [0, co)\{1},

1
Clur, up; p) = — {1 + nur +uy)

2n

5 1/2

— [T+ n(uy + u2))* — 4pnuu; ] }

wheren = p — 1.

Example 3.3. The Frank family: For p € (—o0, 00)\{0},
ePu — 1)(e"P*2 — 1)}

1
C(uq,up; p)=——1n {1 + (
0 e —1
Example 3.4. The Kimeldorf and Sampson family (or the Clayton
family): For p € [0, 00),

Clur, uz; p) = (u;” +u,” —

Example 3.1 provides likely the most interesting case. With
the normal copula and, additionally, marginal standard normal
distributions F,(-) = F,(-) = &(-), the model of Eq. (2.1) becomes
a bivariate probit model.

7.

4. Identification in a stylized model

We first consider a simple stylized bivariate threshold crossing
model of a triangular system with no common regressors (i.e., no X
covariates) and only one excluded covariate (i.e., Z = Z; is scalar),
so that

Y =1[Bo+ 8D —¢ > 0],

4.1
D = 1[ag + y1Z1 — v = 0]. (@.1)

Let ¥ be the parameter space of v = (oo, ¥1, Bo, 81, p). For
this simple stylized model, we further assume that Z; is a binary
variable, namely, Z; € supp(Z;) = {0, 1}, where supp(-) denotes
the support of its argument. We show that v is locally and globally
identified with this minimal variation. In the following sections,
we show how the results for this simple stylized model are readily
generalized to the full model of Eq. (2.1) with possibly vector val-
ued X and Z and without requiring that any element of Z be binary
(Section 5), and to a model with nonparametric marginal distribu-
tions (Section 6). Before proceeding, recall that the reduced-form
parameters (g, y1) are (globally) identified, since (1, Z;) does not
lie in a proper linear subspace of R a.s. by trivially assuming that Z,
is non-degenerate.

4.1. Local identification

Local identification is necessary for global identification, and
thus can be seen as a first step towards global identification.
Particularly in our analysis, local identification results guide us
to build a framework for global identification; see Section 4.2. In
general, local identification requires a set of weaker assumptions

8 The copulas in Examples 3.4, A.1 and A.2 in Appendix only allow positive
dependence. The Frank copula is suitable to model variables with strong positive
or negative dependence. See, e.g., Trivedi and Zimmer (2007) for detailed features
of some of the copulas listed in this paper. Also, see Nelsen (1999, p. 68, pp. 96-97).

than global identification. If one has additional prior knowledge
to select one local solution from all others (by restricting the
parameter space or by an explicit decision rule), local identification
analysis itself can be useful for estimation.

Let U; = F.(¢) and U, = F,(v). Using Assumption 1, one can
derive expressions for all possible fitted probabilities implied from
the model of Eq. (4.1). For instance, Pr[Y = 1,D = 1|Z; = 0] can
be expressed as

Pr[Y =1,D = 1]Z; = 0] = Pr[e < Bo + 81, v < ap; p]
= Pr[U; < Fe(Bo + 61), Uz < F,(ag); p]
- C(FF(,BO + 81)7 Fv(Olo)l P),

where the first equality is using Assumption 1. For notational sim-
plicity, we transform ¢ = (o, ¥1, Bo, 81, o). The transformation
reduces complications that appear in our proofs. Let

(@0, 1, Bo, 81) — (ao, a1, bo, by) (4.2)

denote a mapping such that

ap = F,(a),
ar = Fy(ao + 1),
bo = Fe(Bo).

b1 = Fe(Bo + 61),

and note that the mapping is one-to-one since F, and F; are strictly
increasing by Assumption 2. Let pyq, = Pr[Y =y, D = d|Z; = 7]
for (y,d,z) e {0, 1}3. Now, the six fitted probabilities can be
written as follows:

p11,0 = C(b1, ao; p),

p11.1 = C(b1, as; p),

P10.0 = bo — C(bo, ao; p),

P10,1 = bo — C(bo, as; p), (4.3)
Po1,0 = do — C(by, ao; p),

Po1.1 = a1 — C(by,ay; p).

Eq. (4.3) contains the maximal set of probabilities that are not
superfluous, since these probabilities imply the values of pgg ; and
Doo,o-

Among (4.3), po1.0 and po1,1 are superfluous, since ap and a; are
already identified by using p11,0 + po1,0 and p11,1 + po1,1. Let 6 =
(bo, b1, p) denote the structural parameter vector in a parameter
space ® C (0,1 x Q and 7 = (P11.0, P11.1, P10.0> P10.1) be a
reduced-form parameter vector in a parameter space I7 < (0, 1)4,
which is trivially identified as pyq.’s are the distributions of the
data. Therefore, our (local) identification problem is a question of
whether we can uniquely recover the true structural parameter

= (], b9, p°) given true reduced form parameter 77°.

DefineG: © C (0,12 x 2 — IT € (0,1)*as

C(b1, ao; p)
6(0) = G(0: ao. an) = |, i) | (44)
bo — C(bo, a1; p)
and write
70 = G(9°). (4.5)

Then 6° is (locally) identifiable if and only if, from Eq. (4.5), #°
uniquely determines 6° in the neighborhood of 6°. Let
3G(0)
0) =
I =0

(4.6)
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be the Jacobian matrix of G(#).° Then by the standard implicit
function theorem, the full rank of J; ensures the identifiability
(e.g., Rothenberg (1971, Theorem 6)):

Proposition 4.1. Assume that there exists an open neighborhood of
0% in which J¢(0) has constant rank. Then 6° is locally identifiable if
and only if J¢(6°) has rank equal to dim(6).

