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interacting with a sequence of outcomes over periods

To design informed policies,
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Dynamics of Treatments Affecting Outcomes

Example: Schooling (D1) and post-school training (D2) on
employment status (Y1 and Y2)

Post-training employment status (Y2) is affected by...

(i) the job training (D2),

(ii) directly by HS degree (D1),

(iii) indirectly by HS degree through previous status (Y1) via...

I state dependence and

I time-invariant heterogeneity

I i.e., Y1 is a mediator

Want to understand various channels of causal effects
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Challenge: Dynamically Endogenous Selection

In observational settings, individuals make dynamically endogenous
decisions whether to select into treatments

Example (conti’ed): Workers decide (D2) to participate in the
training based on...

I their schooling decision (D1)

I previous labor market outcome (Y1)

I prospect of labor market outcome (counterfactual Y2)

Even in experimental settings, especially if D1 and D2 are the same
kind, non-compliance due to learning
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Our Approach: Instrumental Variables

Want to address this challenge, while remaining flexible in...

I modeling dynamics and

I treatment heterogeneity

=⇒ We use sequence of IVs

We consider the most challenging case of binary IVs

Candidates:

I multi-period/stage experiments

I sequence of natural experiments

I sequential fuzzy regression continuity

Our theory immediately extends with IVs of richer variation
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Our Approach: Instrumental Variables

Example (conti’ed): For HS diploma (D1) and job training (D2)

I Z1: close/far from HS

I Z2: randomization from JTPA

I one of our empirical applications

Sequential fuzzy RD:

I Zt : eligibility from running variables

Sequential experiments:

I A/B testing, multi-stage field experiments



This Paper: Semiparametric Models for Dynamic Effects

Consider a class of semiparametric models for dynamic treatment
and mediation effects

I nonparametric outcome and selection equations

I nonparametric marginal distribution of unobservables

I multivariate parametric copula for dependence of unobservables



This Paper: Semiparametric Models for Dynamic Effects

Why semiparametric?

1. Point ID with alternative assumptions while being flexible

I existing results:

I irreversible treatments (Heckman & Navarro 07, Heckman,
Humphries & Veramendi 16),

I rely on IVs with large support or extra exogenous variables
(above refs, Han 21)

I resort to partial identification (Han 23)

2. Avoid the curse of dim with nonparametric joint dist of unobs

I selection endogeneity parameters as byproduct

3. Avoid misspecification of marginals of unobs

I treatment effects are direct functions of marginals



Other Related Work

Dynamic discrete choice models, dynamic sample selection models
(Honoré & Kyriazidou 00, Kyriazidou 01, Honoré & Tamer 06, Torgovitsky 19,
Honoré & Weidner 21)

I main focus is state dependence

I linear index; dependence of unobs via fixed effects

I no need of IVs

I but requirement on T

Policy evaluation with multiple treatments
(Heckman & Pinto 18, Lee & Salanié 18, Balat & Han 23)

Dynamic treatment regimes
(Murphy et al. 01, Cui & Tchetgen Tchetgen 21, Qiu et al. 21, Han 23)



I. Model and Assumptions



Two-Period Semiparametric Model
Consider T = 2 and binary Yt (for simplicity), and write

Y2 = 1[µ2(Y1,D) ≥ U2(Y1,D)]

D2 = 1[π2(Y1,D1,Z2) ≥ V2]

Y1 = 1[µ1(D1) ≥ U1(D1)]

D1 = 1[π1(Z1) ≥ V1]

where D ≡ (D1,D2) and unobs are normalized as U[0, 1]

I (general T , continuous Yt and covariate X in the paper)

U1(d1) and U2(y1, d) for flexible heterogeneity

I let Y1(d1) and Y2(y1, d) be the counterfactual outcomes
I e.g., Y1(1) = 1[µ1(1) ≥ U1(1)] and Y1(0) = 1[µ1(0) ≥ U1(0)]

I compare to: Y1(d1) = 1[µ1(d1) ≥ U1] (rank invariance)

I even though U1(d1) and U2(y1, d) are normalized as U[0, 1],
allow distinct selection patterns
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Two-Period Semiparametric Model

Y2 = 1[µ2(Y1,D) ≥ U2(Y1,D)]

D2 = 1[π2(Y1,D1,Z2) ≥ V2]

Y1 = 1[µ1(D1) ≥ U1(D1)]

