Semiparametric Models for Dynamic Treatment Effects and Mediation Analyses with Observational Data

Sukjin Han & Sungwon Lee

U of Bristol & Sogang University

11 March 2023

Warwick-Turing Economics Data Science Workshop

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A sequence of interventions interacting with a sequence of outcomes over periods

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

A sequence of interventions interacting with a sequence of outcomes over periods

To design informed policies, important to understand the dynamic causal mechanism

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Example: Schooling (D_1) and post-school training (D_2) on employment status $(Y_1 \text{ and } Y_2)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Example: Schooling (D_1) and post-school training (D_2) on employment status $(Y_1 \text{ and } Y_2)$

Post-training employment status (Y_2) is affected by...

- (i) the job training (D_2) ,
- (ii) directly by HS degree (D_1) ,

(iii) indirectly by HS degree through previous status (Y_1) via...

- state dependence and
- time-invariant heterogeneity
- ▶ i.e., Y₁ is a mediator

Example: Schooling (D_1) and post-school training (D_2) on employment status $(Y_1 \text{ and } Y_2)$

Post-training employment status (Y_2) is affected by...

- (i) the job training (D_2) ,
- (ii) directly by HS degree (D_1) ,

(iii) indirectly by HS degree through previous status (Y_1) via...

- state dependence and
- time-invariant heterogeneity
- i.e., Y_1 is a mediator

Want to understand various channels of causal effects

Challenge: Dynamically Endogenous Selection

In observational settings, individuals make dynamically endogenous decisions whether to select into treatments

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Challenge: Dynamically Endogenous Selection

In observational settings, individuals make dynamically endogenous decisions whether to select into treatments

Example (conti'ed): Workers decide (D_2) to participate in the training based on...

- their schooling decision (D_1)
- previous labor market outcome (Y_1)
- ▶ prospect of labor market outcome (counterfactual Y₂)

ション ふゆ アメリア メリア しょうくの

Challenge: Dynamically Endogenous Selection

In observational settings, individuals make dynamically endogenous decisions whether to select into treatments

Example (conti'ed): Workers decide (D_2) to participate in the training based on...

- ▶ their schooling decision (*D*₁)
- previous labor market outcome (Y_1)
- ▶ prospect of labor market outcome (counterfactual Y₂)

Even in experimental settings, especially if D_1 and D_2 are the same kind, non-compliance due to learning

Want to address this challenge, while remaining flexible in...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- modeling dynamics and
- treatment heterogeneity
- \Longrightarrow We use sequence of IVs

Want to address this challenge, while remaining flexible in...

- modeling dynamics and
- treatment heterogeneity
- \Longrightarrow We use sequence of IVs

We consider the most challenging case of binary IVs

Candidates:

- multi-period/stage experiments
- sequence of natural experiments
- sequential fuzzy regression continuity

うして ふゆう ふほう ふほう うらつ

Want to address this challenge, while remaining flexible in...

- modeling dynamics and
- treatment heterogeneity
- \Longrightarrow We use sequence of IVs

We consider the most challenging case of binary IVs

Candidates:

- multi-period/stage experiments
- sequence of natural experiments
- sequential fuzzy regression continuity

Our theory immediately extends with IVs of richer variation

(ロ) (型) (E) (E) (E) (O)

Example (conti'ed): For HS diploma (D_1) and job training (D_2)

- ► *Z*₁: close/far from HS
- ► Z₂: randomization from JTPA
- one of our empirical applications

Sequential fuzzy RD:

Z_t: eligibility from running variables

Sequential experiments:

A/B testing, multi-stage field experiments

This Paper: Semiparametric Models for Dynamic Effects

Consider a class of semiparametric models for dynamic treatment and mediation effects

- nonparametric outcome and selection equations
- nonparametric marginal distribution of unobservables
- multivariate parametric copula for dependence of unobservables

(ロ) (型) (E) (E) (E) (O)

This Paper: Semiparametric Models for Dynamic Effects

Why semiparametric?