Let Ci(-, -; p) and C,(-, -; p) denote the derivatives of C(-, -; p)
with respect to the first argument and p, respectively. By conduct-
ing elementary row and column operations on the Jacobian matrix
Jc(0) for a given value of 6 (see Appendix A.4 in Appendix) which
preserves the rank, it is easy to see that the matrix has full column
rank if and only if either

Cp(bh ao; p) _ Cp(blv air; p)
Ci(b1, a0; p)  Ci(b1, a1; p)
Cp(bm ar; p) _ Cp(bo, ag; p) £0
1—Ci(bo, ar; p) 1 — Ci(bo, ao; p)
The main result of this section is to show that, under Assumption 6,

the condition (4.7) is true for 6° if and only if a # af (that is, 3},
the coefficient on Z, is nonzero).

(4.7)

Lemma 4.1. Under Assumption 3, the copula C(uq, uy; p) satisfies
Assumption 6 if and only if

Co(ur, uz; p)

is strictly decreasing in u,, (4.8)

Ci(ur, u; p)
and

Cp(ur, up; e L
M is strictly increasing in u,, (4.9)
1= Ci(uq, uz; p)
for any (u;, uy) € (0, 1% and p € 2.

To give some intuition behind the conditions in the
lemma, with the normal copula of Example 3.1 Colin-t2:0) 3pnq

' Cilug,up;p)
% become (rescaled) inverse Mill's ratios, and thus (4.8)

and (4.8§Yimmediately hold; see Appendix A.3.3 in Appendix. Given
the result of Lemma 4.1, the desired result follows since the strict
monotonicity in (4.8) and (4.9) implies that a) = a9 if and
Cp(b1,03:p) Cp(b1,a%:p) Cplbo,a%:p) Cplbo.ad:p)
Ci(by.a3:p) C1(by,a%;p) 1—Cy(bo.a%;p) 1—C1(bg.ad:p)"
The following theorem summarizes this identification result after
rephrasing it in terms of the original parameters:

only if

Theorem 4.1. In model (4.1), let Assumptions 1-3 and 6 hold. Then
(@3, v, BY, 89, p°) € W is locally identified if and only if y{ # 0
and Z, is non-degenerate.

The identification condition is the exclusion restriction that the
coefficient on the instrument Z; is nonzero. This condition implies
that the excluded instrument plays a key role in identifying the
parameters of the stylized model. This can be readily seen from
the fact that, when y; = 0 and hence ay = a; = q, the fitted
probabilities (4.3) reduce down to three equations, which are not
enough to identify four unknowns, (a, bg, by, p):

p11.0 = p11.1 = C(b1, a; p),
P10.0 = P1o.1 = bo — C(bo, a; p),
Po1,0 = po1,1 = a — C(b1, a; p).
Assumption 6 characterizes an interpretable structure of copula
that is minimally required for identification. It is minimal because

Assumption 6 is necessary and sufficient for (4.8) and (4.9) as
shown in Lemma 4.1. By Lemma 3.1, this assumption is implied by

9 See Appendix for the actual expression of J(0).

Assumption 5, which is further well-understood in the literature.
The gap between Assumptions 5 and 6 essentially comes from the
difference between the orderings defined in terms of conditional
copulas and the ordering defined in terms of copulas.

4.2. Global identification

Based on the result of the local identification, we now establish
global identification. In essence, the task is to show the uniqueness
of a solution that satisfies a system of nonlinear equations, where
the number of equations can be larger than the dimension of the
solution. Rothenberg (1971) also derives a global identification
result based on the Gale and Nikaido (1965) type of a global
univalence result by imposing conditions on the square sub-matrix
of Jc. The conditions, however, are restrictive and difficult to verify
in our setting.'” Instead, we propose an identification analysis that
makes use of the Hadamard’s global inverse function theorem in
a sub-system of equations; see, e.g., Chernozhukov and Hansen
(2005) for a related approach. '

Lemma 4.2. For n < m, let A and B be nonempty subsets of R" and
R™, respectively, and g : A — B be a continuously differentiable map.
Let g; be the sth n x 1 sub-block of g for some arbitrary ordering

s=1,..., (':) If there exists s such that (i) gs is proper, (ii) the

Jacobian of g vanishes nowhere, and (iii) g;(A) is simply connected,
then a solution of b = g(a) is unique.

A mapping g : A — gs(A) is proper if whenever K C gs(A) is
compact then g 1(K) C A is compact. A topological space is simply
connected if it is path-connected and any simple closed curve can
be shrunk to a point.’> Note that, for example, any convex subset
of R" and its half spaces are simply connected.”®> The proof of
this lemma is as follows: Suppose a' is a solution of the system
b = g(a). By the global inverse function theorem (Hadamard,
19064, b), the conditions (i), (ii), and (iii) guarantee that g is a
homeomorphism and hence one-to-one and onto. Therefore, a' is
the unique solution of the sub-system b; = gs(a), where by is the
corresponding subvector of b. Since a’ must satisfy the remaining
equations as well, we can conclude that a' is the unique solution
of the system b = g(a).

