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Abstract

Many differentiated products have key attributes that are unstructured and thus

high-dimensional (e.g., design, text). Instead of treating unstructured attributes as

unobservables in economic models, quantifying them can be important to answer in-

teresting economic questions. To propose an analytical framework for this type of

products, this paper considers one of the simplest design products—fonts—and inves-

tigates merger and product differentiation using an original dataset from the world’s

largest online marketplace for fonts. We quantify font shapes by constructing embed-

dings from a deep convolutional neural network. Each embedding maps a font’s shape

onto a low-dimensional vector. In the resulting product space, designers are assumed

to engage in Hotelling-type spatial competition. From the image embeddings, we con-

struct two alternative measures that capture the degree of design differentiation. We

then study the causal effects of a merger on the merging firm’s creative decisions using

the constructed measures in a synthetic control method. We find that the merger causes
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the merging firm to increase the visual variety of font design. Notably, such effects are

not captured when using traditional measures for product offerings (e.g., specifications

and the number of products) constructed from structured data.

JEL Numbers: L1, C8.

Keywords: Convolutional neural network, embedding, high-dimensional product at-

tributes, visual data, product differentiation, merger.

1 Introduction

Many differentiated products considered in economic analyses have important attributes that

are unstructured. Examples include design elements in products such as automobiles, houses,

furniture, and clothing or digital products such as mobile applications. Other obvious exam-

ples include creative features in books, music, movies, and fine arts. Unstructured attributes

in these products are typically in visual or textual forms and thus are high-dimensional. More

generally, products well beyond these categories are often presented to consumers in visual

and textual forms: for example, product packages in supermarkets and online catalogs in

e-commerce (e.g., Amazon, Airbnb, Yelp, Zillow). These attributes are one of the first pieces

of information consumers receive along with more structured attributes such as price and

product specifications. As a result, unstructured attributes are important decision factors

for consumers and thus are key decision variables for producers.

Economists are aware of the role of unstructured attributes. Product attributes are an

important component of economic models, such as discrete-choice models (McFadden (1973),

Berry et al. (1995)) and hedonic models (Rosen (1974), Bajari and Benkard (2005)). These

models treat product attributes as both low-dimensional observable variables and a (typically

scalar) unobservable variable. In these models, the scalar unobservable variable normally

captures the high-dimensional, unstructured attributes, including design and other original

features of the products.

Although this tradition has its own merits, certain economic questions are better an-

swered by treating unstructured attributes as observables. For example, one may ask how

the style of products evolves over time—that is, how the fashion changes—in accordance

with market conditions. One may further ask how product differentiation in this creative

dimension affects the product’s market power or is affected by market shocks such as vertical

integration. These questions entail the issues of measurability and dimensionality of un-

structured attributes. Due to these challenges, there has been little understanding about the

production of creative attributes—namely, product differentiation decisions—in the realm of
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quantitative economics.1

In this paper, we propose a framework to quantify the design-oriented attributes of a

product and construct a low-dimensional space of products and measures for the degree of

product differentiation using the Euclidean distance endowed in the space. We then illustrate

how some of the economic questions above can be answered using this framework, such as

market-driven product differentiation decisions of product designers in multi-product firms.

For the purpose of this paper, we consider a particular design product: fonts. We use

a dataset obtained from the world’s largest online marketplace for Roman alphabet fonts.

There are a few reasons to study the market for fonts. First, font is one of the simplest visually

differentiated products. The shapes (i.e., two-dimensional monochrome visual information)

of a fixed number of characters mostly describe the product.2 This visual simplicity greatly

facilitates our analysis. Second, the visual information is simple to understand but important

in predicting the functionality and value of the product. Third, fonts are ubiquitous products;

thus, the market for fonts is large with frequent productions and transactions. The online

marketplace we consider is the world’s largest and has over 28,000 fonts (produced by font

design firms called foundries) and 2,400,000 transactions over the past six years. Fourth,

interesting policies are involved in this market, such as vertical integration. Finally and most

importantly, font is a stylized product that saliently captures a key aspect many products in

the market have in common: design attributes.

The main challenge in quantitatively analyzing the market for fonts is that the main prod-

uct attributes, their shapes, are high-dimensional. To address this challenge, we represent

font shapes as low-dimensional neural network embeddings and construct a corresponding

space of fonts. In particular, we adapt a state-of-the-art method in convolutional neural

networks (Wang et al. (2014), Schroff et al. (2015)), where the network directly learns to

map font images to a compact Euclidean space—that is, the embedding space—in which

perceived visual similarity is preserved. The algorithm is sophisticated enough to recognize

the style of font shapes, which is crucial for our purpose.

Another challenge is to ensure that the resulting embeddings represent economic agents’

perceptions of the product’s visual information. To this end, we employ two strategies. First,

we use the images of entire pangrams (instead of individual alphabet letters) as inputs in the

neural network.3 Because pangrams effectively capture important design elements that can-

not be seen in individual letters (e.g., spacing, deep-height, up-height, and ligature), they are

the most relevant decision variables for font designers and consumers. Second, we demon-

1Galenson and Weinberg (2000, 2001) study artists and their career choices and paths in fine arts. Their
main approach to quantitative analyses is to use price as a proxy to measure the value of artworks.

2These shapes are called typefaces.
3A pangram is a sentence that contains all the alphabet letters.

3



strate that the obtained image embeddings contains a substantial amount of information

that is mutually shared with tags, which are word phrases that describe fonts (e.g., “curly,”

“flowing,” “geometric,” “organic”). Tags are assigned to each font by font designers and

consumers and thus, we believe, represent the economic agents’ perceptions of the product.

We construct word embeddings from these tags using a simple neural network and calculate

the mutual information between the word and image embeddings.

Why do we consider a convolutional neural network? Font shapes involve a non-linear

interaction between many neighboring pixels. Considering individual pixels separately or

recognizing interactions in a restrictive model provides little information about the overall

shape of a font. By considering how neighboring pixels interact in a very flexible model, the

deep neural network outperforms other machine learning methods such as LASSO, random

forest, and boosting that use pixels or other hand-designed features (edges, corners, etc.); see

Goodfellow et al. (2016). In particular, the deep convolutional neural network is designed to

effectively capture the spatial correlation between nearby pixels. Although neural networks

are generally known to be less interpretable (Friedman et al. (2001)) than other learning

methods due to model flexibility,4 we show how an interpretable embedding space can be

learned through visual similarity. Most importantly, instead of attempting to interpret each

embedding value, our approach is to give meanings to the distance metric of the embedding

space and subsequently construct the product differentiation measures based on it.

Given the embedding space, a font designer’s decision of a typeface design is equivalent

to choosing a location in the space. This location choice is a strategic decision that depends

on the choices of other designers in the space. In this sense, the abstract space of fonts we

construct can be viewed as a location-analog model (Hotelling (1929)) with Lancasterian

characteristics (Lancaster (1966, 1971)). Based on this space, we construct two alternative

differentiation measures using the image embeddings, namely a distance to Averia (i.e., the

average font) and a gravity measure, which succinctly represent the location choice of a

designer relative to others’ choices.

To illustrate the usefulness of our approach, we conduct a causal analysis of how a merger

affected the merged firm’s design decisions before and after the merger. In June 2014, a ma-

jor font foundry was acquired by the company that owns the online marketplace. Before the

merger, the merging firm was selling fonts as a third party and competing with the foundries

owned by the marketplace. The main motivation of the analysis is that designers are not

only artists but also economic agents who are affected by market conditions. We use the

constructed design differentiation measures as the main dependent variables. To estimate

4One approach to overcome this is to consider “hand-crafted features.” However, feature selection can
generally be arbitrary and there can be arbitrarily many possible features, which hinders the interpretation.
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the effect of merger on differentiation, we use the synthetic control method (Abadie and

Gardeazabal (2003), Abadie et al. (2010)). We employ this method because, although there

is only one treated (i.e., merged) foundry, we can construct a suitable weighted average of a

comparison group from untreated foundries. We provide arguments why strategic spillovers

may be weak in our setting by showing that each control foundry produces substantially dif-

ferent products than the treated foundry, even though the synthetic control behaves similarly

as the treated before the merger. The latter is achieved due to the rich information contained

in the embeddings, which serve as the main predictors in constructing the synthetic control.

