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Abstract

This paper proposes a semiparametric model that captures how a sequence of in-

terventions interacts with a sequence of outcomes. In this setup, the outcome at the

given period is affected by the history of treatments and outcomes, directly or indirectly

through mediators. The main challenge in understanding various channels of dynamic

effects is that, in observational settings, individuals make dynamically endogenous de-

cisions whether to select into treatments. Using the approach of instrumental variables,

this paper shows how the average and quantile dynamic treatment effects and media-

tion effects can be point identified and efficiently estimated in a class of semiparametric

models under treatment endogeneity and flexible heterogeneity. Our procedure only

requires binary instruments. As a byproduct of our semiparametric specification, we

also identify and estimate parameters that reflect the degree of endogenous selection

and time-invariant heterogeneity.
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1 Introduction

This paper proposes a semiparametric model that captures how a sequence of interventions

interacts with a sequence of outcomes over periods. Understanding the dynamic causal mech-

anism of treatments influencing outcomes is important in designing more informed policies.

For example, a multi-year after-school program has influences on the time path of student

performance. A performance at a given year is influenced by previous participation deci-

sions and performances through multiple channels: the performance is affected (i) by the

current intervention, (ii) directly by previous interventions, (iii) indirectly by previous in-

terventions through previous performances, which in turn are associated with the current

performance via (iv) state dependence and (v) time-invariant heterogeneity. Without un-

derstanding which channels are important in improving the performance, designing effective

after-school programs will not be successful. Other examples of dynamic treatments and out-

comes can be found in education (e.g., a household intervention program for disadvantaged

children), health (e.g., a sequence of medical treatments), development (e.g., multi-stage field

experiments), and online platforms (e.g., A/B testings).

The main challenge in understanding various channels of dynamic effects is that, in ob-

servational settings, individuals make dynamically endogenous decisions whether to select

into treatments. Students decide to participate in the program based on their previous de-

cisions and performance as well as their prospect of future decisions and performance. Even

in experimental settings, possibly due to learning over time, individuals participating in a

multi-stage experiment are likely to deviate from the random assignments. To address this

challenge while remaining flexible in modeling dynamics and treatment heterogeneity, we

use the approach of instrumental variables (IVs). We assume IVs are generated from a se-

quence of exogenous shocks or sequential experiments. We consider the most challenging
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setting that IVs have minimal variation (i.e., binary variation). This setting incorporates

wide range of interesting examples (e.g., multi-period/stage experiments, sequential fuzzy

regression continuity). The results of this paper will immediately apply with IVs of richer

variation.

This paper shows how the average and quantile dynamic treatment and mediation ef-

fects (exemplified in (i)–(v) above) can be point identified and efficiently estimated in a class

of semiparametric models. We consider a sequence of outcomes that are either discrete or

continuous and a sequence of binary treatments. Naturally, a sequence of nonparametric

threshold-crossing models arises in the model construction. We remain fully nonparametric

in the structure of outcome and treatment-selection equations. We introduce a semipara-

metric structure for the joint distribution of the unobservables that determine outcomes and

selection decisions of all time periods. Specifically, we introduce a parametric copula to model

the dependence among the unobservables while letting the marginal distributions fully non-

parametric. The motivation for the semiparametric specification of the joint distribution is

twofold. First, the identification in nonparametric models for dynamic treatment effects is

deemed challenging in the literature. The existing results either consider irreversible treat-

ments, rely on IVs with large support or extra exogenous variables, or resort to partial iden-

tification; see below for references. We show how the semiparametric approach is sufficiently

flexible while lends us a tractable point identification strategy with minimal exogenous vari-

ation. Second, a fully nonparametric joint distribution may cause the curse of dimensionality

in the current multi-period setting. We show, on the other hand, how the semiparametric

approach achieves efficiency in estimation and leads to a simple estimation procedure. As

a byproduct of our specification, we identify the parametrized dependence structure of the

joint distribution, in addition to dynamic treatment and mediation effects. These dependence

parameters capture the degree of endogenous selection and serial correlation (that reflects

time-invariant heterogeneity), which are by themselves important policy-relevant parameters.

We make sure that the marginal distributions of unobservables are fully nonparametric, which

is crucial to avoid misspecification because the effects we want to identify are direct functions
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of these marginals. For the reasons described, we believe that the semiparametric compromise

may have great appeal to practitioners, for whom practically useful and easy-to-implement

methods have been scarcely available to estimate dynamic treatment and mediation effects

under endogeneity and flexible heterogeneity.

The main idea for identification is to model the joint distribution of unobservables us-

ing a multi-variate copula that are generated from vine copulas. We assume that each

dependence parameter (between outcome and treatment unobservables or between different

periods) captures certain pairwise stochastic ordering. The idea of using copula for identifi-

cation and estimation builds on Han and Vytlacil (2017) and Han and Lee (2019). However,

the current work differs from its predecessors in several important ways. First, this paper

considers multi-period models, which produce a wide range of interesting parameters that

have not been considered in the previous studies on static models. Second, Han and Vytlacil

(2017) and Han and Lee (2019) only consider a binary outcome while the current work con-

siders (a sequence of) binary or continuous outcomes. We show how the identification with

continuous outcomes remains tractable without imposing additional restrictions. Third, we

allow that each counterfactual outcome is generated by a distinct unobservable depending on

the treatment status. This effectively assumes that each observed outcome is generated by a

vector of unobservables, which is crucial in allowing for flexible treatment heterogeneity. On

the other hand, the previous papers implicitly assume a scalar unobservable, or equivalently,

rank invariance (Chernozhukov and Hansen (2005)), which significantly limits heterogeneity.

Finally, it is not a priori obvious that the useful property of bivariate copula would continue

to hold with multi-variate copulas. We show that this is in fact the case but only within a

class of multi-variate copulas that is newly proposed in this paper. We show that this class

includes the multi-variate Gaussian copula, which implies that identification is achieved in

the dynamic and multi-variate extension of the popular bivariate probit model.

Under the copula specification and with a sequence of binary IVs, we identify the dynamic

treatment effects, treatment effects mediated by previous outcomes, nonparametric state-

dependence, treatment-status-specific endogenous selection parameters, and serial correlation
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parameters, both the average and quantile effects and all conditional (or unconditional) on

covariates. When outcomes are continuous, we identify the distribution of counterfactual

outcomes and thus quantile treatment and mediation effects and quantile state-dependence.

With binary outcomes, the effects of lagged outcomes as mediators can be simply defined

and identified as if treatment effects. With continuous outcomes, we propose a framework to

maintain this nice aspect. In addition, we identify the responses of treatments to previous

treatments and outcomes, which capture habit and learning. Given the rich set of identified

parameters, we show how they can be combined to answer further policy questions, such as

dynamic complementarity.

We propose to use a sieve maximum likelihood (ML) to estimate the parameters. The sieve

methods provide a flexible and tractable way to estimate semi-/non-parametric models (Chen

(2007)). We develop the asymptotic theory for the sieve ML estimators of the dynamic effects

and dependence parameters, including consistency, convergence rates, and
√
n-asymptotic

normality. We also establish the asymptotic theory for the sieve likelihood ratio test statistic,

which helps perform inference on the parameters without estimating asymptotic variances.

Interestingly, our model becomes saturated with discrete covariates, in which case one can

use the standard parametric ML estimation.

This paper mainly contributes to the literature on treatment effects and policy evalua-

tion (e.g., Abbring and Heckman (2007)). Heckman and Navarro (2007) and Heckman et al.

(2016) consider identification of dynamic effects of treatment timing (i.e., irreversible treat-

ments). They allow the joint distribution to be unknown while requiring IVs to have large

support. For the identification of the joint distribution of counterfactual outcomes, they in-

troduce a factor structure for the unobservables. Han (2021) considers a fully nonparametric

model for dynamic treatment effects with a general behavior of treatment sequence which

nests treatment timing. Due to the flexibility and allowing for binary IVs, he relies on ad-

ditional exogenous variables with specific support restrictions. Han (2022) embraces partial

identification and characterizes bounds on dynamic treatment effect and the identified set for
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optimal dynamic treatment allocation rules.1 Another related line of work concerns multiple

or multi-valued treatments that are ordered or unordered where Imbens and Angrist (1994)-

type monotonicity assumptions fail to hold (Heckman and Pinto (2018); Lee and Salanié

(2018); Balat and Han (forthcoming)).

This paper also relates to the literature on dynamic discrete choice models, although the

approach is very different. Models in this literature typically include lagged dependent vari-

ables, whose effects are interpreted as state-dependence, and time-invariant unobserved indi-

vidual heterogeneity.2 For example, Honoré and Kyriazidou (2000) study identification and

estimation of the parameters in dynamic discrete choice models focusing on state-dependence.

Relatedly, Kyriazidou (2001) considers a dynamic sample selection model with lagged depen-

dent variables. This model may be generalized to a dynamic switching regression model for

treatment effects. Our approach complements this literature in several ways. First, the main

focus of this literature is to identify and estimate state-dependence parameters, whereas our

main purpose of using dynamic two-stage model is to identify the dynamic treatment effects

in addition to state-dependence as part of mediation effects. Second, we consider nonpara-

metric specifications for the structural functions instead of linear specifications. We follow

the approach of the treatment effect literature and write all the effects as nonparametric

marginal effects instead of coefficients in a linear specification that are sometimes less in-

terpretable (i.e., in a discrete choice model with linear index). Individual heterogeneity is

subsumed in our marginal effects while explicitly specifying it is crucial for identification in

the literature of dynamic discrete choice model. Finally, with the semiparametric structure,

we achieve
√
n-asymptotic normality for many interesting functionals of the structural func-

tions, whereas the estimator of Honoré and Kyriazidou (2000) converges at a slower rate than

√
n when the time-varying covariate vector contains a continuous random variable3 and the

1Murphy et al. (2001) and subsequent work in the biostatistics literature consider the problem of optimal
dynamic allocation, but mostly under sequential unconfoundedness assumptions with a few exceptions (Cui
and Tchetgen Tchetgen (2021); Qiu et al. (2021)). This line of work can be adapted to identify and estimate
dynamic treatment effects.