For our global identification, we apply the result of this lemma
to the map (4.5) introduced in the previous section. In this case,
establishing the result with any of the possible 3 x 1 sub-blocks
of G will serve our purpose. For concreteness, we consider the
following specific sub-block G* : ©® C (0, 1)? x 2 — IT < (0, 1)

C(b1, ag; p)
G*(G) = C(bl, as, ,O)
bo — C(bg, ao; p)

and a sub-system = = G*(0), where 7 = (p11.0, P11.1, P10,0) in
its parameter space 1. Under Assumption 6, one can show that
the square Jacobian matrix Jox = Jox(0) = 3?;)(,9) is positive semi-
definite for ay > a; and negative semi-definite for ag < a;, and

has full rank for all & € ® such that ay # a;; see Appendix A.4

10 Using the notations of our paper, the conditions are that there exists a square
matrix J(0) of Jg(0) such that the determinant of J(6) is positive and J(0) + J'(0) is
positive semidefinite throughout ©. The latter condition appears not to be feasible
to verify in all of our settings, including the stylized model, the full model, and a
semiparametric model below.

1 Eor nonparametric identification, Chernozhukov and Hansen (2005) apply a
variant of the global inverse function theorem to their sub-system (Theorem 3,
p. 258). Unlike their approach, we do not restrict our parameter space to be compact
Nor convex.

12 Refer to Rudin (1986, p. 222) for a technical definition of the simple connect-
edness.

134 half-space is either of the two parts into which a hyperplane divides a space.
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in Appendix for the proof. Based on these results, we now show
that G* on restricted parameter spaces satisfies (i), (ii), and (iii) of
Lemma 4.2. We then extend the map over the entire parameter
space to draw our conclusion.

Define ®. C (0, 1) x £2 to be a 3-dimensional bounded open
set such that its half spaces, ®.; = {§ € O, : ap > a;} and
Oy = {0 € O, : ag < ay} are simply connected. Define IT.; =
G*(®¢1) and 1, = G*(Oc;). Also, define GC'lo, : Ot — I
and G*|g,, : ®c2 — [l to be the function G*(-) on its restricted
domains.

Note that G*|g_, () and G*|g_,(-) are continuous and therefore
the pre-image of a closed set under G*|_, (-) and G*|g_, (+) is closed.
Also, since ®¢; and O, are bounded, the pre-image of a bounded
set is bounded. Therefore, G*|g_, (+) and G*|g_, (-) are proper. Also,
by the fact that (i) ©1 and ©; are simply connected, (ii) G*|g,, (6)
and G*|g,, () are continuous on O¢; and O, respectively, and
(iii) Jo+ is positive and negative semi-definite on ®;; and O, re-
spectively, it follows that 7.1, and I1., are also simply connected. '

Lastly, Jex has full rank over ©.; and ©,. Therefore, G*|g ,
Oc1 — I and G|, : O — [l satisfy all the conditions in
Lemma 4.2, which means that 7 = G(#) has a unique solution on
O, and O, respectively. Since there exist G* |g:1 (-)and G*lgzz(-),
such a solution can be expressed as 6 = G*|51 () € O for

w € Ilyand 6 = G*|O ) € O, for w € I,. This proves that
the parameter 6 is globaily identified in ®.; and in O,.

Now we use these results to derive global identification over
O ={0 €O :q >altand®, = {§ € O : a < ai},
which are not necessarily bounded. Above results suggest that 6 is
globally identified in any given subset of @; or @, that is a bounded
simply connected set. Assume that the original parameter space
Uisopenand ¥; = {¢y €¢ ¥ : 4y < 0land ¥, = {y €
¥ : y; > 0} are simply connected. By the continuous monotone
one-to-one map defined in (4.2), the transformed parameter space
©® is open and ®; and ©®, are open, simply connected. Then ®;
and ©®, can be represented by a countable union of bounded open
simply connected sets. For example, we have @, = U2, ©y;, where
{1}, is a sequence of bounded open simply connected sets in
®1 such that @11 C @1, C --- C O4. Also, let G*(®+;) = I1;; for
i=1,2,..,sothat 1y = G*(O1) = G*(UX,04;) = UX,G*(Oy) =
UZ M and Iy C Tp C C IT;. Then, for any given
m € IT;, we have that w € ITy; for alli > q (for some q), then
G*|(;}i(n) € Oq; for all i > g from the previous result, and hence
G () = G*|Um o (m) € UZ,01i = O1. As G~ () is the
unique solution oft‘i]e sub-system 7w = G*(6)on @4, itis the unique
solution of the full system 7 = G(6) on @, by similar reasoning as
in the proof of Lemma 4.2. Therefore, 6 is globally identified in ©;.
Then, adding the reduced-form parameters, we can conclude that
Y is globally identified in ¥;. By similar arguments, v is globally
identified in ¥,. Since y, is already identified, it is known whether
Y lies in ¥ or ¥, and consequently, ¥ is globally identified in ¥ if

71 # 0.
The following theorem summarizes the results:

14 This is because simple connectedness is preserved under a monotone map; see,

e.g., Arnold (2009, p. 33). For an arbitrary function G : ® € R" — R", G(-) is
monotone on © if for all 61,6, € O, (6, — 62)’((3((91) (92)) is non-negative or
non-positive. By the mean value theorem,

~ ~ 3G
G(61) — G(62) = ( )

(61 — 62)

where the intermediate value §* may differ across the rows of 3G(6*)/96’. Then,

aG(*)

(61 — 65 (G(61) — C(62)) = (61 — 6o YL 9GO 4, — y).

Therefore, as long as 9G(6*)/30’ is positive (negative) semi-definite for all 6* then
G(-) is monotone.

Theorem 4.2. In model (4.1), let Assumptions 1-3 and 6 hold. Then
(@0, ¥1, Bo, 61, p) € W is globally identified if (i) y1 # 0 and Z; is
non-degenerate; (ii) ¥ is open and ¥, and ¥, are simply connected.