- 1. Point ID with alternative assumptions while being flexible
 - existing results:
 - irreversible treatments (Heckman & Navarro 07, Heckman, Humphries & Veramendi 16),
 - rely on IVs with large support or extra exogenous variables (above refs, Han 21)
 - resort to partial identification (Han 23)
- 2. Avoid the curse of dim with nonparametric joint dist of unobs
 - selection endogeneity parameters as byproduct
- 3. Avoid misspecification of marginals of unobs
 - treatment effects are direct functions of marginals

Other Related Work

Dynamic discrete choice models, dynamic sample selection models (Honoré & Kyriazidou 00, Kyriazidou 01, Honoré & Tamer 06, Torgovitsky 19, Honoré & Weidner 21)

- main focus is state dependence
- linear index; dependence of unobs via fixed effects
- no need of IVs
- but requirement on T

Policy evaluation with multiple treatments (Heckman & Pinto 18, Lee & Salanié 18, Balat & Han 23)

Dynamic treatment regimes (Murphy et al. 01, Cui & Tchetgen Tchetgen 21, Qiu et al. 21, Han 23)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

I. Model and Assumptions

(ロ) (四) (三) (三) (三) (三) (○) (○)

Consider T = 2 and binary Y_t (for simplicity), and write

$$egin{aligned} Y_2 &= 1[\mu_2(Y_1,D) \geq U_2(Y_1,D)] \ D_2 &= 1[\pi_2(Y_1,D_1,Z_2) \geq V_2] \ Y_1 &= 1[\mu_1(D_1) \geq U_1(D_1)] \ D_1 &= 1[\pi_1(Z_1) \geq V_1] \end{aligned}$$

where $D \equiv (D_1, D_2)$ and unobs are normalized as U[0, 1]

• (general T, continuous Y_t and covariate X in the paper)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider T = 2 and binary Y_t (for simplicity), and write

$$egin{aligned} Y_2 &= 1[\mu_2(Y_1,D) \geq U_2(Y_1,D)] \ D_2 &= 1[\pi_2(Y_1,D_1,Z_2) \geq V_2] \ Y_1 &= 1[\mu_1(D_1) \geq U_1(D_1)] \ D_1 &= 1[\pi_1(Z_1) \geq V_1] \end{aligned}$$

where $D \equiv (D_1, D_2)$ and unobs are normalized as U[0, 1]

- (general T, continuous Y_t and covariate X in the paper) $U_1(d_1)$ and $U_2(y_1, d)$ for flexible heterogeneity
 - ▶ let $Y_1(d_1)$ and $Y_2(y_1, d)$ be the counterfactual outcomes ▶ e.g., $Y_1(1) = 1[\mu_1(1) \ge U_1(1)]$ and $Y_1(0) = 1[\mu_1(0) \ge U_1(0)]$

▶ compare to: $Y_1(d_1) = 1[\mu_1(d_1) \ge U_1]$ (rank invariance)

• even though $U_1(d_1)$ and $U_2(y_1, d)$ are normalized as U[0, 1], allow distinct selection patterns

$$egin{aligned} Y_2 &= 1[\mu_2(Y_1,D) \geq U_2(Y_1,D)] \ D_2 &= 1[\pi_2(Y_1,D_1,Z_2) \geq V_2] \ Y_1 &= 1[\mu_1(D_1) \geq U_1(D_1)] \ D_1 &= 1[\pi_1(Z_1) \geq V_1] \end{aligned}$$

consistency:

$$Y_1 = D_1 Y_1(1) + (1 - D_1) Y_1(0)$$

$$Y_2 = \sum_{y_1, d \in \{1, 0\}^3} \mathbb{1}[Y_1 = y_1, D = d] Y_2(y_1, d)$$

▶ therefore Y_2 is a function of a full vector of $(U_2(1,1,1), U_2(1,1,0), U_2(1,0,1), U_2(1,0,0), U_2(0,1,1), U_2(0,1,0), U_2(0,0,1), U_2(0,0,0))$

$$egin{aligned} &Y_2 = 1[\mu_2(Y_1,D) \geq U_2(Y_1,D)] \ &D_2 = 1[\pi_2(Y_1,D_1,Z_2) \geq V_2] \ &Y_1 = 1[\mu_1(D_1) \geq U_1(D_1)] \ &D_1 = 1[\pi_1(Z_1) \geq V_1] \end{aligned}$$