D1 = 1[π1(Z1) ≥ V1]

I consistency:

Y1 = D1Y1(1) + (1− D1)Y1(0)

Y2 =
∑

y1,d∈{1,0}3
1[Y1 = y1,D = d ]Y2(y1, d)

I therefore Y2 is a function of a full vector of
(U2(1, 1, 1),U2(1, 1, 0),U2(1, 0, 1),U2(1, 0, 0),U2(0, 1, 1),
U2(0, 1, 0),U2(0, 0, 1),U2(0, 0, 0))



Two-Period Semiparametric Model

Y2 = 1[µ2(Y1,D) ≥ U2(Y1,D)]

D2 = 1[π2(Y1,D1,Z2) ≥ V2]

Y1 = 1[µ1(D1) ≥ U1(D1)]

D1 = 1[π1(Z1) ≥ V1]

Special case (dynamic Roy model):

π2(Y1,D1,Z2)− V2 ≡ δ2(Z2) + µ2(Y1,D1, 1)− µ2(Y1,D1, 0)

− (U2(Y1,D1, 1)− U2(Y1,D1, 0))

π1(Z1)− V1 ≡ δ1(Z1) + µ1(1)− µ1(0)− (U1(1)− U1(0))

I not possible with scalar unobservable



Two-Period Semiparametric Model

Assumption C
(V1,V2,U1(d1),U2(y1, d)) ∼ C (v1, v2, u1, u2; Σ(y1, d)).

I C makes the model semiparametric

I nonparametric marginals are subsumed in µt(·) and πt(·)

I notable elements in Σ(y1, d , x) are:

I ρV1,U1(d1) and ρVt ,U2(y1,d) (for t = 1, 2)

I which capture the (sign/degree of) treatment-state-specific
selection



II. Dynamic Treatment and Mediation Effects



Causal Objects of Interest

If we identify µ1(d1), µ2(y1, d), Σ(y1, d), we can identify various
dynamic treatment and mediation effects

Relevant counterfactual outcomes:

Y2(y1, d),Y2(d),Y2(d2),Y2(d1),Y1(d1)

I note that Y2(Y1,D1, d2) = Y2(d2),

I but Y2(Y1(d1), d) = Y2(d) and Y2(d1,D2(d1)) = Y2(d1)
where D2(d1) is counterfactual treatment

Building blocks:

E [Y2(y1, d)] = Pr[U2(y1, d) ≤ µ2(y1, d)] = µ2(y1, d)

E [Y1(d1)] = Pr[U1(d1) ≤ µ1(d1)] = µ1(d1)
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Causal Objects of Interest

Also, for example,

E [Y2(d)] =
∑

y1∈{0,1}

Pr[Y1(d1) = y1,Y2(y1, d) = 1]

= C (µ1(d1), µ2(1, d); ρU1(d1),U2(1,d))

+ µ2(0, d)− C (µ1(d1), µ2(0, d); ρU1(d1),U2(0,d))

E [Y2(d1)] =
∑

y1,d2∈{0,1}2
Pr[Y1(d1) = y1,D2(d1) = d2,Y2(y1, d) = 1]

= · · ·



Dynamic Treatment and Mediation Effects
Dynamic treatment effects (type 1):

E [Y2(ỹ1, d̃)− Y2(y1, d)] and E [Y1(d̃1)− Y1(d1)]

I dynamic complementarity: ỹ1 = y1 and comparing d̃ = (0, 1)
and d = (0, 0) with d̃ = (1, 1) and d = (1, 0):

E [Y2(y1, 0, 1)− Y2(y1, 0, 0)] vs E [Y2(y1, 1, 1)− Y2(y1, 1, 0)]

I state dependence: d̃ = d and ỹ1 = 1 and y1 = 0:

E [Y2(1, d)− Y2(0, d)]

Dynamic treatment effects (type 2):

E [Y2(d̃1, d2)− Y2(d1, d2)]

E [Y2(d̃1)− Y2(d1)]
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I dynamic complementarity: ỹ1 = y1 and comparing d̃ = (0, 1)
and d = (0, 0) with d̃ = (1, 1) and d = (1, 0):

E [Y2(y1, 0, 1)− Y2(y1, 0, 0)] vs E [Y2(y1, 1, 1)− Y2(y1, 1, 0)]

I state dependence: d̃ = d and ỹ1 = 1 and y1 = 0:
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Dynamic Treatment and Mediation Effects