2State-dependence and individual heterogeneity as the sources of observed serial dependence have different
policy implications (Heckman (1981); Arellano and Honoré (2001); Abbring and Heckman (2007)).

3Honoré and Weidner (2021) recently propose a different identification strategy based on Bonhomme
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estimator of Kyriazidou (2001) at a slower rate than
√
n due to kernel estimation. As a price

for these gains, our approach requires a sequence of excluded variables, and thus is more

suitable for a relatively short time horizon. Given that many studies on dynamic discrete

choice models require a sufficient number of periods for identification, the two approaches

are complementary in this way as well.4 Another strand of the literature on dynamic discrete

choice models adopts the partial identification approach (e.g., Honoré and Tamer (2006);

Torgovitsky (2019)), but our focus is point identification in a more parsimonious model.

The rest of the paper is organized as follows. Section 2 introduces the model and identi-

fying assumptions for the leading case of T = 2 and binary outcomes. Section 3 defines the

parameters of interest, and Section 4 shows the identifiability of the parameters. Section 5

discusses identification with general T . Section 6 extends the previous analysis by consid-

ering continuous outcomes. Section 7 considers semiparametric estimation and develops the

asymptotic theory. Most proofs are contained in Section A.

2 Model and Identifying Assumptions

As a leading case, we consider a two-period model for dynamic treatment effects with binary

outcomes. Even with this simple model, we can capture many interesting dynamic effects

that are not available in a static model. In Section 5, we consider a general T -period model.

The extension to continuous outcomes is considered in Section 6. Let D ≡ (D1, D2) and

(2012) for the same model as Honoré and Kyriazidou (2000), and their estimator is shown to be
√
n-

asymptotically normal.
4Honoré and Kyriazidou (2000) and Honoré and Weidner (2021) require more than four periods for

identification in a dynamic discrete choice model.
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d ≡ (d1, d2). We posit the following model:

Y2 = 1[µ2(Y1, D,X) ≥ U2(Y1, D)], (2.1)

D2 = 1[π2(Y1, D1, Z2, X) ≥ V2], (2.2)

Y1 = 1[µ1(D1, X) ≥ U1(D1)], (2.3)

D1 = 1[π1(Z1, X) ≥ V1]. (2.4)

In this model, U1(d1) and U2(y1, d) are introduced to allow for rich heterogeneity in treatment

and mediation effects. To see this, consider counterfactual outcomes Y1(d, z1) and Y2(y1, d, z)

and counterfactual treatments D1(d2, z1) and D2(y1, d1, z) and assume the following:

Assumption 2.1. (i) (No Anticipation) Y1(d, z1) = Y1(d1, z1) and D1(d2, z1) = D1(z1); (ii)

(Exclusion) Y1(d1, z1) = Y1(d1) and Y2(y1, d, z) = Y2(y1, d).

Under this assumption, Y1(d1) and Y2(y1, d) are the counterfactual outcomes that define

treatment and mediation effects; see the next section for details of the parameters of interest.

The observed outcomes relate to the counterfactual outcomes via Y1 = D1Y1(1)+(1−D1)Y1(0)

and Y2 =
∑

y1,d∈{1,0}3 1[Y1 = y1, D = d]Y2(y1, d). Since Y2(y1, d) is a function of U2(y1, d), the

observed Y2 is effectively a function of the entire vector of (U2(1, 1, 1), U2(1, 1, 0), U2(1, 0, 1), U2(1, 0, 0),

U2(0, 1, 1), U2(0, 1, 0), U2(0, 0, 1), U2(0, 0, 0)). Similarly, Y1 is a function of (U1(1), U1(0)).

Therefore the equations for outcomes contain vector unobservables. This aspect is in con-

trast to models that assume a scalar unobservable (e.g., Y = 1[µ(D,X) ≥ U ]) as in Vytlacil

and Yildiz (2007) and Shaikh and Vytlacil (2011) or models that assume rank invariance

(Chernozhukov and Hansen (2005)). The following example illustrates the role of vector

unobservables.

Example 1 (Dynamic Roy Models). Our model nests dynamic Roy models as a special case.

For Y2(d2) ≡ Y2(Y1, D1, d2), let Y2(d2) = 1{Y ∗2 (d2) ≥ 0}. In this scenario, the agent may

select into treatment when her benefit (Y ∗2 (1)−Y ∗2 (0)) exceeds the cost (δ2(Z2)), namely based
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on D2 = 1{Y ∗2 (1)− Y ∗2 (0) ≥ δ2(Z2)} and

Y ∗2 (1)− Y ∗2 (0)− δ2(Z2) ≡ µ2(Y1, D1, 1)− µ2(Y1, D1, 0)− δ2(Z2)

− {U2(Y1, D1, 1)− U2(Y1, D1, 0)}

≡ π2(Y1, D1, Z2)− V2.

Therefore, if U2(y1, d) = U2, the selection model ends up not having any unobservable. Simi-

larly, D1 = 1{Y ∗1 (1)− Y ∗1 (0) ≥ δ1(Z1)} where

Y ∗1 (1)− Y ∗1 (0)− δ1(Z1) = µ1(1)− µ1(0)− δ1(Z1)− {U1(1)− U1(0)}

≡ π1(Z1)− V1

contains no unobservable if U1(d1) = U1.

We normalize (V1, U1(d1), V2, U2(y1, d))|X = x to be uniform random variables on [0, 1]4.5

Under this normalization, we have π1(Z1, X) = Pr[D1 = 1|Z1, X] and π2(Y1, D1, Z2, X) =

Pr[D2 = 1|Y1, D1, Z2, X]. We make the following assumptions:

Assumption 2.2 (Independence). (Z1, Z2) ⊥ (V1, V2, U1(d1), U2(y1, d))|X for (y1, d) ∈ {0, 1}3.

Assumption 2.3 (Relevance). π1 and π2 are non-trivial functions of Z1 and Z2, respectively,

and (Z1, Z2)|X are non-degenerate.

Assumption 2.3 assumes that instruments are relevant conditional on X.

Assumption 2.4 (Copula). For each (y1, d) ∈ {1, 0}3, the unobservables are jointly dis-

tributed as

(V1, V2, U1(d1), U2(y1, d))|X=x ∼ C (v1, v2, u1, u2; Σ(y1, d, x)) ,

5This normalization needs caution in this semiparametric setting. It does not necessarily impose exogene-
ity of X, although it may seem so.
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where C(v1, v2, u1, u2; Σ) is a 4-copula with dependence matrix Σ.

In Assumption 2.4, Σ(y1, d, x) captures all the dependences among (V1, V2, U1(d1), U2(y1, d))

conditional on X = x. Notable elements in Σ(y1, d, x) are ρV1,U1(d1),x and ρVt,U2(y1,d),x (for

t = 1, 2 and (y1, d) ∈ {0, 1}3), which capture the treatment-state- and covariate- specific se-

lection, which can be economically meaningful. The rank similarity or rank invariance (Cher-

nozhukov and Hansen (2005)) will impose restrictions such as ρV1,U1(1),x = ρV1,U1(0),x ≡ ρV1,U1,x,

which rules out state-specific selection. Although we can also allow the form of the copula

to depend on x and d, we do not pursue this specification for succinctness. In the next

assumption, C(·|·; ρ) denotes the conditional copula of C(·, ·; ρ) and the stochastic ordering

“≺S” is defined as follows.

Definition 2.1 (Strictly More SI). Let F (w1|w2) and F̃ (w1|w2) be conditional distributions.

Suppose that F (w1|w2) and F̃ (w1|w2) are continuous in w1 for all w2. Then F̃ is strictly

more stochastically increasing than F if ψ(w1, w2) ≡ F̃−1(F (w1|w2)|w2) is strictly increasing

in w2, which is denoted as F (·|·) ≺S F̃ (·|·).

In this definition, the ordering is defined in terms of the degree of a particular positive

dependence between two random variables.

Assumption 2.5 (Vine Structure). The copula C (v1, v2, u1, u2; Σ) in Assumption 2.4 and

its margins satisfy the following conditions:

(i) C(v1, u1; ρv1u1) satisfies that C(v1|u1; ρv1u1) ≺S C(v1|u1; ρ̃v1u1) for any ρv1u1 < ρ̃v1u1;

(ii) C(v1, v2, u1; ρv1v2 , ρv1u1 , ρv2u1) and C(v1, v2, u1, u2; Σ) are represented by

C(v1, v2, u1; ρv1v2 , ρv1u1 , ρv2u1) =

∫ v1

C (C(v2|ṽ1), C(u1|ṽ1); ρ(ρv1v2 , ρv1u1 , ρv2u1)) dṽ1,

C(v1, v2, u1, u2; Σ) =

∫ v1,v2

C (C(u1|ṽ1, ṽ2), C(u2|ṽ1, ṽ2); ρ(Σ)) dC(ṽ1, ṽ2),

where the outer copula C(·, ·; ρ) on the r.h.s. satisfies C(·|·; ρ) ≺S C(·|·; ρ̃) for ρ < ρ̃;

(iii) ρ(ρv1v2 , ρv1u1 , ρv2u1) and ρ(Σ) are strictly increasing in ρv2u1 and ρu1u2, respectively.
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This assumption is crucial later for the global identifiability of the treatment parameters in

our semiparametric model. The parameters are defined in the next section. Assumption 2.5(i)

naturally holds for many well-known bivariate copulas; e.g., see Han and Vytlacil (2017). The

vine copula structure in Assumption 2.5(ii) builds a multivariate copula from a mixture of

conditional copulas. It is a simple and effective way to impose semiparametric structure

for joint distributions in multi-period multi-stage models of this paper. By characterizing

Assumption 2.5(iii) as the additional requirement, we show how the ordering property of

a bivariate copula does not automatically extend to a multi-variate setup. We show that

Gaussian copulas satisfies Assumption 2.5.