Special case (dynamic Roy model):

$$\pi_{2}(Y_{1}, D_{1}, Z_{2}) - V_{2} \equiv \delta_{2}(Z_{2}) + \mu_{2}(Y_{1}, D_{1}, 1) - \mu_{2}(Y_{1}, D_{1}, 0) - (U_{2}(Y_{1}, D_{1}, 1) - U_{2}(Y_{1}, D_{1}, 0)) \pi_{1}(Z_{1}) - V_{1} \equiv \delta_{1}(Z_{1}) + \mu_{1}(1) - \mu_{1}(0) - (U_{1}(1) - U_{1}(0))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

not possible with scalar unobservable

Assumption C

 $(V_1, V_2, U_1(d_1), U_2(y_1, d)) \sim C(v_1, v_2, u_1, u_2; \Sigma(y_1, d)).$

- C makes the model semiparametric
 - nonparametric marginals are subsumed in $\mu_t(\cdot)$ and $\pi_t(\cdot)$
- notable elements in $\Sigma(y_1, d, x)$ are:
 - $\rho_{V_1,U_1(d_1)}$ and $\rho_{V_t,U_2(y_1,d)}$ (for t = 1, 2)
 - which capture the (sign/degree of) treatment-state-specific selection

(ロ) (型) (E) (E) (E) (O)

(ロ) (四) (三) (三) (三) (三) (○) (○)

Causal Objects of Interest

If we identify $\mu_1(d_1)$, $\mu_2(y_1, d)$, $\Sigma(y_1, d)$, we can identify various dynamic treatment and mediation effects

Relevant counterfactual outcomes:

$$Y_2(y_1, d), Y_2(d), Y_2(d_2), Y_2(d_1), Y_1(d_1)$$

• note that
$$Y_2(Y_1, D_1, d_2) = Y_2(d_2)$$
,

▶ but $Y_2(Y_1(d_1), d) = Y_2(d)$ and $Y_2(d_1, D_2(d_1)) = Y_2(d_1)$ where $D_2(d_1)$ is counterfactual treatment

うして ふゆう ふほう ふほう うらつ

Causal Objects of Interest

If we identify $\mu_1(d_1)$, $\mu_2(y_1, d)$, $\Sigma(y_1, d)$, we can identify various dynamic treatment and mediation effects

Relevant counterfactual outcomes:

$$Y_2(y_1, d), Y_2(d), Y_2(d_2), Y_2(d_1), Y_1(d_1)$$

• note that
$$Y_2(Y_1, D_1, d_2) = Y_2(d_2)$$
,

▶ but $Y_2(Y_1(d_1), d) = Y_2(d)$ and $Y_2(d_1, D_2(d_1)) = Y_2(d_1)$ where $D_2(d_1)$ is counterfactual treatment

Building blocks:

$$E[Y_2(y_1, d)] = \Pr[U_2(y_1, d) \le \mu_2(y_1, d)] = \mu_2(y_1, d)$$

$$E[Y_1(d_1)] = \Pr[U_1(d_1) \le \mu_1(d_1)] = \mu_1(d_1)$$

Causal Objects of Interest

Also, for example,

$$E[Y_2(d)] = \sum_{y_1 \in \{0,1\}} \Pr[Y_1(d_1) = y_1, Y_2(y_1, d) = 1]$$

= $C(\mu_1(d_1), \mu_2(1, d); \rho_{U_1(d_1), U_2(1, d)})$
+ $\mu_2(0, d) - C(\mu_1(d_1), \mu_2(0, d); \rho_{U_1(d_1), U_2(0, d)})$

$$E[Y_2(d_1)] = \sum_{y_1, d_2 \in \{0,1\}^2} \Pr[Y_1(d_1) = y_1, D_2(d_1) = d_2, Y_2(y_1, d) = 1]$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Dynamic treatment effects (type 1):

$$E[Y_2(\tilde{y}_1, \tilde{d}) - Y_2(y_1, d)]$$
 and $E[Y_1(\tilde{d}_1) - Y_1(d_1)]$

▶ dynamic complementarity: $\tilde{y}_1 = y_1$ and comparing $\tilde{d} = (0, 1)$ and d = (0, 0) with $\tilde{d} = (1, 1)$ and d = (1, 0):