Again, Assumption 5 is sufficient for Assumption 6. To satisfy
(ii), one can simply have ¥ = R* x £2 where 2 is open. In fact, any
open convex ¥ is sufficient, although it is not necessary. Note that
we do not assume the compactness of the parameter space either.

5. Identification in full model

In this section, we conduct identification analysis of the full
model of Eq. (2.1). Thus, we generalize the previous section to
allow for the possibility of exogenous regressors X that enter both
the equation for Y and the equation for D, and we allow for the
possibility of instruments Z being vector valued without requiring
any element of Z to be binary. We present results for global identi-
fication of v = («/, B/, 81, ¥/, p) in ¥. Local identification results
can be obtained by a similar argument as in the previous section;
see discussions at the end of this section.

Recall that («, y) are identified. Suppose that y is a nonzero
vector, i.e., there exists at least one variable in Z with one non-zero
coefficient. Then, there exist two values z and Z in supp(Z ) such that
Z'y # Z'y. Suppose not so that z'y is constant for all z in supp(Z),
then it contradicts the assumption that Z does not lie in a proper
linear subspace of R'. Assume that supp(X|Z = z)Nsupp(X|Z = Z)
is a nonempty set. Take (x, z) and (x, Z) for some x € supp(X|Z =
z) N'supp(X|Z = z), and write a one-to-one map as

so=F,(Xa +7'y),
si=F,Xa+2Z'y),
ro = Fo(X'B),

r = F.(xX'B + &1).

Let pyax = Pr[Y = y,D = d|X = x,Z = z]for (y,d) €
Since (¢, v) L (X, Z), the fitted probabilities are written as

{0, 1)2.

P11.xz = C(r1, So; p),
P11z = C(r1, 515 o),
P10.xz = To — C(7o, So; p),
P10z = o — C(ro, S1; p),
Po1.xz = So — C(r1, So; p),
Porxz = S1 — C(r1,51; p).

The set of equations has the same form as (4.3) in the previous
section. By pursuing a similar argument as in the previous section,
identification of 6, = (rg, rq, p) in its parameter space ©, is
equivalent to being able to show the uniqueness of the solution
for

Ty = G(6y) =G

(x; S0, 1), (5.2)

where G is defined in (4.4) and 7y = (P11.xz» P11.x3> P10.xz> P10.xz)
in its parameter space IT,. The subscript x emphasizes the ob-
jects’ dependence on x. Now we proceed similar to the proof of
Theorem 4.2: Under Assumption 6, Jg+(6x) is either positive or
negative semi-definite and has full rank for any 65 and x, since
Z'y # 7'y implies sy # s1. By Lemma 4.2, 6y is identified in simply
connected half spaces of a bounded open set. Assume that the
original parameter space ¥ is open and convex. Then, for any x, its
linear map {(x'B,x'B + 81, p) : ¥ € ¥} is also open and convex,
and hence simply connected. Since ®y is a continuous and one-
to-one map of this set, ®, is open and simply connected. This
implies that @1 = {6k € O : so > s} and O, = {6 €
Oy : sp < s1} are also open and simply connected, and therefore
can be approximated by sequences of bounded, open, and simply
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connected sets. Eventually, it follows that, for any given n, €
G*(@Lx)y

Ox = G*_l(ﬂx) € O1x

is the unique solution of 7, = G(6) and hence 6, is globally
identified in ©®, . Similarly, 6 is globally identified in &, 4. Since
so and sy are known, we can conclude that 0y is globally identified
in ©,. Identification of §; follows from

81 =F. ' (r1) — F. \(ro).

Let

X = U supp(X|Z = z) Nsupp(X|Z = 2).
2'y#7'y
z,zesupp(Z)

Using the fact that we can recover rq for any x € X, identification
of B follows from

X B =F (),

assuming that X does not lie in a proper linear subspace of R¥ a.s.
The following theorem summarizes the identification result.

Theorem 5.1. In model (2.1), let Assumptions 1-4 and 6 hold. Then
(o, B/, 681,y, p) € W are globally identified if (i) y is a nonzero
vector; (ii) X is not empty and does not lie in a proper linear subspace
of R* a.s.; (iii) ¥ is open and convex.

Condition (i) requires an exclusion restriction. A sufficient con-
dition for Condition (ii) is that supp(X, Z) = supp(X) x supp(Z)
and Assumption 4 holds, since X = supp(X) in this case. Note
that Condition (ii) implies that there exist z and Z in supp(Z) such
that supp(X|Z = z) N supp(X|Z = Z) is nonempty. Note that local
identification is achieved maintaining Assumptions 1-4 and 6 and
(i) and (ii) of Theorem 5.1. Compared to Theorem 4.1, the rank
conditions relevant to the full model (Assumption 4 and (iii)) are
added.

6. Identification with unknown marginals

As is mentioned earlier, the assumption that the marginal dis-
tributions of the error terms (&, v) are known (Assumption 2) is not
essential in the identification analyses of this paper. In this section,
we extend our identification results of the previous section by re-
laxing Assumption 2. Here, we identify the structural and reduced-
form parameters as well as the unknown marginal distributions.
In order to identify the marginal distributions, it is necessary to
have sufficient exogenous variation in each equation, which can
be provided by the common exogenous covariate X present in each
equation. We illustrate the proof using the full model (2.1).

Assumption 7. (i) F; and F, are (unknown) marginal distributions
of ¢ and v, respectively, that are strictly increasing and are abso-
lutely continuous with respect to Lebesgue measure. (ii) The index
structure in each equation of (2.1) has no intercept and the first
coefficient is 1.