Example 2 (Gaussian Copulas). First, Assumption 2.5(i) holds with Gaussian copula (Han

and Vytlacil (2017)). Let (U1, U2, U3) ∼ C(·, ·, ·; ρ12, ρ23, ρ13), where C is a trivariate Gaus-

sian copula. Define Zj ≡ Φ−1 (Uj) for j ∈ {1, 2, 3}. Then, Zj ∼ N(0, 1). Observe that from

Example 4.4 in Joe (1997, p.113), we have

C (u1, u2, u3; ρ12, ρ23, ρ13) = Φ(z1, z2, z3; ρ12, ρ23, ρ13)

=

∫ u1

0

C
(
C2|1(u2|u), C3|1(u3|u); ρ23;1

)
du,

where all the copulas on the r.h.s. are Gaussian and ρ23;1 = ρ23−ρ12ρ13√
(1−ρ212)·(1−ρ213)

is the partial

correlation between Z2 and Z3 given Z1. Then, the outer copula satisfies ≺S-ordering and

thus Assumption 2.5(ii). Also, the trivariate Gaussian copula satisfies Assumption 2.5(iii)

with ρ(ρ12, ρ13, ρ23) = ρ23;1. Similarly, we can construct a 4-variate Gaussian copula: From

Joe (2014, p.120), we have that

C(u1, u2, u3, u4; Σ) =

∫ u1
∫ u2

C
(
C3|12(u3|u, v), C4|12(u4|u, v); ρ34;12

)
dC(u, v),

where all the copulas on the r.h.s. are Gaussian and ρ34;12 = ρ34;1−ρ23;1ρ24;1√
(1−ρ223;1)·(1−ρ224;1)

, which then

satisfies Assumption 2.5(ii)–(iii) with ρ(Σ) = ρ34;12.
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3 Dynamic Treatment and Mediation Effects

In this section, we define the dynamic treatment and mediation effects and show that they can

be expressed as known functions of the model primitives: µ2(y1, d, x), µ1(d1, x), π2(y1, d1, z2)

in (2.1)–(2.4) and the dependence parameters Σ(y1, d, x) in Assumption 2.4. Our goal in the

subsequent section is to identify the model primitives.

Let Y2(y1, d), Y2(d), Y2(d2), Y2(d1) and Y1(d1) be the potential outcomes. Note that

Y2(Y1, D1, d2) = Y2(d2) by implicitly assuming no anticipation, but Y2(Y1(d1), d) = Y2(d)

and Y2(d1, D2(d1)) = Y2(d1) where D2(d1) is the counterfactual treatment given d1.6 First,

we define the basic causal objects that serve as building blocks to construct treatment and

mediation parameters and show they are expressed in terms of the primitives. We focus

on the case of binary Yt here; the expressions with continuous Yt are shown in Section 6.

Consider

E[Y2(y1, d)|X = x] = Pr[U2(y1, d) ≤ µ2(y1, d, x)|X = x] = µ2(y1, d, x),

E[Y1(d1)|X = x] = Pr[U1(d1) ≤ µ1(d1, x)|X = x] = µ1(d1, x),

because U2(y1, d) and U1(d1) are uniform conditional on X = x. Also consider

E[Y2(Y1(d̃1), d)|X = x] = E[E[Y2(Y1(d̃1), d)|Y1(d̃1)]|X = x]

=
∑

y1∈{0,1}

Pr[Y1(d̃1) = y1|X = x] Pr[Y2(y1, d) = 1|Y1(d̃1) = y1, X = x]

=
∑

y1∈{0,1}

Pr[Y1(d̃1) = y1, Y2(y1, d) = 1|X = x]

= C(µ1(d̃1, x), µ2(1, d, x); ρU1(d̃1),U2(1,d),x)

+ µ2(0, d, x)− C(µ1(d̃1, x), µ2(0, d, x); ρU1(d̃1),U2(0,d),x)

E[Y2(d1)|X = x] =
∑

y1,d2∈{0,1}2
Pr[Y1(d1) = y1, D2(d1) = d2, Y2(y1, d) = 1|X = x],

6Note that Y2(Y1, d) and Y2(d1, D2) are counterfactual objects with different interpretations and
Y2(Y1, d) 6= Y2(d) and Y2(d1, D2) 6= Y2(d1).
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where the last expression entails a formula with relevant copulas similar to the equation

one above. Then, examples of (conditional) dynamic treatment effects can be identified as

follows:

E[Y2(ỹ1, d̃)− Y2(y1, d)|X = x] = µ2(ỹ1, d̃, x)− µ2(y1, d, x)

and

E[Y2(d̃1, d2)− Y2(d1, d2)|X = x] = C(µ1(d̃1, x), µ2(1, d̃1, d2, x); ρU1(d̃1),U2(1,d̃1,d2),x)

+ µ2(0, d̃1, d2, x)− C(µ1(d̃1, x), µ2(0, d̃1, d2, x); ρU1(d̃1),U2(0,d̃1,d2),x)

− {C(µ1(d1, x), µ2(1, d, x); ρU1(d1),U2(1,d),x)

+ µ2(0, d, x)− C(µ1(d1, x), µ2(0, d, x); ρU1(d1),U2(0,d),x)}.

Note that in the first example, we can learn dynamic complementarity by setting ỹ1 = y1

and comparing d̃ = (0, 1) and d = (0, 0) with d̃ = (1, 1) and d = (1, 0):

E[Y2(y1, 0, 1)− Y2(y1, 0, 0)] vs. E[Y2(y1, 1, 1)− Y2(y1, 1, 0)].

Also, we can learn state dependence by setting d̃ = d and ỹ1 = 1 and y1 = 0:

E[Y2(1, d)− Y2(0, d)].

In the second example, we can decompose the parameter into the direct effect and indirect

effect mediated by Y1 (i.e., the mediation effect) as follows. Note that Y2(d) = Y2(Y1(d1), d).
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Therefore,

E[Y2(1, d2)− Y2(0, d2)|X = x] = E[Y2(Y1(0), 1, d2)− Y2(Y1(0), 0, d2)|X = x]

+ E[Y2(Y1(1), 1, d2)− Y2(Y1(0), 1, d2)|X = x]

= E[Y2(Y1(1), 1, d2)− Y2(Y1(1), 0, d2)|X = x]

+ E[Y2(Y1(1), 0, d2)− Y2(Y1(0), 0, d2)|X = x],

where the expressions for E[Y2(Y1(d1), d1, d2)|X = x] are given above andE[Y2(Y1(d1), d′1, d2)|X =

x] (d1 6= d′1) can be recovered by using similar expressions as that for E[Y2(d)] above. Note

that the mediation effect is path-dependent, so we define two different versions of direct and

indirect effects. The unconditional versions of all the effects above can be recovered by taking

expectations over X. Next, the time-, “sector-” and covariate- specific selection can be mea-

sured by (ρV1,U1(d1),x, ρV2,U2(y1,d),x), which are also identified in the next section. Finally, let

D2(y1, d1) be the counterfactual treatment given (y1, d1) and let pZ2(x) ≡ Pr[Z2 = 1|X = x].

If we identify π2(y1, d1, z2, x), then we identify

E[D2(y1, d1)|X = x] = pZ2(x)π2(y1, d1, 1, x) + (1− pZ2(x))π2(y1, d1, 0, x).

This counterfactual object can be used to measure habit and learning in the treatment

decision. The habit of decisions can be captured by

E[D2(y1, 1)−D2(y1, 0)]

and the learning from the previous experience can be reflected in the complementarity of Y1

and D1 in forming D2:

E[D2(1, 1)−D2(0, 1)]− E[D2(1, 0)−D2(0, 0)].

Remark 3.1. As seen in Pr[U2(y1, d) ≤ µ2(y1, d, x)|X = x] = µ2(y1, d, x), the marginal dis-
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tribution of U2(y1, d) is absorbed in µ2(y1, d, x) due to the normalization that U2(y1, d)|X = x

is uniform regardless of (y1, d). Nonetheless, the misspecification of U2(y1, d) = U2(y′1, d
′) ≡

U2 ((y1, d) 6= (y′1, d
′)) will have consequences in identifying and consistently estimating µ2(y1, d, x).

4 Identification Analysis

We conduct the identification analysis in the model (2.1)–(2.4). We show the identifiability

of µ2(y1, d, x), µ1(d1, x), π2(y1, d1, z2) and Σ(y1, d, x) in three steps. First, consider

Y1 = 1[µ1(D1, X) ≥ U1(D1)],

D1 = 1[π1(Z1, X) ≥ V1].

Fix x ∈ X . Note that π1(z1, x) is trivially identified as π1(z1, x) = Pr[D1 = 1|Z1 = z1, X = x]

by our normalization. We list Pr[D1 = d, Y1 = y|Z1 = z,X = x] for (d, y, z) ∈ {0, 1}3. For

example, by Assumptions 2.2 and 2.4,

Pr[D1 = 1, Y1 = 1|Z1 = 0, X = x] = Pr[V1 ≤ π1(0, x), U1(1) ≤ µ1(1, x)|X = x]

= C(π1(0, x), µ1(1, x); ρV1,U1(1),x).