Our main finding is that, relative to the synthetic control, the merged foundry produced

fonts with greater visual variety after the merger and that this effect was statistically sig-

nificant. One of the explanations is that the degree of product differentiation may have

increased after the merger to avoid cannibalization. Notably, we find that such effects are

not captured when traditional measures for product offerings are used from structured data

(i.e., the number of products and specifications; Berry and Waldfogel (2001)). This illustrates

the importance of more sophisticated product offerings measures as employed in the current

paper.

1.1 Contributions and Related Literature

Machine Learning and Social Science Research

To our knowledge, this is one of the first few papers using neural network embeddings for

visual data in the economic analysis of markets and industries. Earlier work that analyzes

visual data uses methods that are partly or fully human-aided. Glaeser et al. (2018) use

visual data from Google Street View to predict the economic prosperity of neighborhoods,

but they assign scores to street images based on human surveys on the visual perception

of street quality and safety. Gross (2016) investigates how competition influences creative

production in a commercial logo design competition. Whereas Gross (2016) uses hand-crafted

features to create a perceptual hash code for comparing images, we learn image embeddings

based on recent advances in deep learning that have been shown to work extremely well for

high-dimensional image data (Krizhevsky et al. (2012), Simonyan and Zisserman (2014), He

et al. (2016)). Deep learning methods are used in more recent studies. Zhang et al. (2017)

show how the quality and specific attributes of property images on Airbnb can affect the

demand. The quality and attributes are human-labeled, and a convolutional neural network

is used to train the images based on the labels. Our approach does not require subjective

human labeling. As independent and contemporaneous work, Bajari et al. (2021) estimate a

hedonic function for apparel consumption using a deep neural network based on visual and

5



textual data. We also utilize textual data but in such a way that gives economic meanings to

the image embeddings we obtain. The most significant difference between our approach and

the two aforementioned studies is that we consider images as the main response variables of

market shocks and construct differentiation measures based on neural network embeddings.

Using these measures also helps gain interpretability and robustness in the quantities resulting

from the network training. In addition, we use a different neural network algorithm based

on image triplets that is suitable to our setting. Another recent work by Magnolfi et al.

(2022) considers triplet embeddings to characterize the product space for demand estimation.

Although we share a similar motivation, their embeddings are computed after human making

comparisons of product triplets while ours are elicited directly from neural network.

This paper is also among the first social science studies that make use of embeddings as

part of empirical analyses. As another form of unstructured data, text data have recently

gained much attention in economic analyses; see Gentzkow et al. (2019a) for a thorough

review of the machine learning applications. Kozlowski et al. (2019) use word embeddings

to understand cultural norms. Gentzkow et al. (2019b) analyze political polarization using

congressional speeches as text data. Hoberg and Phillips (2016) use text data from firms’ 10-K

product descriptions across industries to classify competing products and construct a product

location space as we do in our paper. Unlike their paper, however, we use image embeddings

and employ neural networks as a classification method. We also use word embeddings as

a way of validating the image embeddings. Moreover, we focus on a particular industry as

opposed to multiple industries and utilize detailed structured and unstructured data about

product offerings.

Merger and Product Differentiation

Market structures and endogenous product differentiation have been important themes in

the field of economics. In a theoretical paper, Mazzeo et al. (2018) find that the effects of

a merger on product differentiation can be ambiguous, implying that the question is more

of empirical research, as in empirical industrial organization.5 Sweeting (2013) studies the

dynamic aspects of product differentiation in the radio industry and finds some evidence sug-

gesting that increased concentration increases variety. Fan (2013) finds in newspaper markets

that mergers between local competitors has effects on vertical differentiation, leading to a

decrease in the news quality. In related work, Fan and Yang (2020) consider multi-product

firms in smartphone markets and show how mergers may lead to a decline in the number and

variety of products, and Wollmann (2018)’s analysis of a commercial truck industry implies

5Mankiw and Whinston (1986) theoretically consider a more general question of oligopolistic competition
and product differentiation and again suggest that the direction of entry bias can be unclear.
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the opposite direction of the merger effect on product variety. Apart from this important

line of work, the literature using a structural approach to study the effects of merger on non-

price and potentially unstructured attributes is rather scarce due to difficulties in modeling

endogenous product offerings with high-dimensional attributes. This is in contrast to merger

effects on price, which have received relatively more attention in the literature, e.g., building

on the structural framework of Nevo (2001).

The structural approach has been complemented in the literature by studies of merger

and concentration from a viewpoint of treatment effects and program evaluation. Berry and

Waldfogel (2001) and Sweeting (2010) document the effects of mergers on product variety in

local radio markets.6 Hastings (2004) and Ashenfelter and Hosken (2008) study the effects

of mergers on prices using the difference-in-differences and instrumental variable methods,

respectively. Although the treatment effect approach to merger analyses has limitations

(Nevo and Whinston (2010)), it is still suitable to highlight the rich information contained in

the visual dimension of product attributes previously neglected in the literature on mergers.7

We introduce unstructured data of images and related machine learning methods to derive

new insights into creative product differentiation and its relationship to mergers. On the

other hand, all the empirical studies listed in this and the previous paragraphs use structured

data to construct response variables including price and non-price attributes (e.g., product

variety measures).8 As mentioned, we cannot find in our analysis the merger effects on the

traditional product offerings measures. We believe this paper is a good starting point for

introducing embeddings into economic analyses.

Machine Vision

Recognizing letters (e.g., distinguishing handwritten “G” from “Q”) is one of the most well-

studied areas of machine vision as is done with the MNIST database (LeCun et al. (2010)).

Our paper, however, is one of the first that applies machine vision techniques to recogniz-

ing the style of font images (e.g., distinguishing typeface “G” from “G”), which is a more

challenging vision problem. Tenenbaum and Freeman (2000) propose bilinear models that

separate style and content with fonts as one of the examples. O’Donovan et al. (2014) develop

6See also Atalay et al. (2020) for a related merger analysis in consumer goods markets. They find that
mergers lead to dropping of products that are dissimilar to existing ones, where the measure of dissimilarity
is calculated based on structured attributes.

7See Angrist and Pischke (2010) and Nevo and Whinston (2010) for discussions on how the two approaches
can complement each other and what their pros and cons are.

8For example, Fan (2013) uses data on the number of opinion section staff members, the number of
reporters, local news ratio, variety, frequency of publication, and edition. Sweeting (2013) uses Neilson data
on broadcasts. Berry and Waldfogel (2001) use the number of stations and programming formats as product
offerings.
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a method for searching fonts using relative attributes based on the work on attributes and

whittle search by Parikh and Grauman (2011) and Kovashka et al. (2012). Campbell and

Kautz (2014) develop a procedure for learning a font manifold by parametrizing font shapes

and reducing the dimension of the resulting model.

The method of training the font embeddings builds on the works of Schroff et al. (2015)

and Wang et al. (2014), who develop a face recognition algorithm that directly learns an

embedding for images via neural network training. Schroff et al. (2015) show that their

approach performs substantially better than the earlier approaches of training a classification

network for face recognition, such as those in Taigman et al. (2014) and Sun et al. (2015). The

former approach is suitable for our purpose, as the procedure produces embeddings as the

intermediate output of the classification algorithm. Although we are not directly interested

in the classification of font identity, embeddings serve as our object of primary interest.