Assumption 7(i) relaxes the assumption of known marginal dis-
tributions in Assumption 2. For convenience, instead of imposing
E[e] = E[v] = 0 and Var(e) = Var(v) = 1 as location and
scale normalizations as in Assumption 2, Assumption 7(ii) imposes
an alternative location and scale normalizations to facilitate the
analysis of this section.”” The next assumption is the additional
support condition.

15 The model (2.1) with one type of normalizations can always be rewritten with
another type of normalization. For example, under Assumption 5(ii), let u = E[¢]
and o2 = Var(e), and also let X = (X, ..., XY and B = (B1,..., Bi). Then
Y = 1X'B+ 68D > ¢] = 1[—u/o +X'B/o + (81/0)D > (¢ — u)/o] so that
—u/o becomes an intercept and (¢ — i)/o becomes a new error term with mean
zero and variance one. A similar argument applies for the D equation.

Assumption 8. (i) The distributions of X; and Z; are absolutely
continuous with respect to Lebesgue measure for 1 < i < k and
1 <j < L(ii) There exists at least one element X; in X such that its
support conditional on (X1, ..., Xj_1, Xiy1, ..., Xx)isRand «; # 0
and B; # 0. Without loss of generality, leti = 1.

Assumption 8(i) guarantees differentiability with respect to
Xi = x;and Z; = z;. Assumption 8(ii) is a “large support” type of
assumption. We require Assumption 8(i) but not the large support
Assumption 8(ii) for identification of («’, 8/, 81, v, p) € ¥.We
additionally require the large support Assumption 8(ii) only for
identification of the marginal distributions F.(-) and F, ().

For any x, we obtain global identification of 6, = (rg, 11, p)
from (5.2) and the proof of Theorem 5.1, and global identification
of (So, S1) from p11,xz + Po1.xz and p11.x + Po1.xz in (5.1). Recall that

so=F,(Xa+27'y). (6.1)

First, given identification of so, we will now use Eq. (6.1) to identify
o, y,and F,(-). The statistical independence assumption (Assump-
tion 1) implies quantile independence as well as index sufficiency.
Under this assumption and under assumptions similar to Assump-
tions 7-8, Manski (1988) provides identification results that follow
his proof under quantile independence. Here we follow his proof
strategy under index sufficiency.'® Under Assumptions 7 and 8(i),
differentiating Eq. (6.1) yields

as

=L =f(Xa+2y)
8x1

and, for2 <i <k,

as

= =f (X + 2y ),
BX,'

andfor1 <j <],

350 , ,

— =X z js
0z filXa +2'y)y;

where f,(-) is the density of v. Then «; and y; are identified for all i
and j by

350/3)(,'
o =

0S0/0X1
and

0s0/0z;
vi= :

850/8){1

Using that (X,Z) 1L v, we have Pr[D = 11X = x,Z = z] =
Pr[D = 1 X'a +Z'y = t]fort = x'a + Z'y (index sufficiency).
Also, Supp(X'a + Z'y) = R by Assumption 8(ii)."” Therefore, f,(-)
is identified on R by

dso  dPr[D=1X=x,2Z=2]
8x1 - 3X1

IPID=1X'a+Z'y =t]
= I = fu(t)

for t = ¥« + Z'y. Since the density is identified, the distribution
function F,(-) is identified. Now we identify other components of
the model by a similar fashion. Since we identify rq = F.(x'8) for
all x € x, similar as above,

d To

— =f(XB)

8)(1

16 Note that the normalization and assumptions (and hence the proof) in this
paper are slightly different from Manski’s (1988) results for index sufficiency.

17 Note that for the D equation, the large support assumption can alternatively be
imposed on Z.
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and, for2 <i <k,

ar, ,

. = LB

which identify 8; and f,(-). Finally, §; can be identified by
81 =F,'(r) — F. \(ro).

Theorem 6.1. In model (2.1), suppose Assumptions 1, 3, 4, 6, 7 and
8(i) hold. Then («’, B', 81, ¥, p) € W are globally identified if (i) y
is a nonzero vector; (ii) X is not empty and does not lie in a proper
linear subspace of R¥ a.s.; (iii) ¥ is open and convex. Additionally, if
Assumption 8(ii) holds, F.(-) and F,(-) are identified.

7. Conclusions

We derive conditions for local and global identification in a class
of models that generalize bivariate probit models. We show that
the parameters are identified in such models with instruments,
i.e., with covariates that enter into the equation for the endogenous
treatment variable but are excluded from the equation for the
outcome variable. We show that such models are identified with
or without common exogenous regressors that enter into both
equations. It is worth noting that a bivariate normality assumption
of the latent variables is not critical for the identification results
we obtain. We substantially relax the joint normality assumption
by introducing a broad class of copulas for the joint distribution of
the latent error terms while allowing their marginal distributions
to be arbitrary but known. We show that our identification results
extend to the case where the marginal distributions are unknown,
with an additional large support for the identification of the distri-
bution.