The six (non-redundant) fitted probabilities can be written as follows:

Pr[D1 = 1, Y1 = 1|Z1 = 0, X = x] = C(π1(0, x), µ1(1, x); ρV1,U1(1),x), (4.1)

Pr[D1 = 1, Y1 = 1|Z1 = 1, X = x] = C(π1(1, x), µ1(1, x); ρV1,U1(1),x), (4.2)

Pr[D1 = 0, Y1 = 1|Z1 = 0, X = x] = µ1(0, x)− C(π1(0, x), µ1(0, x); ρV1,U1(0),x), (4.3)

Pr[D1 = 0, Y1 = 1|Z1 = 1, X = x] = µ1(0, x)− C(π1(1, x), µ1(0, x); ρV1,U1(0),x), (4.4)
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Under Assumptions 2.3 and 2.5(i), by applying Lemma 4.1 of Han and Vytlacil (2017), it is

easy to see that the Jacobian matrix of (4.1)–(4.2)

J1(x) =

 C2(π1(0, x), µ1(1, x)) CρV1,U1(1),x
(π1(0, x), µ1(1, x))

C2(π1(1, x), µ1(1, x)) CρV1,U1(1),x
(π1(1, x), µ1(1, x))


is a P-matrix (except at the boundary of the parameter space). Similarly, the Jacobian of

(4.3)–(4.4)

J2(x) =

 1− C2(π1(0, x), µ1(0, x)) CρV1,U1(0),x
(π1(0, x), µ1(0, x))

1− C2(π1(1, x), µ1(0, x)) CρV1,U1(0),x
(π1(1, x), µ1(0, x))


is a P-matrix. Therefore, we can apply the global univalence theorem by Gale and Nikaido

(1965) and identify (µ1(d1, x), ρV1,U1(d1),x) for all d1 ∈ {0, 1} and x ∈ X . This step is closely

related to Han and Vytlacil (2017).7

For the rest of the proof, we suppress X for simplicity but the idea of incorporating

X is the same as above. Next, we consider identification of (π2(y1, d1, z2), ρV1,V2) for each

(y1, d1, z2) using

D2 = 1[π2(Y1, D1, Z2) ≥ V2],

Y1 = 1[µ1(D1) ≥ U1(D1)],

D1 = 1[π1(Z1) ≥ V1].

7Note that Gale and Nikaido (1965)’s theorem does not require the technical assumptions on the parameter
space used for Hadamard’s global inverse function theorem in Han and Vytlacil (2017). The latter uses all
the fitted probabilities to calculate a larger Jacobian matrix, which is not a P-matrix, and thus Gale and
Nikaido (1965)’s theorem is not applicable.
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Fix z2 ∈ {0, 1}. For z1 ∈ {0, 1}, consider

Pr[D1 = 1, D2 = 1, Y1 = 1|Z1 = z1, Z2 = z2]

= Pr[V1 ≤ π1(z1), V2 ≤ π2(1, 1, z2), U1(1) ≤ µ1(1)]

=C(π1(z1), π2(1, 1, z2), µ1(1); ρV1,V2 , ρV1,U1(1)).

Note that we write the copula with two dependence parameters (instead of three) without loss

of generality, and similarly for 4-copula below. There are alternative copula representations

with alternative pairs of dependence parameters. The dependence parameters in those models

can be recovered from the parameters in the current model. For example, ρV1,U2(d) can be

recovered from (ρV1,V2 , ρV2,U2(d)); see Example 4.4 in Darsow et al. (1992). Then, the Jacobian

for (π2(1, 1, z2), ρV1,V2) is

J3 =

 C2(π1(0), π2(1, 1, z2), µ1(1)) CρV1,V2 (π1(0), π2(1, 1, z2), µ1(1))

C2(π1(1), π2(1, 1, z2), µ1(1)) CρV1,V2 (π1(1), π2(1, 1, z2), µ1(1))

 ,
which is a P-matrix if and only if

C2(π1(0), π2(1, 1, z2), µ1(1))

CρV1,V2 (π1(0), π2(1, 1, z2), µ1(1))
6= C2(π1(1), π2(1, 1, z2), µ1(1))

CρV1,V2 (π1(1), π2(1, 1, z2), µ1(1))
. (4.5)

The latter is guaranteed by Assumptions 2.3 and 2.5 and the following lemma:

Lemma 4.1. Suppose C(v1, v2, u1, u2; ρv1v2 , ρv1u1 , ρv2u2) and its margins (where only relevant

dependence parameters are shown) satisfy Assumption 2.5(ii)–(iii). Then for any ρv1u1 , ρv1v2 , ρv2u2 ∈

(−1, 1) and v1, u1, u2 ∈ (0, 1), the copula and its semi-survival functions and all their margins

satisfy

H2(v1, v2, u1; ρv1v2)

Hρv1v2
(v1, v2, u1; ρv1v2)

(4.6)
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is strictly decreasing in v1, and

H4(v1, v2, u1, u2; ρv2u2)

Hρv2u2
(v1, v2, u1, u2; ρv2u2)

(4.7)

is strictly decreasing in v2.

This lemma exhibits one of the theoretical contributions of this paper. To prove that

the vine copula in Assumption 2.5 implies (4.6)–(4.7), we employ the functional derivative

(Gelfand et al. (2000)) of the vine copula with respect to the conditional copula and exploit

the ordering property of the outer copula to restore the ordering property of the multivariate

unconditional copulas. Then, we prove that the latter guarantees the monotonicity of the

ratios in the lemma. For details, see Section A in the Appendix.

Returning to (4.5), by Lemma 4.1, we identify (π2(1, 1, z2), ρV1,V2). In what follows, paral-

lel arguments are made for π2(y1, d1, z2) with other values of (y1, d1) by applying Lemma 4.1

with corresponding H functions. We identify π2(0, 1, z2) from the conditional probabilities

with Y1 = 0: For z1 ∈ {0, 1}, consider

Pr[D1 = 1, D2 = 1, Y1 = 0|Z1 = z1, Z2 = z2]

= Pr[V1 ≤ π1(z1), V2 ≤ π2(0, 1, z2), U1(1) > µ1(1)]

=C(π1(z1), π2(0, 1, z2); ρV1,V2)− C(π1(z1), π2(0, 1, z2), µ1(1); ρV1,V2 , ρV1,U1(1)).

Note that the r.h.s. expression is strictly increasing in π2(0, 1, z2), which is clear to see from

the second line above. Also note that the expression is a known function π2(0, 1, z2) because

the other components in the copulas are all identified earlier. Therefore, by inverting this
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function, we identify π2(0, 1, z2). We repeat this proof for D1 = 0. For z1 ∈ {0, 1}, consider

Pr[D1 = 0, D2 = 1, Y1 = 1|Z1 = z1, Z2 = z2]

= Pr[V1 > π1(z1), V2 ≤ π2(1, 0, z2), U1(0) ≤ µ1(0)]

=C(π2(1, 0, z2), µ1(0); ρV2,U1(0))− C(π1(z1), π2(1, 0, z2), µ1(0); ρV1,V2 , ρV1,U1(0)).

Similarly as before, this expression is a known strictly increasing function of π2(1, 0, z2)

because all other components are identified earlier; note ρV2,U1(0) can be recovered from

(ρV1,V2 , ρV1,U1(0)). Consider

Pr[D1 = 0, D2 = 1, Y1 = 0|Z1 = z1, Z2 = z2]

= Pr[V1 > π1(z1), V2 ≤ π2(0, 0, z2), U1(0) > µ1(0)]

=π2(0, 0, z2)− C(π1(z1), π2(0, 0, z2); ρV1,V2)

− {C(π2(0, 0, z2), µ1(0); ρV2,U1(0))− C(π1(z1), π2(0, 0, z2), µ1(0); ρV1,V2 , ρV1,U1(0))},

which is a known strictly increasing function of π2(0, 0, z2). This identifies π2(0, 0, z2). In

sum, this step identifies π2(y1, d1, z2) for all (y1, d1, z2) ∈ {0, 1}3 and ρV1,V2 .

Finally, consider

Y2 = 1[µ2(Y1, D) ≥ U2(Y1, D)],

D2 = 1[π2(Y1, D1, Z2) ≥ V2],

Y1 = 1[µ1(D1) ≥ U1(D1)],

D1 = 1[π1(Z1) ≥ V1],

where the remaining parameters to identify are (µ2(y1, d), ρV2,U2(y1,d)) for (y1, d) ∈ {0, 1}3.
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Fix z1 ∈ {0, 1}. First, consider

Pr[D1 = 1, D2 = 1, Y1 = 1, Y2 = 1|Z1 = z1, Z2 = z2]

= Pr[V1 ≤ π1(z1), V2 ≤ π2(1, 1, z2), U1(1) ≤ µ1(1), U2(1, 1, 1) ≤ µ2(1, 1, 1)]

=C(π1(z1), π2(1, 1, z2), µ1(1), µ2(1, 1, 1); ρV1,V2 , ρV1,U1(1), ρV2,U2(1,1,1)).

By varying z2 ∈ {0, 1} we can identify (µ2(1, 1, 1), ρV2,U2(1,1,1)) from a relevant Jacobian

matrix, which is again a P-matrix by Assumptions 2.3 and 2.5 and Lemma 4.1. Similarly,

consider

Pr[D1 = 1, D2 = 0, Y1 = 1, Y2 = 1|Z1 = z1, Z2 = z2]

= Pr[V1 ≤ π1(z1), V2 > π2(1, 1, z2), U1(1) ≤ µ1(1), U2(1, 1, 0) ≤ µ2(1, 1, 0)]

=C(π1(z1), µ1(1), µ2(1, 1, 0); ρV1,U1(1), ρV2,U2(1,1,0))

− C(π1(z1), π2(1, 1, z2), µ1(1), µ2(1, 1, 0); ρV1,V2 , ρV1,U1(1), ρV2,U2(1,1,0)).