Fonts can be viewed as fashion products. Our quantitative analysis of the trend in font

style is related to work by, e.g., Al-Halah et al. (2017), Mall et al. (2019), and Yu and Grauman

(2019), who apply advanced machine vision techniques they develop to recognize the style

of clothes and shoes in the fashion industry and understand the trend. The analysis of the

visual attributes of design products has also been considered, e.g., in Burnap et al. (2016)

and Dosovitskiy et al. (2016) using deep generative models with applications to furniture

and automobile designs. However, none of the studies conduct causal analyses to answer

economic questions.

1.2 Organization of the Paper

In the next section, we provide the background about the font industry and the online

marketplace for fonts considered in this paper. Section 3 describes the data obtained from

this market. In Section 4, we construct the embedding and the product space using the neural

network. In this section, we demonstrate that the embeddings are meaningful by calculating

the mutually shared information between the font embeddings and tags. Section 5 presents

the causal analysis of a merger using the embeddings. Section 6 concludes. Sections A–

C in the Appendix respectively present the internal evaluation of the trained network, the

descriptive analyses of style trends, and supplemental results from the merger analysis.

2 Online Marketplace for Fonts

We consider the world’s largest online marketplace MyFonts.com that sells around 30,000 dif-

ferent fonts. This market is a superset of all major global online stores for fonts. MyFonts.com
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Figure 1: Home Page of MyFonts.com

and the other stores are all owned by Monotype Inc. A font is a delivery mechanism for type-

faces. Therefore, fonts are sold as a piece of software, for which consumers purchase a license.

Licenses are protected by the End User License Agreement (EULA). Mostly two types of li-

censes are sold to consumers. A web font license allows fonts to be displayed on a website,

and a desktop license is for printed material. The marketplace also serves as a platform for

third-party fonts. As a result, it sells fonts designed by foundries owned by Monotype as well

as fonts from third-parties foundries.9

Figure 1 shows the home page of MyFonts.com. An example of a font family page on

MyFonts.com is captured in Figure 2. In the font industry, a family represents the identity of

a font, which name is the name of the font. A font family is consist of several different styles,

such as regular, light, bold, and italic. Figure 2 shows different styles of Gilroy family. In this

market, typical consumers are independent designers who use fonts as intermediate goods.

They produce printed material (e.g., posters, pamphlets, cards), for which a desktop license

is purchased, or webpages and digital ads, for which a web license and digital ads license

are purchased, respectively. In the data collection period of 2012–2018, around 2,400,000

purchases were made.

9A foundry is a group of designers who create fonts.
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Figure 2: A Font Family Page on MyFonts.com

3 Data

3.1 Overview

Our sample comprises data from 2002 to 2017. The dataset includes, in total, 28,659 fonts

and 2,446,604 orders. The main information contained in the dataset is product attributes

and transactions for each consumer. The unstructured high-dimensional attributes include

images of typefaces and tags (i.e., descriptive words assigned by producers or consumers). The

structured attributes include price, category types, license types, the number of languages

supported, the number of glyphs supported, the foundry and designer information, and the

date of introduction in the market. There are roughly six category types: sans serif, serif, slab

serif, display, handwritten, and script. Transaction data include information on individual

orders made by consumers and consumer characteristics such as the country and city of

origin. We will revisit this dataset in Section 5 for the merger analysis. For now, we focus

on the unstructured data.

3.2 Visual Attributes

Fonts are displayed on the webpage using pangrams that contain all the alphabet letters in

one sentence.10 Pangrams effectively capture important design elements that cannot be seen

10In font markets, many different pangrams are used: “The quick brown fox jumps over a lazy dog.” “Six
quite crazy kings vowed to abolish my pitiful jousts.” “Quincy Jones vowed to fix the bleak jazz program.”
“Mozart’s jawing quickly vexed a fat bishop.” Here we chose to use one of the shortest pangrams to minimize
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Figure 3: Examples of a Pangram (by category types)

in individual letters, such as spacing, deep-height, up-height, and ligature. We use pangrams

as direct inputs in the neural network in order to mimic a consumer’s actual perception of

the products. Figure 3 shows the examples of a pangram that roughly correspond to the

product categories (i.e., sans serif, serif, slab serif, display, handwritten, and script). The

format of pangram images is a bitmap with 200×1000 pixels, where each pixel is a greyscale

with a value between 0 and 255. We use random crops of 100 × 100 pixels as inputs in the

network.

4 Construction of Embeddings

4.1 Neural Network Embedding

We employ a method in which the network directly learns a mapping from pangram images

to a compact Euclidean space. This mapping is called an embedding. We map each pangram

to a 128-dimensional embedding, denoted as f(x) ∈ Rd for pangram image x with d = 128.11

The Euclidean distance in the resulting embedding space corresponds to the measure of

similarity of font shape. For training the network embedding, we adapt a modern algorithm

developed by Schroff et al. (2015) for face recognition. Their algorithm determines the

identity of a person based on face images in two steps. In the first step, a deep convolutional

network is trained to learn an embedding space of faces. The rationale is that similar faces

the size of the image.
11It is important to have sufficient dimensions so that the neural network can allow for variation in the

embedding space based on the actual images. The embedding with a larger number of dimensions would
perform better, but it requires more training data to achieve the same level of accuracy while avoiding the risk
of overfitting. We additionally normalize each embedding so that it lies on a 128-dimensional hypersphere,
i.e., ‖f‖2 = 1 with the Euclidean norm ‖·‖2.
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should occur closer in the embedding space than dissimilar faces. In the second step, the

identities of the images are classified by choosing a threshold in the space below which the

embeddings have the same identity. They show that this approach performs substantially

better than the earlier approaches of training a classification network (Taigman et al. (2014),

Sun et al. (2015)). Our algorithm builds on Schroff et al. (2015), which approach is suitable

for our purpose. First, pangram images can be classified based on a structure similar to

that for face images. In the dataset of face images, multiple images are associated with

the same identity. Analogously, multiple styles are associated with the same font family as

detailed below. Second, the approach produces embeddings as the intermediate output of

the algorithm. Although we are not directly interested in the classification of font identity,

embeddings serve as our object of primary interest.

4.2 Triplet Loss and Network Training

The neural network is trained to produce embeddings and classify fonts that are within the

same family in the resulting embedding space. In practice, we accomplish this by constructing

triplets of images. Triplet i comprises anchor xai , positive xpi , and negative xni . An anchor

is a pangram image of a given font family (e.g., Helvetica), positives are pangram images

of the same family but different styles (e.g., Helvetica Regular, Helvetica Light, Helvetica

Bold, Helvetica Italic), and negatives are pangram images of different families (e.g., Time

New Roman).12 The way triplets are sampled is analogous to that in the face recognition

problem, where positives are images of the same person as the anchor and negatives are

images of different persons. For triplet (xai , x
p
i , x

n
i ) in the entire set of font images, we enforce

the following inequality during the network training:

‖f(xai )− f(xpi )‖
2
2 + α ≤ ‖f(xai )− f(xni )‖22 , (1)

where f(x) ∈ R128 is the embedding of image x, ‖·‖2 is the Euclidean norm, and α is an

enforced margin. That is, we ensure that the distance between an anchor and positive is

smaller than that between the anchor and a negative.13 The margin α allows the images for

one font family to stay closer in the embedding space, while still discriminating the images

of other families.

12To be precise, pangram images here refer to crops of the images. Therefore, we also use different crops
within the same pangram as positives.

13The choice of triplets is very important for the fast convergence of the algorithm. As such, we make sure
we choose sufficiently many triplets with hard positives and negatives, namely triplets that violate (1).
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Then, a triplet-based loss function that is minimized in the network training is

L =
N∑
i

[‖f(xai )− f(xpi )‖
2
2 − ‖f(xai )− f(xni )‖22 + α]+. (2)

We optimize this objective using stochastic gradient descent (SGD; Bottou (2010)). SGD is an

iterative method for optimizing an objective function—in our case, for creating a reasonable

embedding space. Because our dataset size is in gigabytes, it would be computationally

challenging to compute the gradient of the entire dataset and optimize it using a more

traditional optimization algorithm (e.g., Nelder-Mead or the conjugate gradient method).