Direct effect and indirect effect mediated by Y1:

E [Y2(1, d2)− Y2(0, d2)]

= E [Y2(Y1(0), 1, d2)− Y2(Y1(0), 0, d2)]

+ E [Y2(Y1(1), 1, d2)− Y2(Y1(0), 1, d2)]

= E [Y2(Y1(1), 1, d2)− Y2(Y1(1), 0, d2)]

+ E [Y2(Y1(1), 0, d2)− Y2(Y1(0), 0, d2)]

Again, for all above, need to identify µ1(d1), µ2(y1, d), Σ(y1, d)

In addition, π2(y1, d1, z2) captures habit and learning

E [D2(ỹ1, d̃1)− D2(y1, d1)]
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III. Identification Analysis



Identifying Assumptions
Assumption Z
(i) (Z1,Z2) ⊥ (V1,V2,U1(d1),U2(y1, d)) and (ii) π1 and π2 are
non-trivial functions of Z1 and Z2.

Assumption S
(i) C (v1, u1; ρv1u1) ≺S C (v1, u1; ρ̃v1u1) for any ρv1u1 < ρ̃v1u1 ;
(ii) C (v1, v2, u1; ρv1v2) ≺S C (v1, v2, u1; ρ̃v1v2) for any ρv1v2 < ρ̃v1v2 ;
(iii) C (v1, v2, u1, u2; ρv2u2) ≺S C (v1, v2, u1, u2; ρ̃v2u2) for any
ρv2u2 < ρ̃v2u2 .

I the ordering “≺S ” denote “more stochastic increasing” (cf.
“more positive regression dependent”)

I Han & Vytlacil 17 use S(i) for static triangular model
I extension to S(ii)–(iii) is not straightforward (next slide)

I we consider much flexible models (even if it were static) and
allow for continuous outcome



Sufficient Condition for Assumption S
Assumption S∗

(i) Same as S(i); (ii) The copulas are generated by

C (v1, v2, u1; ρv1v2 , ρv1u1 , ρv2u1)

=

∫ v1

C (C (v2|ṽ1),C (u1|ṽ1); ρ(ρv1v2 , ρv1u1 , ρv2u1)) dṽ1

C (v1, v2, u1, u2; Σ)

=

∫ v1,v2

C (C (u1|ṽ1, ṽ2),C (u2|ṽ1, ṽ2); ρ(Σ)) dC (ṽ1, ṽ2)

where the outer C (·, ·; ρ) satisfies C (·, ·; ρ) ≺S C (·, ·; ρ̃) for ρ < ρ̃;
(iii) ρ(ρv1v2 , ρv1u1 , ρv2u1) and ρ(Σ) are strictly increasing in ρv2u1

and ρu1u2 , respectively.

I S∗(ii) exploits vine copula structure

I S∗ holds for multivariate Gaussian copula!



Identification Analysis: Step 1
First, consider

Y1 = 1[µ1(D1) ≥ U1(D1)]

D1 = 1[π1(Z1) ≥ V1]

Note π1(z1) is trivially ID’ed as π1(z1) = Pr[D1 = 1|Z1 = z1] by
normalization

Consider Pr[D1 = d ,Y1 = y |Z1 = z ] for (d , y , z) ∈ {0, 1}3:

By Assumptions Z and C,

Pr[D1 = 1,Y1 = 1|Z1 = 0] = Pr[V1 ≤ π1(0),U1(1) ≤ µ1(1)]

= C (π1(0), µ1(1); ρV1,U1(1))

Pr[D1 = 1,Y1 = 1|Z1 = 1] = Pr[V1 ≤ π1(1),U1(1) ≤ µ1(1)]

= C (π1(1), µ1(1); ρV1,U1(1))



Identification Analysis: Step 1
The system of nonlinear equations:

Pr[D1 = 1,Y1 = 1|Z1 = 0] = C (π1(0), µ1(1); ρV1,U1(1))

Pr[D1 = 1,Y1 = 1|Z1 = 1] = C (π1(1), µ1(1); ρV1,U1(1))

I unique solution for (µ1(1), ρV1,U1(1)) if its Jacobian is P-matrix
(Gale & Nikaido 65)

I this is true if and only if

C2(π1(0), µ1(1))

CρV1,U1(1)
(π1(0), µ1(1))

6= C2(π1(1), µ1(1))

CρV1,U1(1)
(π1(1), µ1(1))