By varying z2 ∈ {0, 1} we can identify (µ2(1, 1, 0), ρV2,U2(1,1,0)) from a relevant Jacobian

matrix, which is again a P-matrix by Assumptions 2.3 and 2.5 and Lemma 4.1. By changing

the possible remaining values of (D1, D2, Y1), the remainder of the proof is analogous to the

two cases above, which identifies (µ2(y1, d), ρV2,U2(y1,d)) for the remaining values of (y1, d).

The following theorem summarizes the identification results for the case of T = 2. Let X be

the support of X.

Theorem 4.1. Under Assumptions 2.2–2.5, the parameters

(π1(z1, x), µ1(d1, x), π2(y1, d1, z2, x), µ2(y1, d, x),Σ(y1, d, x))

as functions of x are globally identified for all (y1, z, d, x) ∈ {0, 1}5 ×X .

Remark 4.1. One may be curious whether the three step approach is necessarily in the proof

of identification. The is in fact the case because, with a two-step approach of the following,

20



ρ12 is not identified:

Pr[D2 = 1, Y2 = 1|D1 = 1, Y1 = 1, Z1 = z1, Z2 = z2]

= Pr[V2 ≤ π2(1, 1, z2), U2(1, 1, 1) ≤ µ2(1, 1, 1)|V1 ≤ π1(z1), U1(1) ≤ µ1(1)]

=
1

π1(z1)µ1(1)

∫ π1(z1) ∫ µ1(1)

C(π2(1, 1, z2), µ2(1, 1, 1)|v1, u1; ρV1,V2 , ρV1,U1(1), ρV2,U2(1,1,1))dv1du1.

5 Identification with General T

We now give an overview of a model with general T and related identification results. For

any random variable Wt, let W t ≡ (W1, ...,Wt) and W ≡ W T . We also use the convention

that W 0 = W0 = ∅. For t = 1, ..., T , consider

Yt = 1[µt(Yt−1, D
t, X) ≥ Ut(Yt−1, D

t)], (5.1)

Dt = 1[πt(Yt−1, Dt−1, Zt, X) ≥ Vt]. (5.2)

Let U t(yt−1, dt) ≡ (U1(d1), U2(y1, d
2), ..., Ut(yt−1, d

t)).

Assumption 5.1. (i) (No Anticipation) Yt(y
t−1, dT , zt) = Yt(y

t−1, dt, zt) and Dt(d
T
−t, z

t) =

Dt(d
t−1, zt) for t = 1, ..., T ; (ii) (Exclusion) Yt(y

t−1, dt, zt) = Yt(y
t−1, dt) for t = 1, ..., T .

Assumption 5.2. Z ⊥ (V, U(yT−1, d))|X for (yT−1, dT ) ∈ {0, 1}2T−1.

Assumption 5.3. For t = 1, ..., T , πt is a non-trivial function of Zt and Z|X is non-

degenerate.

Assumption 5.4. For each (yT−1, dT ) ∈ {0, 1}2T−1, the unobservables are jointly distributed

as

(V, U(yT−1, d))|X=x ∼ C
(
v, u; Σ(yT−1, d, x)

)
,

where C(v, u; Σ) is a 2T -copula with dependence matrix Σ.
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Assumption 5.5. The copula C (v, u; Σ) in Assumption 5.4 and all its margins satisfy pair-

wise “≺SJ” with respect to the associated dependence parameter.

Assumption 5.3∗. The following conditions hold:

(i) Condition (i) of Assumption 2.5 holds;

(ii) the conditional versions of C (v, u; Σ) and its margins are represented by

C(vt−1, vt|ut−1, vt−2; Σvtut−1) = C
(
C(vt−1|ut−1, vt−2), C(vt|ut−1, vt−2); ρ(Σvtut−1)

)
,

C(vt, ut|vt−1, ut−1; Σvtut)

c(vt−1, ut−1; Σvt−1ut−1)
= C

(
C(vt|vt−1, ut−1), C(ut|vt−1, ut−1); ρ(Σvtut)

)
for t = 2, ..., T , where the outer copula C(·, ·; ρ) on the r.h.s. satisfies C(·, ·; ρ) ≺S C(·, ·; ρ̃)

for ρ < ρ̃;

(iii) ρ(Σvtut−1) and ρ(Σvtut) are strictly increasing in ρvt−1vt and ρvtut, respectively.

In Assumption 5.5∗(ii), for example, Σv2u1 = (ρv1v2 , ρv1u1 , ρv2u1) and

Σv2u2 = (ρv2u2 , ρv1v2 , ρv2u1 , ρv1u2 , ρu1u2 , ρv1u1).

To state the generalized version of Lemma 4.1, let

C(vt−1, vt, v
t−2, ut−1; ρvt−1vt) ≡ C(vt−1, vt, v

t−2, ut−1; ρvt−1vt ,Σvt−2ut−1),

C(vt, ut, v
t−1, ut−1; ρvtut) ≡ C(vt, ut, v

t−1, ut−1; ρvtut ,Σvt−1ut−1).

Note Σvt−2ut−1 and Σvt−1ut−1 are identified in previous steps. Let conditioning variables v0

and u0 mean no conditioning.

Lemma 5.1. Suppose C (v, u; Σ) and its margin satisfy Assumption 5.5. Then for t =

2, ..., T , the copula and its semi-survival functions and all their margins satisfy

Hρvt−1vt
(vt−1, vt, v

t−2, ut−1; ρvt−1vt)

H2(vt−1, vt, vt−2, ut−1; ρvt−1vt)
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is strictly monotonic in vt−1, and for t = 1, ..., T

Hρvtut
(vt, ut, v

t−1, ut−1; ρvtut)

H2(vt, ut, vt−1, ut−1; ρvtut)

are strictly monotonic in vt.

Based on this lemma, we can follow identification arguments analogous to those in Section

4. The key observation for the identification is that, regardless of T , each step only involves

a 2× 2 Jacobian matrix, which is easy to show to be a P-matrix under Assumptions5.3– 5.5.

Theorem 5.1. Under Assumptions 5.2–5.5, the parameters

(πt(yt−1, dt−1, zt, x), µt(yt−1, d
t, x),Σ(yT−1, d, x)) for all t = 1, ..., T

as functions of x are globally identified for all (yT−1, z, d, x) ∈ {0, 1}3T−1 ×X .

6 Extension: Continuous Outcome Variables

We extend the identification results of this paper to the case of continuous outcome variables.

With continuous outcomes, we can recover parameters defined in Section 3 for both average

and quantile effects.

Let Yt ∈ Yt ⊆ R for t = 1, ..., T . We consider T = 2 for simplicity. Now, define the

(continuous) counterfactual outcomes Y1(d1) and Y2(y1, d) and the counterfactual treatments

D1(z1) and D2(y1, d1, z2). We maintain the same treatment selection model (2.2) and (2.4) for

D2 and D1, respectively. However, we do not specify the mechanism under which the outcome

is formed, which is similar to the spirit of (2.1) and (2.4) as discussed in the next section.

This framework allows us to maintain the same set of dynamic treatment and mediation

parameters as in the discrete case.

We introduce a new set of identifying assumptions. At the same time, we maintain

Assumptions 2.1 (no anticipation and exclusion), 2.3 (IV relevance) and 2.5 (vine copula).
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Assumption 6.1. Z ⊥ (V1, V2, Y1(d1), Y2(y1, d))|X for (d, ỹ1) ∈ {0, 1}3.

Assumption 6.2. For each (d, ỹ1) ∈ {0, 1}3, the unobservables are jointly distributed as

(V1, V2, Y1(d1), Y2(y1, d))|X=x ∼ C
(
v1, v2, FY1(d1)(y1), FY2(y1,d)(y2); Σ(d, y1, x)

)
,

where C(v1, v2, u1, u2; Σ) is a 4-copula with dependence matrix Σ.

In Assumption 6.2, Σ(d, y1, x) captures all the dependences among (V1, V2, Y1(d1), Y2(y1, d))

conditional on X = x. Notable elements in Σ(d, x) are ρV1,Y1(d1),x and ρVt,Y2(y1,d),x (for t = 1, 2

and d ∈ {0, 1}2). Below, we use ρV1,U1(d1),x and ρVt,U2(y1,d),x interchangeably, where U1(d1)

and U2(y1, d) are the CDF transformations of Y1(d1) and Y2(y1, d).

We briefly outline the identification strategy. We suppress X for simplicity. For given

y ∈ Y , consider

FY1|D1,Z1(y|D1 = 1, Z1 = z1)π1(z1) = Pr[Y1 ≤ y, V1 ≤ π1(z1)]

= Pr[U1(1) ≤ FY1(1)(y), V1 ≤ π1(z1)]

= C(π1(z1), FY1(1)(y); ρV1,U1(1))

and similarly for D1 = 0. From these equations, we identify (π1(z1), FY1(d1)(y), ρV1,U1(d1)) by

the same argument as the first step of identification in Section 4. Next, we want to identify

π2(y1, z2) and ρV1,V2 . For given y ∈ Y , consider

Pr[D1 = 1, D2 = 1, Y1 ≤ y|Z = z]

= Pr[Y1 ≤ y|D1 = 1, D2 = 1, Z = z] Pr[D1 = 1, D2 = 1|Z = z]

= Pr[D1(z1) = 1, D2(z2) = 1|U1(1) ≤ FY1(1)(y)] Pr[Y1(1) ≤ y]

=

∫ FY1(1)(y)

Pr[V1 ≤ π1(z1), V2 ≤ π2(F−1
Y1(1)(t), 1, z2)|U1(1) = t]dt

=

∫ FY1(1)(y)

C(π1(z1), π2(F−1
Y1(1)(t), 1, z2)|t)dt.
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Then, differentiating both sides w.r.t y yields

fY1(y|D1 = 1, D2 = 1, Z = z) Pr[D1 = 1, D2 = 1|Z = z]

=C(π1(z1), π2(y, 1, z2)|FY1(1)(y); ρV1,V2)fY1(1)(y).