SGD can be regarded as a stochastic approximation of gradient descent optimization. It

replaces the actual gradient by an estimate of the gradient.

We use approximately 20,000 images of fonts to train the neural network. The training

iteratively improves the parameters of the network using small batches of images to estimate

the gradient and then update the parameters accordingly. As the gradient is evaluated at

more batches, the parameters in the network are adjusted. The training of the network

is completed when the loss function reaches below a certain threshold. Section A.1 in the

Appendix contains the details.

As internal evaluation, we show in Section A.2 how the neural network performs in the

original classification task of identifying the font family. Although we are interested in the

embeddings and not the classification, it is important to evaluate the embeddings based on

their ability to classify. If the embeddings perform poorly, then they are not likely to generate

a reliable embedding space. As mentioned, the classification of font families is conducted by

thresholding the distances between embeddings. Overall, the neural network embeddings

perform well in differentiating between fonts in different families.

4.3 Constructed Product Space

The trained neural network produces embeddings with 128 dimensions, which define a 128-

dimensional space of font products. Figure 4 visualizes this space by projecting it onto

a two-dimensional space using t-distributed stochastic neighbor embedding (t-SNE).14 For

expositional purposes, the thumbnail is created with the word “Quick” that is cropped from

the full pangram. Each thumbnail corresponds to the embedding of the regular style of each

font family as a representative style. Therefore, for example, boldface in this figure is a

design aspect of a particular font family, not a bold style within a family. A visual inspection

14t-SNE is a useful tool to visualize high-dimensional data in a two or three dimensional space. In our
setting, we visualize 128-dimensional objects in a two-dimensional space.
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Figure 4: Two-Dimensional Visualization of the Space for Fonts

Note: This figure is created using a randomly selected subsample of 400 fonts projected onto two dimensions

using t-SNE.

reveals that different styles of fonts are well-clustered together even in this two-dimensional

projection. More specifically, we can see that the western region is populated with fonts that

have narrower characters and the eastern region with fonts that are thicker. In addition, the

shape of fonts in the northeast is more geometric while the shape in the southwest is more

curly. It is worth noting that these patterns are observed even in this space with restricted

dimensions. The space we base our economic analysis on is the original 128-dimensional

space.

To further understand how well the fonts are clustered in the 128-dimensional product

space, we present in Figure 5 the examples of regular fonts that are close to each other in the

space. In Figure 5, the images of six nearest neighbors in terms of the Euclidean distance are

listed in each row of the table. Even though we only list regular fonts, it is clear that fonts

with different thicknesses are clustered together in the space. Also, the middle and the last

rows show that geometric and curly fonts tend to cluster together, respectively.

Unlike individual embeddings, the distance metric endowed in this space has the clear

interpretation of visual similarity and is more robust to model specifications. These aspects

allow us to use the distance metric as the main building block in the economic analysis in

Section 5.
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Figure 5: Nearest Neighbors (Collected in Each Row) in the 128-Dimensional Product Space

4.4 Relevance of Embeddings

Although the neural network embedding performs well in terms of classifying fonts of sim-

ilar shapes, good predictive performance does not necessarily imply the relevance of the

embeddings for economic analyses. To address this concern, we verify that the visual at-

tributes captured in the resulting embeddings are relevant to economic agents’ perceptions

by measuring (a generalized notion of) their correlation with “perceived” attributes. For

the latter, we use information from tags, which are short descriptive words assigned to each

font family by font designers and consumers. Examples of tags are “curly,” “flowing,” “geo-

metric,” “organic,” “decorative,” and “contrast.” These descriptive words of fonts are also

high-dimensional, as the tags include nearly 30,000 different words. Therefore, we consoli-

date tags that are synonyms to create meta-tags that encompass many related words (e.g.,

“handwritten” and “cursive” would be in the same meta-tag). To this end, we create clusters

of tags using a standard word embedding “Word2vec” (two-layer neural network) by Mikolov

et al. (2013).

To measure the relevance between the image and word embeddings, we create clusters of

the image and word embeddings, respectively, using K-means clustering.15 Then, we measure

how well the clusters of word embeddings match the clusters of image embeddings by using

15To perform K-means clustering of font shape, we use the obtained 128-dimensional image embeddings
directly clustered into 60 clusters using the elbow method. To perform K-means clustering of tags, we use
100-dimensional word embeddings that are first reduced to 10-dimensional embeddings and then clustered
into 6 clusters using the elbow method.
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F W NMI(F,W )

Image Embeddings Word Embeddings 0.473
Industry Categories Word Embeddings 0.261

Table 1: Normalized Mutual Information between Image Clusters and Word Clusters (first
row), Compared to Baseline (second row)

mutual information. Specifically, we use the normalized mutual information (NMI).

NMI(F,W ) =
I(F,W )

{H(F ) +H(W )}/2

In this formula, F is the distribution of clusters based on font image embeddings, W is

the distribution of clusters based on word embeddings, H(·) is information entropy, and

I(F,W ) = H(F )−H(F |W ) is the mutual information between F and W . The NMI can be

interpreted as how informative W is in determining F . Its value ranges between 0 and 1 (the

value 0 implies that W contains no information regarding F ). Table 1 reports the values of

NMI for two different pairs of distributions. The first row corresponds to the NMI for the

image and word clusters described above. We obtain NMI(F,W ) = 0.473, which is quite

promising. To compare this value with the baseline case, the second row of the table shows the

NMI when the pre-existing product categories are used as structured attributes instead of the

image embeddings. In general, when images were treated as unobserved product attributes,

then the main structured attribute available in many design products is product categories.

Recall that sans serif, serif, slab serif, display, handwritten, and script are such product

categories defined by the font industry.16 In this case, we obtain NMI(F,W ) = 0.261, which

is roughly only half of the value in the first case. These results suggest that the learned

image embeddings arguably capture economic agents’ perceptions better than the structured

attributes and can be relevant for economic analyses.

5 Effects of Merger on Design Differentiation

5.1 Background

On June 15, 2014, one of the major font foundries called FontFont was acquired by Monotype.

At the time, Monotype sold fonts created by the foundries it owned as well as by third-party

foundries. Before the merger, FontFont had sold its fonts through MyFonts.com as a third

16Product categories are generally available to analysts, but it is specific to this online marketplace that
tags are observed. This motivates the setup of having tags as the ground truth in this section.
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party. We study the causal effect of this merger on the change in the product differentiation

decisions of the merging firm (i.e., FontFont foundry). As we show below, a favorable aspect

of this market for merger analysis is that price seems to play little role in competition so that

we can focus on product differentiation as the main response variable to merger. The major

channel for product differentiation is the design of font shapes. This creative decision of a

foundry may be affected by the merger through many different channels. By merging, the

firms could increase efficiency by reducing transaction costs. If costs are reduced, the merged

firm might find it profitable to create more experimental products. The merged firm may

also be concerned with cannibalization—that is, competition among their own products—

which would increase the diversity of product design. On the other hand, if Monotype has

a preemptive motive with the merger, it will crowd its products to prevent entries. In the

presence of these opposing factors, whether the merger increases the design diversity is an

empirical question. We answer this question using the embeddings we created as the main

ingredient of our statistical model.

5.2 Design Differentiation Measures

In this merger analysis, the outcome of interest is the degree of design differentiation. We

construct two measures for design differentiation based on the constructed embeddings. The

first measure is the distance to Averia. We calculate the Euclidean distance between an

individual font and a benchmark font:17 for image xi of font i,

DA
i = ‖f(xi)− faveria‖2 ,

where f(·) ∈ R128 is the embedding and faveria is the embedding of a benchmark font called

“Averia,” which is calculated by averaging the values of the embeddings of all the existing

fonts in the market. The distance measure DA
i is intended to capture the degree of product

differentiation of font xi.