Based on the identification results of this paper, one can proceed
to estimate the parameter vy and conduct inference on it. When
the model is parametric (i.e., the triangular threshold crossing
model (2.1) with Assumptions 2 and 3), one can employ stan-
dard maximum likelihood (ML) or generalized method of moment
(GMM) procedures. When the model is semiparametric (i.e., the
model (2.1) with Assumptions 3 and 7), one can apply similar
semiparametric estimation methods, such as the plug-in sieve ML
method (Chen et al., 2006) or the semiparametric GMM method
(Chen et al., 2003). Han and Lee (2017) establish the asymptotic
theory for sieve ML estimators in this semiparametric model,
where the sieve is introduced to approximate the nonparametric
marginal distributions. For a smooth functional of the sieve esti-
mators, such as those for the parametric components (e.g., §; and
p in our notation), they establish asymptotic normality and derive
the variance-covariance estimator which can be used for infer-
ence. Using Monte Carlo simulation, they also document the finite
sample performance of the ML estimates based on a parametric
model and the same parametric parts of the sieve ML estimates.
Their simulation evidence suggests that: (i) in a correctly specified
parametric model, the performance of the ML estimates in terms
of MSE’s is what one can expect from standard ML estimation,
i.e., negligible bias and small variance; (ii) when the model is
misspecified, either from a misspecified copula or misspecified
marginal distributions, both bias and variance of the ML estimates
substantially deteriorate; (iii) with the same data generating pro-
cess as in (ii), the performance of the same parametric parts of the
sieve ML estimates is significantly improved over the ML estimates
of the misspecified parametric model. See Han and Lee (2017) for
details and other related results.

In the parametric model, the performance of the ML estimates
is also studied in Freedman and Sekhon (2010). One of their
simulation findings is that the performance of the ML estimates
deteriorates as the exogenous variation shrinks to zero (Fig. 2 in

Freedman and Sekhon, 2010). It is left unanswered in their paper,
however, whether this finding is due to the failure of their large
support assumption or of the requirement of any variation at all.
The present paper suggests that it is in fact the latter, by showing
that the parameters can be identified even with minimal variation
in the excluded instrument (i.e., with a binary instrument).

The deterioration of the performance (such as larger bias) from
shrinking exogenous variation is related to the fact that the fi-
nite sample distribution of the estimators becomes non-normal
in this situation. This non-normality implies that standard infer-
ence methods based on the normal distribution show poor per-
formances, such as size distortion. This opens up an interesting
question on how to conduct inference that is robust to weak
instruments in bivariate probit models and the more general class
of models considered in this paper. While there is an extensive
literature on weak instruments in linear models (see Andrews and
Stock, 2007 for a complete survey), there is relatively little liter-
ature on weak instruments in nonlinear models (see, e.g., Stock
and Wright, 2000; Kleibergen, 2005; Andrews and Mikusheva,
2016b, a; Andrews and Guggenberger, 2015), and no previous
literature on inference under weak identification that nests the
class of models considered in this paper. In current work, Han
and McCloskey (2017) develop inference that is robust to non- and
weak-identification in a broad class of models where the implied
Jacobian has general deficient rank when identification fails, and
where the source of such identification failure is known. As one
example of their more general analysis, they develop an inference
procedure for generalized bivariate probit models (with known
marginals) that is robust to weak instruments. They exploit the
identification results of the present paper in order to understand
when the Jacobian will be nearly singular, and to introduce a
transformation method to separately treat the weakly and strongly
identified parameters in deriving nonstandard asymptotic theory.
Based on their results, one can conduct a hypothesis test, say, for
the average treatment effect (F.(x'8 + 81) — F.(x'8) using our no-
tation) that has correct asymptotic size regardless of identification
strength and good power properties.

Appendix
A.1. Proof of Lemma 3.1

We provide the proof of Lemma 3.1 (which is restated here),
naturally followed by the proof of Lemma 4.1 in Appendix A.2.
Let C : (0,12 — (0,1)and C : (0,12 — (0, 1) be two
distinct copulas, succinctly denoted as C(uq, uy) = C(uq, uy; o1)
and f(ul, uy) = C(uy, uz; p2), respectively, where p; < p,. Define
D(uq, up) = u; — C(uq, up) and D(uq, up) = uq — Cuq, uy).

I:emma A.1. Suppose C(u1|u2)<56(u1|u2), ie., uI(ubuz)~ =
CY(C(uq|uz)|uy) is strictly l;ncreasing in uy. Then C(uy, up)<gC(u,
up), de, uj(u,up) = C(Cup, up), up) and ui*(uy, up) =

D‘l(D(ul, Uy), Uy) are strictly increasing in u-.

Proof of Lemma A.1. We prove that if u]; = u‘;(ul, uy) is strictly
increasing in u, with uI being the root ofC(uI |uz) = C(uq|uy), then
ui = uj(uy, up)is strictly increasing in u, with uj being the root of
C(ui, up) = C(u, up) and uj* = u’;‘*gul, u,) is strictly increasing in
u, with uy* being the root of u7* — C(u7*, uy) = uy — C(uy, up).
We first prove for uj. Suppose that ui(uh uy) is strictly in-
creasing in u,. Then, for any v, < u,, we have uI(ul, uy) <
uI(ul, uy) or, since C(-|u}) is strictly increasing, C(uI(ul, us)|uy) <
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E(u‘;(uh uy)|u;). It follows that

~ uz ~

Eu (), ) = / Eul . )l
Cluf(ur, up)luh)du

C(uy|ujy)dus

I
r\\\

up, Uz)

= C(uj(ur, uz), up).
Therefore, since C (-, uy) is strictly increasing, it follows that
ul(ur, uz) > ujur, up),

or
C(Clusluz)luz) > ui(us, up), (A1)

by the definition of uI. Since C(-|up) is strictly increasing, (A.1)
implies
Cluq|up) > 6(u

T(ur, up)lup). (A2)

Next, differentiating f(u’]*, uy) = C(uy, uy) W.r.t. uy yields

*

- ou -
Gi(uy, uz) - 8u1 + Gul, up) = Gy(uy, uy),

(A3)

auj 18
= G(uy, up)—

g Colu}, up) = Cluy |uz)—Clufluz),
But since C1(u1, Up) = C(uzlul) > 0 foru; € (0, 1), (A.2) implies

that "“1 > 0.