Since FY1(1)(y) is already identified, by varying the value of Z1, we can produce two equations,

whose Jacobian is a P-matrix as in Section 4. Therefore we can identify π2(y, 1, z2) and ρV1,V2

by showing Jacobian is P-matrix. By using D1 = 0 instead, we can also identify π2(y, 0, z2).

The remaining proof can be followed analogous to the discrete case.

Theorem 6.1. Under Assumptions 2.1, 2.3, 2.5, 6.1 and 6.2, for each y ∈ Y, the parameters

(π1(z1, x), FY1(d1)|X(y|x), π2(y1, d1, z2, x), FY2(y1,d)|X(y|x),Σ(y1, d, x))

are globally identified for all (y1, z, d, x) ∈ {0, 1}5 ×X .

The identified parameters can be used to construct the dynamic treatment effect param-

eters introduced in Section 3. For example,

E[D2(Y1(d̃1), d1, z2)] = E[E[D2(Y1(d̃1), d1, z2)|Y1(d̃1)]]

=

∫
Pr[V2 ≤ π2(y1, d1, z2)|Y1(d̃1) = y1]dFY1(d̃1)(y1)

but

Pr[V2 ≤ π2(y1, d1, z2)|Y1(d̃1) = y1] = Pr[V2 ≤ π2(y1, d1, z2)|U1(d̃1) = FY1(d̃1)(y1)]

= C1(FY1(d̃1)(y1), π2(y1, d1, z2); ρU1(d̃1),V2
),
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where all the components in the last expression are identified in Theorem 6.1. Similarly,

E[Y2(Y1(d̃1), d)] = E[E[Y2(Y1(d̃1), d)|Y1(d̃1)]]

=

∫
E[Y2(y1, d)|Y1(d̃1) = y1]dFY1(d̃1)(y1)

=

∫ ∫
1− FY2(y1,d)|Y1(d̃1)(y2|y1)dy2dFY1(d̃1)(y1)

but

FY2(y1,d)|Y1(d̃1)(y2|y1) = P [Y2(y1, d) ≤ y2|Y1(d̃1) = y1]

= P [U2(y1, d) ≤ FY2(y1,d)(y2)|U1(d̃1) = FY1(d̃1)(y1)]

= C1(FY1(d̃1)(y1), FY2(y1,d)(y2); ρU1(d̃1),U2(y1,d)).

Moreover, since we directly identify the CDFs of Y1(d1) and Y2(y1, d) and the other copula

components, we can also identify the quantile versions of dynamic treatment and mediation

effects as well as the quantile versions of state dependence and learning and habit effects.

7 Estimation and Inference

7.1 Sieve Maximum Likelihood Estimation

We now consider estimation of the parameters in the semiparametric model. We focus on

binary Yt for simplicity. Let W ≡
(
Y,D,Z,X

′)′ ≡ (Y T , DT , ZT , X
′)′

and {Wi : i = 1, 2, .., n}

be a random sample of size n drawn from W . Define the infinite-dimensional parameters

h(·) ≡ (π1(z1, ·), µ1(d1, ·), ..., πT (yT−1, dT−1, zT , ·), µT (yT−1, d, ·))(yT−1,d,z)∈{0,1}3T−1

and ρ(·) ≡
(
Σ(yT−1, d, ·)

)
yT−1,d∈{0,1}2T−1 as functions of x ∈ X . We denote the vector of the

parameters by α (i.e., α ≡ (h, ρ)
′
) and let α0 be the true parameter value. Let H1 and H2

be the parameter spaces for h and ρ, respectively, and let A ≡ H1 × H2 be the parameter
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space for α.

Let pydz,x,i(α) denote the (normalized) copula function corresponding to Pr[Yi = y,Di =

d, Zi = z|Xi = x]. For example, pydz,x,i(α)’s are the r.h.s. objects in (4.4) multiplied by

Pr[Zi = z|Xi = x]. Then, the log-likelihood function is written as

Ln(α) =
1

n

n∑
i

l(Wi, α), (7.1)

where l(Wi, α) ≡
∑

(y,d,z)∈{0,1}3T 1 (Yi = y,Di = d, Zi = z) · log (pydz,x,i(α)). Then, a ML esti-

mator of α is obtained by solving

sup
α∈A

Ln(α).

Since the parameter space A is infinite-dimensional, it is not feasible to solve the maximiza-

tion problem over A. In this paper, we propose to use sieve (ML) estimation. The method of

sieves provides a flexible but tractable way to estimate the infinite-dimensional parameters.

A sieve ML estimator α̂n of α0 is defined as follows:

α̂n ≡ arg max
α∈An

Ln(α),

where An is a sieve space for A.

We introduce a class of functions of x ∈ X . Let g : D→ R where D ⊆ Rdx for some integer

dx ≥ 1. For dx-tuple of nonnegative integers, ω = (ω1, ..., ωdx), we define the differential

operator as ∇ωg ≡ ∂|ω|

∂x
ω1
1 ∂x

ω2
2 ···∂x

ωdx
dx

g(x), where x = (x1, x2,..., xdx) ∈ D and |ω| ≡
∑dx

i=1 ωi. Let

p = m+ ν be a nonnegative real number with m being a nonnegative integer and ν ∈ (0, 1].

We call a function g : X → R p-smooth if it is m times continuously differentiable on X and

for all ω such that |ω| = m and there exists a constant c > 0 such that |∇ωg(x)−∇ωg(y)| ≤

c · ||x − y||νE for all x, y ∈ X , where || · ||E is the Euclidean norm. Let Cm(X ) denote the

space of all m-times continuously differentiable real-valued functions on X . A Hölder ball
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with smoothness p and radius C > 0 is defined as

Λp
C(X ) ≡

{
g ∈ Cm(X ) : sup

|ω|≤m
sup
x∈X
|∇ωg(x)| ≤ C, sup

|ω|=m
sup

x,y∈X ,x 6=y

|∇ωg(x)−∇ωg(y)|
||x− y||νE

≤ C

}
.

The choice of sieve space An depends on the parameter space A and the support X of X.

When the parameters belong to some class of smooth functions (e.g., Hölder space, Sobolev

space) and X is compact, one can use polynomial, trigonometric, spline, or wavelet sieve

spaces. When X is unbounded, one can use Hermite polynomial sieve spaces. One can refer

to Chen (2007) for the detail on the choice of sieve spaces.

Remark 7.1 (Saturated Semiparametric Models). It is worth noting that when X is discrete

or when there is no X, the semiparametric model we propose is fully saturated. In this case,

the estimation problem becomes the standard parametric ML estimation. Given the flexibil-

ity we allow for in the model (e.g., heterogeneity), we view this saturation as an appealing

feature of our framework. We omitted the standard asymptotic theory for the parametric ML

estimation.

7.2 Asymptotic Theory

We develop the asymptotic theory for the sieve estimator α̂n. To this end, we introduce

several norms on A. For given α ∈ A, we denote the supremum and L2 norms of α by ||α||∞

and ||α||2, respectively, where the supremum and integration are taken over X . We denote

the range of the dependence parameters by R for a given copula function. Define

Hp,1
c (X ) ≡ {g ∈ Λp

c(X ) : 0 ≤ g(x) ≤ 1 for all x ∈ X} ,

Hp,2
c (X ) ≡ {g ∈ Λp

c(X ) : g(x) ∈ R for all x ∈ X} .

In this paper, we consider linear sieve spaces for A. Let {pj(·)}∞j=1 be a sequence of some

basis functions and pkn(x) ≡ (p1(x), p2(x), ..., pkn(x))
′
. We impose the following assumptions.
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Assumption 7.1. (i) The data {Wi : i = 1, 2, ...n} are i.i.d; (ii) E [||X||2E] <∞; (iii) X is

a compact subset of Rdx.

Assumption 7.2. (i) H1 = Hp,1
c (X ) and H2 = Hp,2

c for some c > 0 and p > 1/2, and thus,

A = Hp,1
c × · · · × Hp,1

c ×Hp,2
c × · · · × Hp,2

c ; (ii) there exists a measurable function p̄(·) on X

such that for any α ∈ A and for all x ∈ X , py1d1y2d2zzz2,x(α) ≥ p̄(x) and E [p̄(X)−2] <∞.

Let

H1
n ≡

{
pkn(x)

′
βn : 0 ≤ pkn(x)

′
βn ≤ 1 for all x ∈ X

}
,

H2
n ≡

{
pkn(x)

′
βn : pkn(x)

′
βn ∈ Rfor all x ∈ X

}
.

Assumption 7.3. The following conditions hold: (i) An = H1
n × · · · × H1

n ×H2
n × · · · × H2

n

, where kn/n→ 0; (ii) the smallest eigenvalue of E
[
pkn(X) · pkn(X)

′]
is bounded away from

zero uniformly in kn; (iii) there exists (πnα0)n such that ||α0 − πnα0||∞ = O (k−γn ) for some

γ > 0.

Assumption 7.4. The pathwise derivative of the copula function with respect to each depen-

dence parameter is uniformly bounded and continuous.

Assumption 7.2 defines the parameter space. The degrees of smoothness can be differ-

ent across the parameter spaces, and it is assumed to be identical for simplicity. We may

need to impose additional restrictions on the parameter space, especially for the dependence

parameters. The range of the dependence parameters, R, varies across copula functions.

For example, when we use the Gaussian copula, we need to impose that the dependence

parameters lie in [−1, 1]. Assumption 7.2(ii) holds if we observe the fitted probabilities for

all possible combinations of the values of (y, d, z) for each x ∈ X .

Assumption 7.3 defines the sieve space forA. We consider linear sieve spaces. Assumption

7.3(iii) holds under Assumption 7.2 if we choose polynomial, trigonometric, or spline sieve

spaces. For example, if (pj(·))∞j=1 is a sequence of polynomial or spline functions, then γ = p
dx

by Newey (1997).
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Assumption 7.4 imposes some smoothness of the copula function, which holds with many

copula functions, including the Gaussian copula.