 $E[Y_2(y_1, 0, 1) - Y_2(y_1, 0, 0)]$ vs $E[Y_2(y_1, 1, 1) - Y_2(y_1, 1, 0)]$

• state dependence: $\tilde{d} = d$ and $\tilde{y}_1 = 1$ and $y_1 = 0$:

$$E[Y_2(1,d) - Y_2(0,d)]$$

Dynamic treatment effects (type 1):

$$E[Y_2(\tilde{y}_1, \tilde{d}) - Y_2(y_1, d)]$$
 and $E[Y_1(\tilde{d}_1) - Y_1(d_1)]$

▶ dynamic complementarity: $\tilde{y}_1 = y_1$ and comparing $\tilde{d} = (0, 1)$ and d = (0, 0) with $\tilde{d} = (1, 1)$ and d = (1, 0):

 $E[Y_2(y_1, 0, 1) - Y_2(y_1, 0, 0)]$ vs $E[Y_2(y_1, 1, 1) - Y_2(y_1, 1, 0)]$

• state dependence: $\tilde{d} = d$ and $\tilde{y}_1 = 1$ and $y_1 = 0$:

 $E[Y_2(1,d) - Y_2(0,d)]$

Dynamic treatment effects (type 2):

$$\begin{split} E[Y_2(\tilde{d}_1, d_2) - Y_2(d_1, d_2)] \\ E[Y_2(\tilde{d}_1) - Y_2(d_1)] \end{split}$$

Direct effect and indirect effect mediated by Y_1 :

$$\begin{split} & E[Y_2(1, d_2) - Y_2(0, d_2)] \\ &= E[Y_2(Y_1(0), 1, d_2) - Y_2(Y_1(0), 0, d_2)] \\ &+ E[Y_2(Y_1(1), 1, d_2) - Y_2(Y_1(0), 1, d_2)] \\ &= E[Y_2(Y_1(1), 1, d_2) - Y_2(Y_1(1), 0, d_2)] \\ &+ E[Y_2(Y_1(1), 0, d_2) - Y_2(Y_1(0), 0, d_2)] \end{split}$$

(ロ) (型) (E) (E) (E) (O)

Direct effect and indirect effect mediated by Y_1 :

$$\begin{split} & E[Y_2(1, d_2) - Y_2(0, d_2)] \\ &= E[Y_2(Y_1(0), 1, d_2) - Y_2(Y_1(0), 0, d_2)] \\ &+ E[Y_2(Y_1(1), 1, d_2) - Y_2(Y_1(0), 1, d_2)] \\ &= E[Y_2(Y_1(1), 1, d_2) - Y_2(Y_1(1), 0, d_2)] \\ &+ E[Y_2(Y_1(1), 0, d_2) - Y_2(Y_1(0), 0, d_2)] \end{split}$$

Again, for all above, need to identify $\mu_1(d_1)$, $\mu_2(y_1, d)$, $\Sigma(y_1, d)$

うして ふゆう ふほう ふほう うらつ

Direct effect and indirect effect mediated by Y_1 :

 $E[Y_2(1, d_2) - Y_2(0, d_2)]$ = $E[Y_2(Y_1(0), 1, d_2) - Y_2(Y_1(0), 0, d_2)]$ + $E[Y_2(Y_1(1), 1, d_2) - Y_2(Y_1(0), 1, d_2)]$ = $E[Y_2(Y_1(1), 1, d_2) - Y_2(Y_1(1), 0, d_2)]$ + $E[Y_2(Y_1(1), 0, d_2) - Y_2(Y_1(0), 0, d_2)]$

Again, for all above, need to identify $\mu_1(d_1)$, $\mu_2(y_1, d)$, $\Sigma(y_1, d)$

In addition, $\pi_2(y_1, d_1, z_2)$ captures habit and learning

$$E[D_2(\tilde{y}_1, \tilde{d}_1) - D_2(y_1, d_1)]$$

III. Identification Analysis

(ロ) (四) (三) (三) (三) (三) (○) (○)

Identifying Assumptions

Assumption Z

(i) $(Z_1, Z_2) \perp (V_1, V_2, U_1(d_1), U_2(y_1, d))$ and (ii) π_1 and π_2 are non-trivial functions of Z_1 and Z_2 .