In addition to DA
i , we consider the following gravity measure: for image xi of font i,

DG
i = −

∑
j 6=i

1

‖f(xi)− f(xj)‖2
,

where the sum is for all other fonts j’s in the market. This measure effectively captures how

font i is located relative to other fonts j’s in the product space; it takes a large value when i

is individually far from all j’s and a small value when it is close to any of them. Compared to

17For each font embedding in our economic analyses, we use a representative embedding in a given family,
namely the embedding of a regular style.
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the distance to Averia, the gravity measure acknowledges the aspect of spatial competition

among designers. For illustration, consider the interval [0, 1] as the product space. Suppose

two existing fonts are located at {0, 1} in terms of their shapes, and the third font chooses

to enter a location between one of {0, 1/2, 1}. The shape of the third font i would be most

differentiated in terms of DG
i if it is located at {1/2}. On the other hand, i would be the

most differentiated product in terms of DA
i if it is located at one of {0, 1} (even though these

points are already populated).

Finally, we aggregate each measure for all fonts created by foundry k in period t. In

particular, for j ∈ {A,G}, we construct

D̄j
kt =

1

|Ikt|
∑
i∈Ikt

Dj
i ,

where Ikt is the set of all fonts created by foundry k in period t. In the subsequent merger

analysis, we consider both D̄A
kt and D̄G

kt as the outcome variables, henceforth referred to as

the mean deviation and gravity measures, respectively. Despite the distinct feature, both

D̄A
kt and D̄G

kt are meant to succinctly capture each foundry’s creative decision of product

differentiation in terms of font design every period. We show that the subsequent empirical

analysis is robust to the choice of the measure between the two.

5.3 A Theoretical Example for Merger and Differentiation

We first consider a simple Hotelling-style model to illustrate that, in the market for fonts,

the degree of product differentiation may be larger with merger than without while price

may remain the same and consequently welfare may be greater with merger. The prediction

from this theoretical model serves as the motivation of the subsequent empirical analysis.

Consider two representative foundries each of which produces one font by locating its shape

in a unit interval [0, 1]. Foundry 1 chooses location a and foundry 2 chooses location 1 − b.
Based on tastes for fonts, consumers are located at x distributed uniformly over [0, 1]. Each

consumer experiences aesthetic “transportation cost” t, which is incurred by “traveling” from

her specific taste to an available font on the market. Consumers then pay p1 for foundry 1’s

font and p2 for foundry 2’s font. The utility of consumer located at x from buying font 1 is

V1(x) = u− p1 − t|a− x|,

where u is a utility parameter, and the utility from buying font 2 is

V2(x) = u− p2 − t|1− b− x|.
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Finally, consumers’ utility if no product is purchased is normalized to be V0 = 0. This model

is slightly more general than what is considered in Berry and Waldfogel (2001).

When travel cost t is high relative to u, the firms in the Hotelling model may not compete

with each other (Economides (1989)). In this case, the model predicts (as shown below) that

some consumers may not buy the product (i.e., V0 ≥ V1(x) and V0 ≥ V2(x) for some x) and

each firm becomes a local monopoly, only selling to consumers with positive net surplus. We

derive the equilibrium location and price under local monopoly. We start by finding foundry

1’s profit function, which depends on the share of consumers who buy its product. To find

this share, consider the consumer who is indifferent between buying and not buying font 1:

V1(x) = 0 = V0. Let x1 be the westmost location of a consumer who will buy font 1. Solving

for x1 < a, we have x1 = a− (u− p1)/t. Let x2 be the eastmost location of a consumer who

will buy font 1. Solving for x2 > a, we have x2 = a+ (u− p1)/t. Assume that the marginal

cost is zero, which is plausible in this market. Then foundry 1’s operating profit function of

choosing a and p1 would be

π1(a, p1) = p1(a− x1) + p1(x2 − a) = 2p1(u− p1)/t.

Maximizing this profit yields the optimal price of p1 = u/2. Note that location a and the

price p2 chosen by foundry 2 are not part of foundry 1’s profit function (and analogously for

foundry 2’s profit), which reflects the fact that each firm is a local monopoly. As a result,

there are multiple possible equilibrium locations for a (and for b), subject to the fact that

the share of consumers who buy font 1 cannot overlap with the share who want to buy font

2. We can analogously derive the optimal price for foundry 2, which yields p2 = u/2, the

same as the optimal p1.

Consider a concrete example of the model by assume t = 1 and u = 1/3. Further

assume there is an fixed entry cost F = 1/20. Then, the optimal prices are p1 = p2 = 1/6

and (1/3, 2/3) is one of the equilibrium location. Under this solution, the consumer at the

center of the space will not buy anything because V1(1/2) = V2(1/2) = −1/3 < V0 = 0.

Therefore, the location and price are the equilibrium under local monopoly. However, this

is an inefficient equilibrium as only 2/3 of consumers buy the fonts; consumers [1/6, 1/2]

buying font 1 and [1/2, 5/6] buying font 2. Still, neither firm has an incentive to deviate and

introduce an new product that yields enough profit justifying the fixed cost.

Now consider a market where both foundries are merged under the same parameter values

for (t, u, F ). The merged firm may introduce three products in the location (1/6, 1/2, 5/6).

To see why this is a local monopoly equilibrium, note that none of the products compete with

each other; consumers from [0, 1/3] buy font 1, consumers from [1/3, 2/3] buy font 2, and
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consumers from [2/3, 1] buy font 3. Moreover, this is a unique and efficient equilibrium as

the products serve all the consumers in the market. In terms of product differentiation, note

that the maximum differentiation (i.e., the distance between furthest endpoints) is 2/3, larger

than 1/3 without the merger. Similarly, in terms of our gravity measure, differentiation is

approximately −2.0, larger than −2.19 without the merger. To see why the price remains the

same, the merged firm’s joint profit function involving all 3 products is π1(p1)+π2(p2)+π3(p3)

where π1, the profit for font 1, does not depend on the prices of fonts 2 and 3 and so on.

Then, the optimal price would be p1 = p2 = p3 = 1/6, the same as the optimal price without

the merger. In this case, the profit is 1/6 with the three products, compared to 1/9 which

is the aggregate profit of the two firms without the merger. Because more consumers are

served with the merger while price remains the same, the welfare would be also greater with

the merger than without.

For all other two-product equilibria without the merger that are close to (1/3, 2/3),18 a

similar pattern is predicted: increased differentiation with the merger while price stays the

same. When the locations move further away from (1/3, 2/3) toward (1/6, 5/6), then one

of the firms may introduce another product, which results in a three-product equilibrium.

An example would be (1/6, 1/2, 5/6) and p1 = p2 = p3 = 1/6, which are identical to the

unique equilibrium location and price with the merger. For all other three-product equilibria

without the merger,19 differentiation increases with the merger and price may stay the same

(for the single-product foundry) or decrease (for the two-product foundry). In all these other

cases, since the price is no larger with the merger while the market is fully served, the welfare

would be no smaller than without the merger.

To summarize the prediction under local monopoly, for a large range of equilibria, we

expect increased differentiation and invariant price with merger than without. For all equi-

libria, there is a welfare gain with merger. The model’s prediction is starkly different when

there is no local monopoly. This occurs when t < u. In contrast to the prediction under local

monopoly, differentiation falls and price increases with merger than without. Therefore, in

this case, the welfare consequence is ambiguous.

Given the theoretical findings, the effects of merger on product differentiation and price

(and consequently on welfare) in the market for the current design products remain an

empirical question. Although this illustration is based on a simple stylized model, a similar

intuition would continue to hold when there are more than two foundries and each foundry

produces multiple fonts. Below, as our main focus of investigation, we empirically show that

the responses of product differentiation and price in the real-world merger case of FontFont

18Specifically, they are equilibria where (approximately) a ∈ [0.3157, 1/3] and b ∈ [2/3, 1− 0.3157].
19They are equilibria where (approximately) a ∈ [1/6, 0.3157], b ∈ [1− 0.3157, 5/6], and the third product

locating at a point in [0.3882, 1/2] by one of the firms and the exact locations are dependent to one another.