Under these assumptions, we show the sieve ML estimator is consistent with respect to

|| · ||∞.

Theorem 7.1. Suppose that Assumptions 2.2–2.5 hold. If Assumptions 7.1–7.4 are satisfied,

then,

||α̂n − α0||∞
p→ 0.

We now establish the convergence rate of the sieve estimator with respect to || · ||2. For

given ε > 0, define an ε-neighborhood of α0 with respect to the consistency norm || · ||∞ as

An(ε) ≡ An ∩ A(ε), where A(ε) ≡ {α ∈ A : ||α− α0||∞ < ε}.

Assumption 7.5. ||α− α0||22 � E [l(W,α0)− l(W,α)] for all α ∈ An(ε).

Note that Assumption 7.5 is not restrictive when focusing on a neighborhood of α0. Since

we show that the sieve estimator α̂n is consistent, it suffices to consider a neighborhood of

α0. Assumption 7.5 is standard in the literature on M-estimation (see, for example, Section

12.3 of van de Geer (2000)).

The following theorem establishes the convergence rate of

Theorem 7.2. Suppose that Assumptions 2.2–2.5 and Assumptions 7.1–7.5 hold. Then,

||α̂n − α0||2 = Op

(
max

{√
kn
n
, ||πnα0 − α0||2

})
.

Let ξn ≡ supx∈X

∣∣∣∣∣∣pknj (x)
∣∣∣∣∣∣
E

. If we additionally assume ξ2
nkn/n→ 0, then

||α̂n − α0||∞ = Op

(
max

{
ξn

√
kn
n
, ||πnα0 − α0||∞

})
.

Now, we develop the asymptotic normality of functionals of the sieve estimator. While

asymptotic normality is useful enough to perform statistical inference on functionals, the
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main practical challenge is to consistently estimate the asymptotic variance. To address

this, we show that sieve likelihood ratio (LR) test statistics converge in distribution of a χ2

distribution. We adopt the results of Chen and Liao (2014), who develop a sieve inference

method that is valid regardless of whether a functional of interest is regular or irregular.8

Since one does not need to verify whether a functional of interest is regular or not, the

proposed inferential method has great practicality for empirical research.

Let

∆(W,α0) ≡ lim
τ→0

l(W,α0 + τ [α− α0])− l(W,α0)

τ

be the pathwise derivative of l(W,α) at α0 in the direction [α−α0]. Then, for any α ∈ A(ε),

||α− α0||2 ≡ −
∂E [∆(W,α0 + τ [α− α0])[α− α0]]

∂τ

∣∣∣∣∣
τ=0

defines a norm on A(ε) by the fact that α0 is the unique maximizer of L0(α) over A. Let V

be the closed linear span of A(ε)− {α0} under || · ||. Then, V is a Hilbert space under || · ||,

and its inner product is defined as

< v1, v2 >≡ −
∂E [∆(W,α0 + τ [v2])[v1]]

∂τ

∣∣∣∣∣
τ=0

for any v1, v2 ∈ V . Let α0,n ≡ arg minα∈An(ε) ||α − α0|| and Vn be the closed linear span of

An(ε) − {α0,n} under || · ||. Note that Vn is a finite-dimensional Hilbert space under || · ||.

Let f(·) : A → R be a functional on A and define the pathwise derivative of f(·) at α0 in the

direction of v = α− α0 ∈ V as

∂f(α0)

∂α
[v] ≡ ∂f(α0 + τv)

∂τ

∣∣∣∣∣
τ=0

for v ∈ V . We assume that ∂f(α0)
∂α

[·] is linear functional on V . Since Vn is a finite-dimensional

8A functional is irregular if it is not
√
n-estimable.
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Hilbert space under || · ||, there exists v∗n ∈ Vn such that

∂f(α0)

∂α
[v] =< v∗n, v >

for all v ∈ Vn and that

∂f(α0)

∂α
[v∗n] = ||v∗n||2 = sup

v∈Vn:||v||6=0

∣∣∣∂f(α0)
∂α

[v]
∣∣∣2

||v||2
<∞

by the Riesz Representation Theorem. v∗n is called the sieve Riesz representer of the linear

functional ∂f(α0)
∂α

[·]. For any v ∈ V , define

||v||sd ≡
√
V ar(∆(W,α0)[v])

as a pseudo-norm, provided it is finite. The scaled sieve Riesz representer for functional f(·)

is defined as u∗n ≡
v∗n

||v∗n||sd
.

For δ∗2,n ≡ max
{√

kn
n
, ||πnα0 − α0||2

}
and δ∗∞,n ≡ max

{
ξn

√
kn
n
, ||πnα0 − α0||∞

}
, let

δ2,n ≡ δ∗2,n·γn and δ∞,n ≡ δ∗∞,n·γn, where γn = log (log n). We assume that δ∞,n = o(1). Define

shrinking neighborhoods of α0 as follows: N0 ≡ {α ∈ A : ||α− α0||2 ≤ δn, ||α− α0||∞ ≤ δ∞,n}

and Nn ≡ N0 ∩ An.

Assumption 7.6. The following conditions hold:

(i) supα∈Nn

∣∣∣f(α)−f(α0)− ∂f(α0)
∂α

[α−α0]

∣∣∣
||v∗n||

= o
(
n−1/2

)
;

(ii) either (a) or (b) holds:

(a) ||v∗n|| ↗ ∞ and

∣∣∣ ∂f(α0)∂α
[α0,n−α0]

∣∣∣
||v∗n||

= o
(
n−1/2

)
;

(b) ||v∗n|| ↗ ||v∗|| <∞ and ||v∗ − v∗n|| × ||α0,n − α0|| = o
(
n−1/2

)
.

Assumption 7.7. The copula function is twice pathwise continuously differentiable, and all

second-order partial derivatives with respect to its arguments and dependence parameters are

uniformly bounded.
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Assumption 7.8. The second-order partial derivatives of the copula function is Hölder con-

tinuous with exponent κ ≥ 1 uniformly over Nn with respect to the supremum norm and

δκ∞,n · δ2
2,n = o (n−1).

Assumption 7.9. There exists κ2 > 0 such that limn→∞ n
−κ2/2E

[∣∣∣∆(W,α0)[u∗n]
∣∣∣2+κ2

]
→ 0.

Assumption 7.6 imposes conditions on the functional of interest, f(·). Assumption 7.6(i)

requires that the functional is well approximated by ∂f(α0)
∂α

[·]. When f is a linear functional,

there is no need to verify this condition. To see this, consider, for given y1 ∈ {0, 1}, d ∈

{0, 1}2, functional f(α) =
∫
X
∂µ2(y1,d,x)

∂x
w(x)dx, where w(·) is a nonnegative weighting function

over X such that
∫
X w(x)dx = 1. Under a set of regularity conditions (e.g., Newey (1997)),

one can show that f(α) = −
∫
µ2(y1, d, x)∂w(x)

∂x
dx and that

∣∣∣f(α)−f(α0)− ∂f(α0)
∂α

[α−α0]
∣∣∣ = 0.

When f is a nonlinear functional, one can verify Assumption 7.6(i) by using the convergence

rate of the sieve estimator (Chen et al. (2014)). Assumption 7.6(ii) restricts the bias part

of the pathwise derivative of f that is reflected by α0,n − α0. It is worth pointing out that

Assumption 7.6(ii) allows the functional of interest to be either regular or irregular. When

the functional is irregular, then ||v∗n|| ↗ ∞. There are several functionals of practical interest,

and one example is f(α) = µ2(y1, d, x) evaluated at some y1 ∈ {0, 1}, d ∈ {0, 1}2, x ∈ X .

Condition (b) of Assumption 7.6(ii) considers regular functionals (i.e., ||v∗n|| ↗ ||v∗|| < ∞)

and is identical to Assumption 4 of Chen et al. (2006) and Condition 4.1(iii) of Chen (2007).

Assumption 7.7 imposes a smoothness condition on the copula function. It is usually

satisfied with various copula functions, including the Gaussian copula. Assumption 7.8 is

similar to Assumptions 5 and 6 in Chen et al. (2006). We need to control the second-

order terms in the Taylor expansion of Ln(·) and impose some condition on the rate of

kn. Specifically, when the convergence rates of the sieve estimator are those in Theorem

7.2, one can choose kn such that ξ2
n
k2n
n

= o(1) and
√
n||πnα0 − α0||2∞ = o(1). When α0

belongs to a Hölder ball and we use spline sieve spaces, then we have ξn = O
(√

kn
)

and

||πnα0 − α0||∞ = k−γn for some γ > 0 that depends on the dimension and smoothness of the

nonparametric function. Therefore, the latter condition in Assumption 7.8 holds if k3
n/n =
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o(1) and
√
nk−2γ

n = o(1).

Assumption 7.9 is a sufficient condition for the Lyapounov’s central limit theorem. When

this assumption holds, we have 1√
n

∑n
i=1 (∆(Wi, α0)[u∗n]− E [∆(Wi, α0)[u∗n]])

d→ N(0, 1). Chen

and Liao (2014) and Chen et al. (2014) show that
√
nf(α̂n)−f(α0)

||v∗n||sd
is identical to that empirical

process up to op(1) term under a set of conditions implied by the assumptions in this paper.

Therefore, we need Assumption 7.9 to establish the asymptotic normality of the sieve plug-in

estimator of the functional.

Based on these assumptions, next theorems establish limiting distributions for the func-

tional of the sieve plug-in estimator (Theorem 7.3) and the sieve LR test statistic (Theorem

7.4).