I which is guaranteed by Assumptions Z(ii) and S(i)

Similarly for (µ1(0), ρV1,U1(0)) with

Pr[D1 = 0,Y1 = 1|Z1 = 0] = µ1(0)− C (π1(0), µ1(0); ρV1,U1(0))

Pr[D1 = 0,Y1 = 1|Z1 = 1] = µ1(0)− C (π1(1), µ1(0); ρV1,U1(0))
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Identification Analysis: Step 2
ID’ed in Step 1: π1(z1), µ1(d1), ρV1,U1(d1)

Next, consider

D2 = 1[π2(Y1,D1,Z2) ≥ V2]

Y1 = 1[µ1(D1) ≥ U1(D1)]

D1 = 1[π1(Z1) ≥ V1]

Fix z2, and for each z1 ∈ {0, 1},

Pr[D1 = 1,D2 = 1,Y1 = 1|Z1 = z1,Z2 = z2]

=Pr[V1 ≤ π1(z1),V2 ≤ π2(1, 1, z2),U1(1) ≤ µ1(1)]

=C (π1(z1), π2(1, 1, z2), µ1(1); ρV1,V2 , ρV1,U1(1))

Relevant Jacobian is P-matrix by Assumptions Z(ii) and S(ii) as

C2(π1(0), π2(1, 1, z2), µ1(1))

CρV1,V2
(π1(0), π2(1, 1, z2), µ1(1))

6= C2(π1(1), π2(1, 1, z2), µ1(1))

CρV1,V2
(π1(1), π2(1, 1, z2), µ1(1))



Identification Analysis: Step 3
ID’ed in Steps 1, 2: π1(z1), µ1(d1), ρV1,U1(d1), π2(y1, d1, z2), ρV1,V2

Finally, consider

Y2 = 1[µ2(Y1,D) ≥ U2(Y1,D)]

D2 = 1[π2(Y1,D1,Z2) ≥ V2]

Y1 = 1[µ1(D1) ≥ U1(D1)]

D1 = 1[π1(Z1) ≥ V1]

Fix z1, and for each z2 ∈ {0, 1},

Pr[D1 = 1,D2 = 1,Y1 = 1,Y2 = 1|Z1 = z1,Z2 = z2]

=Pr[V1 ≤ π1(z1),V2 ≤ π2(1, 1, z2), ...

U1(1) ≤ µ1(1),U2(1, 1, 1) ≤ µ2(1, 1, 1)]

=C (π1(z1), π2(1, 1, z2), µ1(1), µ2(1, 1, 1); ρV1,V2 , ρV1,U1(1), ρV2,U2(1,1,1))

Relevant Jacobian is P-matrix by Assumptions Z(ii) and S(iii)



Identification Analysis: Summary and Extensions

Regardless of the length of T and complexity with Ut(y
t−1, d t),

each step involves...

I pairs of probabilities that produces...

I 2× 2 Jacobian matrices and

I relevant stochastic ordering of mutlivariate copula,

I which is guaranteed by the vine copula assumptions

With continuous Yt , we directly ID the distribution of
counterfactual outcomes in place of µt(y t−1, d t)

I then we also identify dynamic quantile treatment and
mediation effects (of all kinds defined earlier)
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IV. Discussions and Conclusions



Estimation
With continuous X , we propose sieve ML to jointly estimate

π1(z1, x), µ1(d1, x), ρV1,U1(d1)(x),

π2(y1, d1, z2, x), ρV1,V2(x),

µ2(y1, d , x), ρV2,U2(y1,d)(x)

as functions of x ∈ X

I show consistency of sieve MLE and asymptotic normality of its
functionals

I for inference, provide theory for sieve LR test

With discrete X or without X , we have parametric ML!

I a semiparametric but saturated model for treatment effects

I not true if the focus is underlying parameters with linear index
(Han & Lee 19)
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Two Related Works
1. Local Gaussian representation in static model (Chernozhukov,
Fernandez-Val, Han & Wüthrich 23)

I copula as a representation (instead of restriction)

I dependence parameter as an implicit function

I no longer a representation with multivariate copula

−→ not applicable to dynamic settings

2. Empirical study of pre- and post-natal maternal smoking on
child development (Cattan, Conti, Han & Salvati 23)

I specific structure of dynamics

I mainly multivariate probit models with linear index

I besides treatment effects, we also study habits and change in
endogenous selection
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