20



Mean S.D. Min Max

Mean Deviation 0.41 0.11 0.18 0.74
Gravity -9.68 0.16 -9.97 -9.24

Glyph Count 419.03 775.58 32 9,844
Release Frequency 6.25 7.02 0.00 30.00

Sales ($1K) 601 1,886 0 24,636
Order Count 7,517 23,239 1 360,435

Price per Order ($) 92.24 94.62 1.60 678.07
Age (Half Year) 10.32 5.34 0.00 17.50

N × T 51× 32 = 1, 632

Table 2: Summary Statistics (embeddings variables omitted)

are in fact consistent with the prediction of the model under local monopoly.

5.4 Data and Empirical Strategy

For our empirical analysis, we construct the panel based on the dataset described in Section

3. The cross-sectional units of this panel are foundries and the time dimension is a bi-annual

time series between 2002 and 2017. Table 2 shows the summary statistics for the variables

(except the raw embeddings) in the panel. All the variables are constructed to be foundry-

level. The mean deviation and gravity measures are the main response variables in the merger

analysis. Glyph count is an important product specification and is considered to be related to

quality.20 The release frequency (i.e., maximum period between two releases), sales, number

of orders, average price, and age of foundries introduced are the other control variables we

use.

Section B in the Appendix contains a simple descriptive analysis of the supply- and

demand-side trends for the shapes of fonts captured in the embeddings. The supply-side

trend plots the differentiation measures constructed in the previous subsection for fonts newly

introduced in the market every period. For the demand-side trend, we construct and plot

analogous measures for fonts purchased every period. We find that, on average, newer fonts

tend to be more differentiated than older fonts. How such differentiation decisions are affected

by the change in market structure is the subject of the merger analysis. We also find that the

demand-side trend is markedly stable, especially around the time of merger.21 This supports

20Glyph count is the number of characters including special characters in each font family. We calculate
the average glyph count for all fonts produced by each foundry each period.

21In general, the stable demand-side trend is consistent with the industry norm. According to the industry
experts we interviewed, font markets tend not to experience seasonality or short-term trends in consumer
preferences, unlike in other design industries such as clothing.
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the argument that the change in the producer behavior we find below in the merger analysis

is not demand-driven.

To estimate the causal effect of merger on product differentiation, we find a comparable

group that would behave similarly as the treated foundry (i.e., FontFont) if it were not for

the merger. There are challenges in using this approach. First, it is difficult to find a single

untreated foundry that resembles the treated foundry in terms of the product differentiation

measure (i.e., the mean deviation or gravity measure). A naive average within a control

group would be a poor candidate. Second, candidate foundries for the control group whose

products are too similar to the treated foundry’s products may be in direct competition

with the treated, which can create strategic spillovers. To overcome these challenges, we

use the synthetic control method (Abadie and Gardeazabal (2003), Abadie et al. (2010))

and the proposed differentiation measures. First, the synthetic control method compares

the treated unit with a “synthesized control unit” obtained from a weighted average of the

control group. Here, the weights are estimated by minimizing the distance between the

observed characteristics including the outcome (as presented in Table 2) of the treated unit

and the weighted average of the characteristics of the control group. For the control group

that serves as the basis for constructing a synthetic control, we use foundries whose merger

status has not changed during the study period. Second, although we achieve a certain level

of similarity in the differentiation measure between the resulting synthetic control and the

treated foundry, this does not necessarily imply that they are competitors producing similar

products. This is because the value of the measure of each control unit can be significantly

different from that of the treated unit, even if the weighted average is close to the latter. In

fact, this appears to be the case in our data as shown in Figures 12 and 14 below. Therefore,

we assume that strategic spillovers between the treated unit and the control units are not

substantial.22 Nonetheless, the advantage of our setting is that the embeddings contain rich

information about the design attributes of the fonts created by the foundries. Therefore, we

can reliably create a comparable synthetic unit from the control group without their products

being necessarily visually similar to those of the treated foundry. In total, our data include

one treated foundry (FontFont) and 50 control foundries.

5.5 The Effects of Merger

Figure 6 captures the main results of our causal analysis of merger using the gravity mea-

sure.23 The results of the analysis using the mean deviation measure are presented in the

22See Abadie (2021) for discussions on similar approaches to minimize strategic spillovers between treated
and control units.

23To reduce the scale, we take the logarithm of the positive part of D̄G
kt and then put back the minus sign.
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Figure 6: Trends of FontFont vs. Synthetic FontFont (left) and Naive Control Group (right)—
Using Gravity Measure

Note: The solid line depicts the trend of FontFont and the dashed line depicts the trend of the synthetic

control (left) or the naive average trend among all the control units (right). The vertical dotted line in each

figure indicates the time of the merger.

Appendix. The solid line in the left panel presents the trend of the gravity measure of the

fonts newly designed by FontFont in a given period. Around the period where FontFont

was merged, which is indicated by a vertical line, the shape of FontFont’s fonts substantially

differs from that of other fonts in the market. This before and after comparison alone cannot

yield the causal effect of the merger, as other market conditions may have changed around

this period. Comparing this trend with the trend of the synthetic FontFont, depicted by a

dashed line, removes possible confounding factors. First, the two trends before the merger

appear to be close to each other by construction. After the merger, however, FontFont tends

to produce more experimental fonts (i.e., fonts that are far from others) relative to the trend

of the synthetic control. We also confirm that even if we backdate the period of acquisition

(i.e., does not use the information of the timing of merger), the relative increase still occurs

around the same period as the vertical line.

To understand the virtue of our synthetic control method, we contrast the left panel with

the right panel in Figure 6. The latter depicts the trends of the treated unit and the naive

average of the control group. Inspecting the pre-treatment period in the right panel, the

naive average fails to mimic the trend of the treated unit.

Finally, Table 3 reports the treatment effects averaged over each year after the merger.

We also report their p-values using the permutation test by Chernozhukov et al. (2021).
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Years (After Merger) 2015 2016 2017

Treatment Effects 0.107 0.058 -0.019
p-Value (block) 0.037 0.074 1
p-Value (i.i.d.) 0.002 0.052 0.998

Table 3: Treatment Effects Averages (by year after the merger)

Figure 7: Trends of FontFont vs. Synthetic FontFont using Glyph Counts (left) and the
Number of Products (right)

Note: The solid line depicts the trend of FontFont and the dashed line depicts the trend of the synthetic

control. The vertical dotted line in each figure indicates the time of the merger.

The advantage of this inferential method in our context is that it does not assume random

assignment of the policy intervention unlike earlier methods that rely on the assumption to

ensure the properties of randomization tests (e.g., Abadie et al. (2010)).24 Consistent with

Figure 6 (left), the short-run effects in the first and second years are statistically significant.

To understand the magnitude of the effect, note that the standard deviation (SD) of the

gravity measure in the sample is 0.16 as shown in Table 2. Therefore, the treatment effects

are on average half of 1 SD. It is also informative to understand the increase in the measure

(roughly from -9.8 to -9.6) relative to the distribution of the gravity measure (the left panel

of Figure 15 in the Appendix). After two years of strong positive effects, the effect of merger

dissipates in the third year. The placebo test results, presented in Table 5 in the Appendix,

show that the treatment effects are not statistically significant before the merger.

We produce analogous results using the mean deviation measure instead of the gravity

24See Arkhangelsky et al. (2019) for related discussions.
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measure and find that the results are qualitatively similar. The effects are positive and

statistically significant and on average larger than 1 SD; see Section C.2 in the Appendix. This

suggests that our findings are robust to the choice of the measure of product differentiation

as long as it is constructed based on the image embeddings. This robustness disappears

if we use more traditional measures for product offerings, such as the number of products

and specifications. Figure 7 shows that the merger has no effects on both the Glyph counts

(which is the key specification for fonts) and the number of new fonts. Tables 9 and 11 in

the Appendix confirm that the effects are not statistically significant.