Assumption S

(i) $C(v_1, u_1; \rho_{v_1u_1}) \prec_S C(v_1, u_1; \tilde{\rho}_{v_1u_1})$ for any $\rho_{v_1u_1} < \tilde{\rho}_{v_1u_1}$; (ii) $C(v_1, v_2, u_1; \rho_{v_1v_2}) \prec_S C(v_1, v_2, u_1; \tilde{\rho}_{v_1v_2})$ for any $\rho_{v_1v_2} < \tilde{\rho}_{v_1v_2}$; (iii) $C(v_1, v_2, u_1, u_2; \rho_{v_2u_2}) \prec_S C(v_1, v_2, u_1, u_2; \tilde{\rho}_{v_2u_2})$ for any $\rho_{v_2u_2} < \tilde{\rho}_{v_2u_2}$.

- ► the ordering "≺_S" denote "more stochastic increasing" (cf. "more positive regression dependent")
- ► Han & Vytlacil 17 use S(i) for *static* triangular model
 - extension to S(ii)–(iii) is not straightforward (next slide)
 - we consider much flexible models (even if it were static) and allow for continuous outcome

Sufficient Condition for Assumption S

Assumption S*

(i) Same as S(i); (ii) The copulas are generated by

$$C(v_{1}, v_{2}, u_{1}; \rho_{v_{1}v_{2}}, \rho_{v_{1}u_{1}}, \rho_{v_{2}u_{1}})$$

$$= \int^{v_{1}} C(C(v_{2}|\tilde{v}_{1}), C(u_{1}|\tilde{v}_{1}); \rho(\rho_{v_{1}v_{2}}, \rho_{v_{1}u_{1}}, \rho_{v_{2}u_{1}})) d\tilde{v}_{1}$$

$$C(v_{1}, v_{2}, u_{1}, u_{2}; \Sigma)$$

$$= \int^{v_{1}, v_{2}} C(C(u_{1}|\tilde{v}_{1}, \tilde{v}_{2}), C(u_{2}|\tilde{v}_{1}, \tilde{v}_{2}); \rho(\Sigma)) dC(\tilde{v}_{1}, \tilde{v}_{2})$$

where the outer $C(\cdot, \cdot; \rho)$ satisfies $C(\cdot, \cdot; \rho) \prec_S C(\cdot, \cdot; \tilde{\rho})$ for $\rho < \tilde{\rho}$; (iii) $\rho(\rho_{v_1v_2}, \rho_{v_1u_1}, \rho_{v_2u_1})$ and $\rho(\Sigma)$ are strictly increasing in $\rho_{v_2u_1}$ and $\rho_{u_1u_2}$, respectively.

- S*(ii) exploits vine copula structure
- ► S* holds for multivariate Gaussian copula!

First, consider

$$egin{aligned} Y_1 &= 1[\mu_1(D_1) \geq U_1(D_1)] \ D_1 &= 1[\pi_1(Z_1) \geq V_1] \end{aligned}$$

Note $\pi_1(z_1)$ is trivially ID'ed as $\pi_1(z_1) = \Pr[D_1 = 1 | Z_1 = z_1]$ by normalization

Consider
$$\Pr[D_1 = d, Y_1 = y | Z_1 = z]$$
 for $(d, y, z) \in \{0, 1\}^3$:

By Assumptions Z and C,

$$\begin{aligned} \Pr[D_1 = 1, Y_1 = 1 | Z_1 = 0] &= \Pr[V_1 \le \pi_1(0), U_1(1) \le \mu_1(1)] \\ &= C(\pi_1(0), \mu_1(1); \rho_{V_1, U_1(1)}) \\ \Pr[D_1 = 1, Y_1 = 1 | Z_1 = 1] &= \Pr[V_1 \le \pi_1(1), U_1(1) \le \mu_1(1)] \\ &= C(\pi_1(1), \mu_1(1); \rho_{V_1, U_1(1)}) \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The system of nonlinear equations:

$$\Pr[D_1 = 1, Y_1 = 1 | Z_1 = 0] = C(\pi_1(0), \mu_1(1); \rho_{V_1, U_1(1)})$$

$$\Pr[D_1 = 1, Y_1 = 1 | Z_1 = 1] = C(\pi_1(1), \mu_1(1); \rho_{V_1, U_1(1)})$$

- unique solution for (μ₁(1), ρ_{V1}, U₁(1)) if its Jacobian is P-matrix (Gale & Nikaido 65)
- this is true if and only if

$$\frac{C_2(\pi_1(0),\mu_1(1))}{C_{\rho_{V_1,U_1(1)}}(\pi_1(0),\mu_1(1))} \neq \frac{C_2(\pi_1(1),\mu_1(1))}{C_{\rho_{V_1,U_1(1)}}(\pi_1(1),\mu_1(1))}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

which is guaranteed by Assumptions Z(ii) and S(i)