01'61(11’1‘, up)-

Similarly, we prove for u** For any u), > uz, we have u(uy, 1))
> uI(ub U,), and thus C(u (u1, uy)|uy) > C(u (uq, uz)|ujy). Then it
follows that

1

ul(ur, up) — Cul(us, up), Uz)Z/ Clul (uy, up)u))du

2

1
< f Clul(uy, uh)lub)du,
u

1
=/ Cluq|ufy)du),

u

=u; — C(uq, up)
= uy*(uy, up) — C(ui*(uy, uz), ua).

Therefore, since u; — E(ul, u,) is strictly increasing in uy, it follows

that

UJ{(Ui, up) < UT*(UL uz),

or

C N (Clurluz)luz) < ui(uy, uz),

or

Clurluz) < C(ui(ur, up)lup). (A4)

Now, differentiating u7* — 6(u>{*, uy) = uy; — C(uq, up) Wir.t. up

yields
~ sk 0
(1 - Ci(uy ,uz)) 3

**

— Gy, up) = —G(ur, wp), (A5)

U3

~ o dut™ ~ o

or (1—C1(u1 ,uz))du%2 = —Gu,u) + G, w) =
—C(uq|uz) + 6( 1¥|uy). Since 1 — Cl(u1 ,U)=1-— f(uzluj*) >0

foru, € (0, 1), (A.4) implies that —‘2 >0. O

18 I general, a copula satisfies that C;(u, v) = C(v|u) and Gy(u, v) = C(u|v).

A.2. Proof of Lemma 4.1

Let p1 < p2 and follow the same notations_ as in Appendix A.1.
Given Assumption 6, uj = uj(ui, up) = c™ W(C(uq, up), up) is
strictly increasing in u, with u} being the root of
(A.6)

C(UT, Up; p2) = C(ug, uz; p1).

By (A.3) in the previous proof, g% > 0 is equivalent to
Go(ur, uz; p1)—G(uy, Uz; p2) > 0.Since uj = uj(uq, Uz, p1, p2) —
up as p; — p, from (A.6), it is also equivalent to %Cz(u}‘(,o), uy; p)

< 0,or

ou*
Cra(UWi(p), uz; p) - —+

3 + Coa(ui(p), uz; p) < 0.

(A7)

Note that "’BL; =— E—” by differentiating (A.6) w.r.t p; and by letting
p = p2. Therefore, EA.7) can be expressed as C,,C; — C,Ci; < 0,
which is in turn equivalent to the condition (4.8).

Similarly, given Assumption 6, ui* = uj*(uj, u) is strictly
increasing in u, with uj* being the root of
(A.8)

up" = C(uy", uz; p2) = ur — Cu, uz; p1).

By (A.5) in the previous proof, =~ > 0 is equivalent to

Co(uy, uz; p1) — G(ui*, up; p2) < Oor %Cz(u’f*(p), uz; p) > 0,
or

*%
Cra(ui*(p), uz; p) - 31 + Coa(u*(p), uz; p) > 0. (A9)

Bu

Note that (A.8) w.r.t o, and by
letting p = ,02 Therefore (A.9) can be expressed as C»(1 — C1) +
C,Ci2 > 0, which is in turn equivalent to the condition (4.9). O

A.3. More copulas and verification of the assumptions

Here we list more copulas that satisfy the assumptions for
identification. In each example, §2 is defined as the interior of the
parameter space of p.

Example A.1. The Joe family: For p € [1, 00),

p)=1—{1—-w) +(1—-uy)
— (=) (1 —u)"}”.

C(uq, uy;

Example A.2. The Gumbel family: For p € [1, 00),
Clu, u; p) = exp {—[(—logu)” + (—loguy)’]/"} .
Example A.3. The Ali-Mikhail-Haq family: For p € [—1, 1),

uqly
1—p(1—u)(1—up)

Example A4. The Farlie-Gumbel-Morgenstern family: For p €
[—1,1],

C(uy, uz; p) = uquz + puguz(1 —ug)(1 — uy).

Cluq, up; p) =

Examples A.1 and A.2 satisfy Assumption 5; see Joe (1997,
pp. 140-142). Examples A.3 and A.4 are shown to satisfy Assump-
tion 6. Define

ity y: p) = Co(uy, uz; p)

LU Pp)=E —F———
Ci(uy, uy; p)

and

- Cour, uz; p)

(uq, ug; p) = £

1— CGy(uy, uz; p)°
and their derivatives w.r.t. the second argument as o (i1, Uz; p)
and fiy(uy, Ua; p).
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A.3.1. The Ali-Mikhail-Haq family (Example A.3)
Let h(uy) = 1— p(1 —uq)(1 — uy) for abbreviation. Then simple
algebra yields

ug(1 —ug)(1 — up)

wlug, uz; p) =
PP huy) = pun (T —uy)
and
. ) urtix(1 —uq)(1 — up)
iuy, uz; p) =

h(u)? — uy {h(uz) — puy(1 —uz)}
Then after some algebra, one can show that

uy(1—uy)

waug, uz; p) = _{h(uz) S <0
and

_ _ 2 . 9
(Ui, Uy: p) = ur(1—ug)(1 — uz) {1 o(1 u])} o

{2 — w5 {h(uz) — pus(1 — u)}}?