Based on this analysis, we conclude that the merger caused FontFont to explore a new

territory of the product space, at least temporarily.25 That is, by being part of the parent

organization, Monotype, FontFont increased the visual variety in font design. Before the

merger, foundries owned by Monotype produced fonts and sold them on MyFonts.com. After

the merger, Monotype may have incentives to diversify the product scope owing to the

increased size and efficiency of the firm. It may also be the case that Monotype tries to

avoid cannibalization by spreading apart its products, thus reducing competition amongst

their own foundries. Such tendency disappears after two years, perhaps because the firm has

either successfully foreclosed the market or found the strategy unprofitable.26

The explanation of our empirical findings echos the prediction under local monopoly in

the simple theoretical model above. Indeed, the market for fonts may have the aspect of

local monopoly in which consumers exhibit high travel cost. This seems plausible because

most of the consumers in this market are professional designers with sophisticated tastes for

font shapes. The theoretical model also predicts that the price response to merger would be

minimal under local monopoly for a large range of possible equilibria. Figure 8 corroborates

this theoretical prediction. The figure plots the average prices of newly introduced fonts by

FontFont and the top ten control foundries.27 The average prices of most of the foundries

stay relatively stable, especially around the time of merger.

6 Conclusion

Certain policy questions are better answered by treating high-dimensional, unstructured at-

tributes as observables and attempting to solve the resulting dimensionality problem. We pro-

25Given our data frequency, the foundry’s immediate increase in design differentiation after the merger is
feasible because it typically takes one or two months for a foundry to design a font.

26According to the interview with the employees, we discovered that the company has gone through a
structural change two years after the merger that is consistent with the second explanation. The details of
the change cannot be publicly revealed.

27The range of periods differs from our main analysis due to data limitations.
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Figure 8: Price Trends of FontFont vs. Top Control Foundries

Note: The price depicted is the average price of all fonts produced by each foundry in each period. The

vertical dotted line indicates the time of the merger.

pose to quantify the design-oriented attributes of a product by constructing a low-dimensional

product space of these attributes. We use a modern convolutional neural network to accom-

plish this task. We find that these attributes are correlated with font designers’ and con-

sumers’ perceptions, as reflected in the mutual information between tags used to describe the

fonts and the neural network embeddings. We then turn to a causal analysis to understand

the effects of a merger on product differentiation. We find that the merger increases the

product variety in this market. The analytical framework of this paper can be applied to

various products where unstructured attributes are present.

This paper motivates interesting directions for future research, some of which may require

a structural approach. For structural economic analyses, we envision a two-step approach of

using the embeddings: construct a neural network embedding to reduce the dimensions of the

product image and then include the embeddings in structural economic models. Although

we could use the neural network to directly predict economic variables, such as demand and

price, the neural network is not a causal model. Therefore, its counterfactual predictions are

not as credible as those of a more traditional structural model. An alternative structural

approach would be to incorporate dimension reduction as part of the structural estimation

(Chernozhukov et al. (2018), Foster and Syrgkanis (2019)).
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Using these structural approaches, we may answer economic questions related to this

market. Related to the economic analyses in this paper, we may view product differentiation

as spatial competition. There is a close parallel between spatial differentiation and the neural

network embedding product space we constructed. Analogous to Seim (2006), who studies

the location choice of video rental stores, we can investigate the relationship between design

choices and the local market power of the designers. We can also study how third-party

and in-house foundries differ in their product differentiation decisions. One relevant policy

question is the effect of the commission fee of third parties. In fact, Monotype changed

the commission policy during the data collection period, which may serve as a key policy

variation.

Alternatively, we may view product differentiation as intellectual property. Agents in

this industry are subject to license agreements, which aim to protect the originality of font

shapes. Heuristically, this policy states that “one cannot produce fonts which shapes are

substantially similar to existing fonts.” Given the product space we characterized, one can

interpret this policy as imposing a ball centered around each font, thus preventing other

productions within: producing another font inside the ball is considered a violation. Then,

one can ask what the welfare maximizing level of the policy (i.e., the optimal radius of the

ball) would be and whether the current level in the market is optimal or suboptimal.

A Neural Network Training

A.1 Details of Network Training

The training iteratively improves the parameters of the network using batches to estimate the

gradient and then update the parameters accordingly (Wilson and Martinez (2003)). Each

batch contains 270 cropped images of fonts, or equivalently, 90 triplets. We cropped each

image based on the number of characters in the image.28 As the gradient is evaluated at more

batches, the parameters in the network are adjusted. The number of trainable parameters are

90, 000 = 3× (3× 100× 100) (layers × input size). The training of the network is completed

when the loss function reaches below 0.7. The learning rate is initially 0.05, and then lower

to 0.01 to finalized the model. Here are the remaining hyper-parameter values: the batch

size is 90, epoch size 500, weight decay 1× 10−4, and the margin α is 0.2. The training time

took approximately 24 hours with 4 GPUs (Nvidia 1080-TI).

28For example, the first half of the pangram sentence has 20 characters; therefore, to crop 5 characters, we
would take 40 percent of the pixels in the first half of the image. We tried crops with 3, 4, 6, and 7 different
characters. We also tried different cropping schemes such as using the white space between characters.
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Crop Size (Characters) Test Set Accuracy Validation Rate FAR

7 Hard 0.8925 0.09375 0
7 Easy 0.8975 0.47875 0
6 Hard 0.8825 0.04875 0
6 Easy 0.89667 0.53875 0
4 Hard 0.86333 0.02 0
4 Easy 0.8925 0.46875 0
3 Hard 0.76417 0.00875 0
3 Easy 0.88167 0.48625 0

Table 4: Internal Validation by Accuracy, Validation Rate, and FAR

A.2 Evaluation of Trained Network

To evaluate the neural network embeddings, we create test sets of triplets that the neural

network has never seen during the training. Using the test sets, the task is to identify

whether the image in a triplet is a positive or a negative. It is classified as a positive if its

Euclidean distance from the anchor in the trained embedding space is less than a pre-defined

threshold (via cross validation) and a negative otherwise. We describe the results of tests

on two different test sets. The first test set, “easy,” randomly samples pairs of a positive

crop within the same family as an anchor and a negative crop from different families, for

which the performance is evaluated. The second test set, “hard,” samples pairs of a positive

crop within the same style of a family as an anchor and a negative crop from different styles

within the same family.

The analysis involves true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN). Table 4 presents the accuracy and validation rates for the neural network

in each of these test sets with different crop sizes. The accuracy is a measure of how well

the neural network embeddings perform in the classification task. Overall, it gets about 90

percent of the triplets correct.

We also analyze the trade-off between Type-I and Type-II errors in classification. The

validation rate is the true acceptance rate and is calculated as TP/(TP+FN). The false

acceptance rate (FAR) is given by FP/(TN+FP). In addition, we plot precision and recall

curves. Precision is related to the Type-I errors and is calculated as TP/(TP+FP). Recall is

related to the Type-II errors and is given by the formula TP/(TP+FN). The precision recall

curve in Figure 9 shows the trade-off between these types of errors. There exists a steeper

trade-off between precision and recall in the hard test set.

Overall, all the statistics we report here show that our neural network performs well.

The low validation rate in the hard test set suggests that there is room for improvement in
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Figure 9: Precision Recall Curves

differentiating between different styles.

B Trend Analyses

To further illustrate the usefulness of the embeddings, we analyze the supply- and demand-

side trends in font style. This also provides an additional background for the causal analysis

of the merger in Section 5. On the supply side there are constant entries of new products in

the marketplace. On the demand side, on average, more than 1,000 fonts are (stably) sold

per day. Of course, demand and supply are endogenous, so this analysis is only a descriptive

analysis. We, however, believe it reveals some interesting patterns in this market.