The system of nonlinear equations:

$$\Pr[D_1 = 1, Y_1 = 1 | Z_1 = 0] = C(\pi_1(0), \mu_1(1); \rho_{V_1, U_1(1)})$$

$$\Pr[D_1 = 1, Y_1 = 1 | Z_1 = 1] = C(\pi_1(1), \mu_1(1); \rho_{V_1, U_1(1)})$$

- unique solution for (μ₁(1), ρ_{V1}, U₁(1)) if its Jacobian is P-matrix (Gale & Nikaido 65)
- this is true if and only if

$$\frac{C_2(\pi_1(0),\mu_1(1))}{C_{\rho_{V_1,U_1(1)}}(\pi_1(0),\mu_1(1))} \neq \frac{C_2(\pi_1(1),\mu_1(1))}{C_{\rho_{V_1,U_1(1)}}(\pi_1(1),\mu_1(1))}$$

which is guaranteed by Assumptions Z(ii) and S(i)

Similarly for $(\mu_1(0), \rho_{V_1, U_1(0)})$ with

$$\Pr[D_1 = 0, Y_1 = 1 | Z_1 = 0] = \mu_1(0) - C(\pi_1(0), \mu_1(0); \rho_{V_1, U_1(0)})$$

$$\Pr[D_1 = 0, Y_1 = 1 | Z_1 = 1] = \mu_1(0) - C(\pi_1(1), \mu_1(0); \rho_{V_1, U_1(0)})$$

Identification Analysis: Step 2 ID'ed in Step 1: $\pi_1(z_1), \mu_1(d_1), \rho_{V_1, U_1(d_1)}$

Next, consider

$$egin{aligned} D_2 &= 1[\pi_2(Y_1, D_1, Z_2) \geq V_2] \ Y_1 &= 1[\mu_1(D_1) \geq U_1(D_1)] \ D_1 &= 1[\pi_1(Z_1) \geq V_1] \end{aligned}$$

Fix z_2 , and for each $z_1 \in \{0, 1\}$,

$$\begin{aligned} &\mathsf{Pr}[D_1 = 1, D_2 = 1, Y_1 = 1 | Z_1 = z_1, Z_2 = z_2] \\ &= \mathsf{Pr}[V_1 \le \pi_1(z_1), V_2 \le \pi_2(1, 1, z_2), U_1(1) \le \mu_1(1)] \\ &= \mathcal{C}(\pi_1(z_1), \pi_2(1, 1, z_2), \mu_1(1); \rho_{V_1, V_2}, \rho_{V_1, U_1(1)}) \end{aligned}$$

Relevant Jacobian is P-matrix by Assumptions Z(ii) and S(ii) as

$$\frac{C_2(\pi_1(0), \pi_2(1, 1, z_2), \mu_1(1))}{C_{\rho_{V_1, V_2}}(\pi_1(0), \pi_2(1, 1, z_2), \mu_1(1))} \neq \frac{C_2(\pi_1(1), \pi_2(1, 1, z_2), \mu_1(1))}{C_{\rho_{V_1, V_2}}(\pi_1(1), \pi_2(1, 1, z_2), \mu_1(1))}$$

ID'ed in Steps 1, 2: $\pi_1(z_1), \mu_1(d_1), \rho_{V_1, U_1(d_1)}, \pi_2(y_1, d_1, z_2), \rho_{V_1, V_2}$ Finally, consider

$$egin{aligned} &Y_2 = 1[\mu_2(Y_1,D) \geq U_2(Y_1,D)] \ &D_2 = 1[\pi_2(Y_1,D_1,Z_2) \geq V_2] \ &Y_1 = 1[\mu_1(D_1) \geq U_1(D_1)] \ &D_1 = 1[\pi_1(Z_1) \geq V_1] \end{aligned}$$

Fix z_1 , and for each $z_2 \in \{0,1\}$,

Relevant Jacobian is P-matrix by Assumptions Z(ii) and S(iii)

Identification Analysis: Summary and Extensions

Regardless of the length of T and complexity with $U_t(y^{t-1}, d^t)$, each step involves...