for (uy, up) € (0, 1)?and p € [—1, 1), since l—p(l—uf)isbounded
from below by 1 — (1 — u?) = u? > 0. This verifies (4.8) and
(49). O

A.3.2. The Farlie-Gumbel-Morgenstern family (Example A.4)
Simple algebra yields

ug(1 —u)(1 — up)

) = T 2un)(T — w)

and

At 1 p) = ur(1—u)(1 —uy) .
1/u — 1= p(1 = 2u1)(1 — uy)

Then after some algebra, one can easily show that

po(uq, up; p) = — ({1 = 1) <0

{1+ p(1—2u;)(1—w)y?
and

(. ty: p) = —— =)z = DR
o {1/uy — 1= p(1 = 2us)(1 — u)?

(0,1)? and p € [—1, 1], which verifies (4.8) and

for (uq, up) €
(49). O

A.3.3. The normal copula

With the normal copula, we show that the expressions in con-
dition (4.8) and (4.9) have nice interpretable forms by themselves.
The following proposition provides an interesting and useful result.

Proposition A.1 (Plackett, 1954). Let f (i1, lip; p) be anormal density
function with a correlation coefficient p. Then of (i1, Uip; p)/0p =
O%f(ily, i3 p)/ 91y .

Denote Uy = @~'(Uy)and U, = @~ '(Uy). Let ¢ (-, -; p), ¢(-|-; p),
and ¢(-) be the bivariate, conditional, and marginal standard nor-
mal density functions, respectively. By Proposition A.1, it follows
that

wlly, uz; p) = (P (ur), @ (u2); p)
T i@ ), 2 ) )
@(ii1, Uz; p)

@(ip|Uy = iiy; p)
= ¢(u)M(12|Uy = Uy p),

and
iy, uy; p) = (@7 (1), @7 (u2); p)
o 1= W‘Dl(@q(”l)@”(w);p)
@(ilq, Uy; p)

1- cb(ﬁﬂ{h = iy p)(ily)
= ¢(U)MiLz|Uy = iy; p),

itp|U1=il1;p)
@ (il |Uy=iiy: p)

are the standard (conditional) inverse

where Mib|U; = i3 p) =

~ _ _(ip|Uy=it:p)
iy p) = 1= (ily|Uy=ii1; p)
Mill’s ratios. O

It is well-known that A(ﬂ2|fll = Uy; p) is strictly decreasing
and A(ii;|U; = 1y; p) strictly increasing in ti; (and hence in uy).
Therefore (4.8) and (4.9) automatically hold, which is in line with
the discussion in Section 3 that the normal copula satisfies their
sufficient condition, i.e., Assumption 5.

and k(u2|U1 =

A.4. Jacobian matrix of G(0) and G*(0)

Let Ci(+, -5 ), Go(+, 5 p), and C,(-, -; p) be the derivatives of
C(-, -; p) with respect to the first, second ar%uments and p, re-
spectively. The Jacobian matrix Jg(6) = 30 has the following

expression: "
0 Ci (b1, a0; p)  C, (b1, ao; p)
0 Ci(b1,a1;0)  Co(b1,a1;0)
1— Gy (bo, ao; p) 0 —C, (bo, ao; p)
1—Ci (bo, a1; p) 0 —C, (bo, as; p)

Pre- and post-multiplying J;(0) by E1 and E; defined on the follow-
ing page, produces the following simplified matrix:

Ey-Jo(0)-Ea
0 o Colb1, ao; p)  Cplbr, a1 p)
Ci(b1, ao; p) Cy(b1, ar; p)
- o 0 Co(bo,ar; p)  Gy(bo. ao; p)
1—Ci(bo, ar; p) 1 — Ci(bo, ao; p)
0 1
1 0 0
1 1 0 0
Ci(b1,a0; p)  Ci(b1,a1; p)
0 0 1 1
1 — Cy(bo, ao; p) 1 — Cy(bo, as; p)
E1=
0 ! 0 0
Cy(b1, ar; p)
0 0 0 !
1 — Ci(bo, a; p)
B 1 0 Cy(bo, as; p)
1 — Cy(bo, a1: p)
E = 0 1 _Glbi.aiip)
Ci(b1, ar; p)
| 0 0 1
Ngw we prove that, given (4.8), the Jacobian matrix Jo+ = Jg+(6) =
‘3639(,9) is positive semi-definite and has full rank for all & € ® such

that ag # ay. Note that Jo+ equals Jo(0) above with the last row
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dropped. We show that the kth leading principal minor My of J¢= is
non-negative forall 1 < k < 5:'° We have M; = M, = 0 and

Ms = {1 — Ci (bo, ao; p)} {C1 (b1, a0; p) C, (b1, a1; p)
— G (b1, ay: p) C, (b1, ap: p)}
= {1 = Cy (bo, ao; p)} C; (b1, ao; p) C1 (b1, as; p)
{Cp (b1, a1;0) G (buao;p)}
Ci (b1, ar;0)  Ci (b1, ao; p)

is positive for ag > a; and negative for ag < a; by (4.8) and
the fact that C; (uq, up; p) > 0and 1 — Cy(uy, uy; p) > 0 for all
(u1,u3) € (0,1)? and p € £2. Moreover, since M3 is nonzero for
ag # ay, Jo has full rank.

One can similarly show that all other possible choices of G* will
also yield Jg+ that has full rank and is either positive or negative
semi-definite. We omit the proof here.
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