B.1 Supply-Side Trend

We analyze the supply-side trend in the Euclidean distance from Averia. We are particularly

interested in how the style of fonts newly entering the market differs from the style of in-

cumbent fonts. In Figure 10, each dot represents the daily mean distance from Averia for a

range of periods. The red horizontal line is the mean distance of all fonts introduced before

2001, which we view as incumbents. The black line depicts the quarterly moving averages of

the daily mean for fonts newly introduced since 2001 each day, which we view as entrants.

Overall, we find that entrants have font shapes that are more experimental or innovative

than those of incumbents, possibly to avoid competition and establish market power distant

from the incumbents in the product space.
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Figure 10: Trends in Mean Distance of Incumbents (≤ 2000, in red) and New Entrants
(2001–2017)

B.2 Demand-Side Trend

We now analyze the trend in the Euclidean distance between Averia and fonts purchased by

consumers between 2014 and 2017.29 To remove the supply-driven factor, we condition on

price and focus on the price ranges of USD 25–35 and USD 35–45, where promotions are

rare. These price ranges are the most common in the market. Figure 11 plots the trend

conditional on the price being USD 25–35 and USD 35–45. We also plot the trend for the

two major license types: desktop license and web font license. Again, each dot represents

the daily mean distance weighted by the number of purchases. We also plot monthly moving

averages.

Interestingly, in both figures, we find that fonts sold under desktop license are more

experimental (or less conservative) than fonts sold under web font license. Because both

licenses are offered for most fonts, this difference cannot be attributed to the supply-side

decision but is the result of consumer decisions.

B.3 Summary of Findings

Based on our analyses, we find the following stylized facts. (i) Entrants are more innovative

than incumbents. (ii) Consumer preferences are stable during 2014, the year that witnessed

the merger of our interest.30 Based on this finding, we assume that the demand side has a

29The time span is shorter than that for the supply-side analysis due to the missing license type data for
earlier periods.

30This feature is uniformly found in all price ranges, but we do not report the results for succinctness.
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Figure 11: Trends in (Weighted) Mean Distance of Purchased Fonts (for USD 25–35 and
USD 35–45, by license types)

Note: The vertical line in each figure indicates the time of the merger we analyze in Section 5.
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negligible influence on the change in product differentiation decisions by the merging firm

around the time of merger. (iii) Consumers have different preferences over shapes depending

on the license type they purchase. Consumers prefer more conservative shapes for web font

licenses and more experimental shapes for desktop licenses. Usually, web font licenses are

used on webpages, where legibility is important, whereas desktop licenses are used in printed

material (e.g., posters, cards), where designers (as consumers) have more control over the

design environment.

C Supplemental Findings for Merger Analysis

C.1 Placebo Test with Gravity Measure

2003 2004 2005 2006 2007 2008

Treatment Effects -0.0172 -0.0158 -0.0298 0.013 0.0473 0.0351
p-Value (block) 0.75 0.1667 1 0.5 0.0833 0.9286
p-Value (i.i.d.) 0.6577 0.0654 0.9672 0.5029 0.0668 0.9376

2009 2010 2011 2012 2013 2014

Treatment Effects -0.0111 -0.0288 0.012 0.0727 -0.0316 -0.0659
p-Value (block) 0.8125 0.6667 0.2 0.3636 0.1667 0.5385
p-Value (i.i.d.) 0.873 0.5351 0.1068 0.2523 0.1452 0.5335

Table 5: Placebo Test: Treatment Effects Before Merger (Using Gravity Measure)

C.2 Merger Effects and Placebo Test with Mean Deviation Mea-

sure

2003 2004 2005 2006 2007 2008

Treatment Effects -0.0036 -0.0095 0.0177 0.0241 0.0388 0.005
p-Value (block) 0.75 0.3333 0.25 0.3 0.1667 0.7857
p-Value (i.i.d.) 0.8292 0.3391 0.1486 0.1494 0.0836 0.7552

2009 2010 2011 2012 2013 2014

Treatment Effects -0.0444 -0.0224 0.0371 0.0323 -0.0144 -0.0056
p-Value (block) 0.125 0.7222 0.1 0.8182 0.625 0.7308
p-Value (i.i.d.) 0.096 0.6569 0.0764 0.803 0.5563 0.7047

Table 6: Placebo Test: Treatment Effects Before Merger (Using Mean Deviation)
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Figure 12: Trends of FontFont vs. Top 10 Control Units (Using Gravity Measure)

Note: The values next to the foundry names indicate the weights used to construct the synthetic control.

Figure 13: Trends of FontFont vs. Synthetic FontFont (left) and Naive Control Group
(right)—Using Mean Deviation Measure

Note: The solid line depicts the trend of FontFont and the dashed line depicts the trend of the synthetic

control (left) or the naive average trend among all the control units (right). The vertical dotted line in each

figure indicates the time of the merger.
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Figure 14: Trends of FontFont vs. Top 10 Control Units (Using Mean Deviation)

Note: The values next to the foundry names indicate the weights used to construct the synthetic control.

2015 2016 2017

Treatment Effects 0.1412 0.061 -0.0305
p-Value (block) 0.037 0.0741 0.1111
p-Value (i.i.d.) 0.0034 0.0704 0.0716

Table 7: Treatment Effects After Merger (Using Mean Deviation)
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C.3 Merger Effects with Traditional Measures of Product Offer-

ings

C.3.1 Glyph Counts

2003 2004 2005 2006 2007 2008

Treatment Effects 125.1264 48.1483 -19.9343 -14.6911 -57.5153 1.1326
p-Value (block) 0.25 1 0.8333 0.8571 0.375 0.4444
p-Value (i.i.d.) 0.2376 1 0.829 0.8534 0.3759 0.4469

2009 2010 2011 2012 2013 2014

Treatment Effects 29.1529 -23.4679 29.4617 178.8836 99.5249 11.8745
p-Value (block) 0.7 0.5455 0.25 0.0769 0.5714 0.4
p-Value (i.i.d.) 0.6991 0.5409 0.2579 0.0786 0.5749 0.4063

Table 8: Placebo Test: Treatment Effects Before Merger (Using Glyph Counts)

2015 2016 2017

Treatment Effects 127.9152 74.8633 73.8973
p-Value (block) 0.25 0.75 0.75
p-Value (i.i.d.) 0.2645 0.7395 0.7574

Table 9: Treatment Effects After Merger (Using Glyph Counts)

C.3.2 Number of New Fonts

2003 2004 2005 2006 2007 2008

Treatment Effects 48.5002 1.0007 16.0004 232 248 156
p-Value (block) 1 0.8 0.6667 0.1429 0.625 0.2222
p-Value (i.i.d.) 1 0.8034 0.6677 0.1408 0.6241 0.229

2009 2010 2011 2012 2013 2014

Treatment Effects 64.5 210.0034 376.5 144.5 164 155
p-Value (block) 0.4 0.0909 0.4167 0.6154 0.2857 0.7333
p-Value (i.i.d.) 0.3939 0.0938 0.4115 0.6137 0.2901 0.7297

Table 10: Placebo Test: Treatment Effects Before Merger (Using Number of New Fonts)
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Figure 15: Histograms of the Gravity Measure (left) and Mean Deviation Measure (right),
Before and After the Merger

2015 2016 2017

Treatment Effects 73.5002 29.0002 32.0001
p-Value (block) 0.5625 0.9375 1
p-Value (i.i.d.) 0.5599 0.9426 1

Table 11: Treatment Effects After Merger (Using Number of New Fonts)

C.4 Distributions of the Measures

Figure 15 presents the distributions of the gravity and mean deviation measures before and

after the merger. It is helpful to understand the magnitude of the estimates relative to the

distributions.
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