- pairs of probabilities that produces...
- 2×2 Jacobian matrices and
- relevant stochastic ordering of mutlivariate copula,
- which is guaranteed by the vine copula assumptions

うして ふゆう ふほう ふほう うらつ

Identification Analysis: Summary and Extensions

Regardless of the length of T and complexity with $U_t(y^{t-1}, d^t)$, each step involves...

- pairs of probabilities that produces...
- 2×2 Jacobian matrices and
- relevant stochastic ordering of mutlivariate copula,
- which is guaranteed by the vine copula assumptions

With continuous Y_t , we directly ID the distribution of counterfactual outcomes in place of $\mu_t(y^{t-1}, d^t)$

then we also identify dynamic *quantile* treatment and mediation effects (of all kinds defined earlier) IV. Discussions and Conclusions

(ロ) (四) (三) (三) (三) (三) (○) (○)

Estimation

With continuous X, we propose sieve ML to jointly estimate

$$\pi_1(z_1, x), \mu_1(d_1, x), \rho_{V_1, U_1(d_1)}(x), \\\pi_2(y_1, d_1, z_2, x), \rho_{V_1, V_2}(x), \\\mu_2(y_1, d, x), \rho_{V_2, U_2(y_1, d)}(x)$$

as functions of $x \in \mathcal{X}$

 show consistency of sieve MLE and asymptotic normality of its functionals

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

► for inference, provide theory for sieve LR test

Estimation

With continuous X, we propose sieve ML to jointly estimate

$$\pi_1(z_1, x), \mu_1(d_1, x), \rho_{V_1, U_1(d_1)}(x), \\\pi_2(y_1, d_1, z_2, x), \rho_{V_1, V_2}(x), \\\mu_2(y_1, d, x), \rho_{V_2, U_2(y_1, d)}(x)$$

as functions of $x \in \mathcal{X}$

- show consistency of sieve MLE and asymptotic normality of its functionals
- ► for inference, provide theory for sieve LR test

With discrete X or without X, we have parametric ML!

- ► a semiparametric but saturated model for treatment effects
- not true if the focus is underlying parameters with linear index (Han & Lee 19)

Two Related Works

1. Local Gaussian representation in static model (Chernozhukov, Fernandez-Val, Han & Wüthrich 23)

- copula as a representation (instead of restriction)
- dependence parameter as an implicit function
- no longer a representation with multivariate copula

(ロ) (型) (E) (E) (E) (O)

 \longrightarrow not applicable to dynamic settings

Two Related Works

1. Local Gaussian representation in static model (Chernozhukov, Fernandez-Val, Han & Wüthrich 23)

- copula as a representation (instead of restriction)
- dependence parameter as an implicit function
- no longer a representation with multivariate copula

 \longrightarrow not applicable to dynamic settings

2. Empirical study of pre- and post-natal maternal smoking on child development (Cattan, Conti, Han & Salvati 23)

- specific structure of dynamics
- mainly multivariate probit models with linear index
- besides treatment effects, we also study habits and change in endogenous selection

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Concluding Remarks

Propose a practically useful framework to study dynamic treatment and mediation effects

うして ふゆう ふほう ふほう うらつ

- a class of semiparametric model
- point ID of a large array of parameters
- sieve estimation and inference procedures
- possibility of restoring parametric ML

Concluding Remarks

Propose a practically useful framework to study dynamic treatment and mediation effects

- a class of semiparametric model
- point ID of a large array of parameters
- sieve estimation and inference procedures
- possibility of restoring parametric ML

Follow-up questions:

- endogenous drop-out?
- formal theory for extrapolation of (dynamic) fuzzy RD?

うして ふゆう ふほう ふほう うらつ

Thank You! ©

・ロト ・ 聞 ト ・ 言 ト ・ 言 ・ うへぐ