Theorem 7.3. Suppose that Assumptions 2.2–2.5 and 7.1–7.5 hold. If Assumptions 7.6 –

7.9 are also satisfied, then,

√
n
f(α̂n)− f(α0)

||v∗n||sd
d→ N(0, 1).

Remark 7.2. When Assumption 7.6(ii) holds with (b), the functional is regular (i.e.,
√
n-

estimable). An example of this functional is the (unconditional) average dynamic treatment

effects. The plug-in estimator of f(α0), f(α̂n), may be semiparametrically efficient in this

case, based on the result in Chen et al. (2006).

We consider testing H0 : f(α0) = 0 and define the constrained sieve ML estimator α̃n

defined as

α̃n ≡ arg max
{α∈An:f(α)=0}

Ln(α).

Theorem 7.4. Suppose that the identification conditions and Assumptions 7.1–7.5 hold. If

Assumptions 7.6 – 7.9 are also satisfied and ||α̃n−α0||2 = Op

(
δ∗2,n
)
, then, under H0 : f(α0) =

0,

2n[Ln(α̂n)− Ln(α̃n)]
d→ χ2(1).
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A Proofs for the Sections on Identification (Sections

4–6)

A.1 Preliminary Lemmas and Their Proofs

For m ≥ 2, let H : Wm → [0, 1] be a m-variate continuously differentiable function that is

equal to either a m-variate CDF or “semi-survival” functions. For example, H :W2 → [0, 1]

represents either F (w1, w2), F̄ 1(w1, w2) ≡ F (w1) − F (w1, w2), or F̄ 2(w1, w2) ≡ F (w2) −

F (w1, w2), and H :W3 → [0, 1] represents either one of the following:

F (w1, w2, w3) (A.1)

F (w1, w2)− F (w1, w2, w3) (A.2)

F (w2, w3)− F (w1, w2, w3) (A.3)

F (w1, w3)− F (w1, w2, w3) (A.4)

F (w2)− F (w1, w2)− {F (w2, w3)− F (w1, w2, w3)} (A.5)

F (w3)− F (w2, w3)− {F (w1, w3)− F (w1, w2, w3)} (A.6)

F (w1)− F (w1, w3)− {F (w1, w2)− F (w1, w2, w3)} (A.7)

The functions relevant to our identification analysis are H : [0, 1]m → [0, 1] that are either

m-variate copulas or “semi-survival” copulas. Specifically, when m = 2, H(u1, u2) is one of

the following:

C(u1, u2), (A.8)

u2 − C(u1, u2), (A.9)

35



and when m = 3, H(u1, u2, u3) is either one of the following:

C(u1, u2, u3), (A.10)

C(u1, u2)− C(u1, u2, u3), (A.11)

C(u2, u3)− C(u1, u2, u3), (A.12)

u2 − C(u1, u2)− {C(u2, u3)− C(u1, u2, u3)}. (A.13)

We introduce a notion of stochastic ordering that is closely related to ≺S-ordering intro-

duced in Definition 2.1. We state the definition for m = 2 but a similar definition can be

introduced for any multivariate distributions with m ≥ 3 by focusing on a pair of arguments

of the distribution.

Definition A.1 (Strictly More SI in “Joint Distribution”). We say H̃ is strictly more

stochastically increasing in “joint distribution” than H if w∗2(w1, w2) ≡ H̃−1(w1, H(w1, w2))

is strictly increasing in w1, which is denoted as H(·, ·) ≺SJ H̃(·, ·).

The stochastic ordering is defined between two joint distributions or semi-survival func-

tions rather than conditional distributions of Definition 2.1. In the next lemma, “≺S∗” refers

to the stochastic ordering where the root is either strictly increasing or decreasing.

Lemma A.1. Under Assumption 2.4(ii), for any H(w1, w2, w3; ρ13, ρ23, ρ13) of F (w1, w2, w3; ρ13, ρ23, ρ13)

in (A.2)–(A.7), there exists an associated copula CH(·, ·; ρ) of C(·, ·; ρ) (including itself) such

that CH(·|·; ρ) ≺S∗ CH(·|·; ρ̃) for ρ < ρ̃ and

H(w1, w2, w3; ρ13, ρ23, ρ13) =

∫
IH(w3)

CH(H(w1|w̃3), H(w2|w̃3); ρ(ρ13, ρ23, ρ13))dF (w̃3)

for some interval IH(w3) ⊆ W that depends on w3 and some H(w1|w3) and H(w2|w3), each

of which is either a conditional CDF or survival function and

H(w1, w2, w3, w4; Σ) =

∫
IH(w3,w4)

CH(H(w1|w̃3, w̃4), H(w2|w̃3, w̃4); ρ(Σ))dF (w̃3, w̃4)
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for some interval IH(w3, w4) ⊆ W that depends on (w3, w4) and some H(w1|w3, w4) and

H(w2|w3, w4), each of which is either a conditional CDF or survival function.

An associated copula is introduced in Joe (1997, p. 15). In the lemma, we include the

original copula as an example of associated copulas. Other examples can be found in the

proof of this lemma.

Proof. Let W = R. Consider (A.2):

H(w1, w2, w3) ≡ F (w1, w2)− F (w1, w2, w3)

=

∫ ∞
C (F (w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3)

−
∫ w3

C (F (w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3)

=

∫ ∞
w3

C (F (w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3),

where the second equality is by Assumption 2.4(ii) with w3 →∞.

Next, consider (A.3):

H(w1, w2, w3) ≡ F (w2, w3)− F (w1, w2, w3)

=

∫ w3

F (w2|w̃3)dF (w̃3)

−
∫ w3

C (F (w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3)

=

∫ w3

C̄ (H(w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3),

where the second equality is by Assumption 2.4(ii) and

C̄(u, v) = v − C(1− u, v)

is an associated copula of C(·, ·) and H(w1|w3) ≡ 1 − F (w1|w3) is the survival function.

Note that C̄(u|v) = 1− C(1− u|v). Let C̄(ψ(u, v)|v; ρ̃) = C̄(u|v; ρ) (ρ̃ > ρ) or equivalently,

C(1−ψ(u, v)|v; ρ̃) = C(1−u|v; ρ). Then, 1−ψ(u, v) is strictly increasing in v as C(1−u|v; ρ)

37



satisfies ≺S-ordering in ρ, or ψ(u, v) is strictly decreasing in v.

Symmetrically, consider (A.4):

H(w1, w2, w3) ≡ F (w1, w3)− F (w1, w2, w3)

=

∫ w3

F (w1|w̃3)dF (w̃3)

−
∫ w3

C (F (w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3)

=

∫ w3

C̄ (F (w1|w̃3), H(w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3),

where the second equality is by Assumption 2.4(ii) and

¯̄C(u, v) = u− C(u, 1− v)

is another associated copula of C(·, ·) and H(w2|w3) ≡ 1−F (w2|w3) is the survival function.

Note that ¯̄C(u|v) = C(u|1 − v). Let ¯̄C(ψ(u, v)|v; ρ̃) = ¯̄C(u|v; ρ) (ρ̃ > ρ) or equivalently,

C(ψ(u, v)|1−v; ρ̃) = C(u|1−v; ρ). Then, ψ(u, v) is strictly increasing in 1−v as C(u|1−v; ρ)

satisfies ≺S-ordering in ρ, or ψ(u, v) is strictly decreasing in v.

Finally, consider (A.5)

H(w1, w2, w3) ≡ F (w2)− F (w1, w2)− {F (w2, w3)− F (w1, w2, w3)}

=

∫ ∞
F (w2|w̃3)− C (F (w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3)

−
∫ w3

C̄ (H(w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3)

=

∫ ∞
C̄ (H(w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3)

−
∫ w3

C̄ (H(w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3)

=

∫ ∞
w3

C̄ (H(w1|w̃3), F (w2|w̃3); ρ(ρ13, ρ23, ρ13)) dF (w̃3).

The remaining (A.6)–(A.7) are symmetric to (A.5), so omitted. We omit the proof for the

4-variate CDFs.
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To prove Lemma 4.1, we state a necessary lemma and prove it first. The following

condition is implied by Assumption 2.5.

Assumption 2.4∗. The copula C (v1, v2, u1, u2; Σ) in Assumption 2.4 and its semi-survival

functions and all their margins (i.e., (A.8)–(A.13)) satisfy the following conditions:

(i) H(v1, u1; ρv1u1) ≺SJ H(v1, u1; ρ̃v1u1) for any ρv1u1 < ρ̃v1u1;

(ii) H(v1, v2, u1; ρv1v2 , ρv1u1 , ρv2u1) ≺SJ H(v1, v2, u1; ρ̃v1v2 , ρv1u1 , ρv2u1) for any ρv1v2 < ρ̃v1v2;

(iii) H(v1, v2, u1, u2; Σ) ≺SJ H(v1, v2, u1, u2; Σ̃) for any ρv2u2 < ρ̃v2u2 where ρv2u2 and ρ̃v2u2

belong to Σ and Σ̃, respectively.

Lemma A.2. Assumption 2.5 implies Assumption 2.4∗.

Proof. The sufficiency of Assumption 2.5(i) for Assumption 2.4∗(i) is shown in Lemma A.1

of Han and Vytlacil (2017). We prove the rest of the claims. Note that Lemma A.1 of Han

and Vytlacil (2017) cannot be extended to multivariate cases and thus we need a different

proof strategy.

We prove the sufficiency of Assumption 2.5(ii)–(iii) for Assumption 2.4∗(ii)–(iii). First, by

Assumption 2.5(ii) and Lemma 0.1, any semi-survival function of C (u1, u2, u3; ρ12, ρ13, ρ23)

(i.e., each of (A.9)–(A.13)) satisfies

H(u1, u2, u3; ρ12, ρ13, ρ23) =

∫
IH(u3)

CH(H(u1|u), H(u2|u); ρ(ρ12, ρ13, ρ23))du

for some interval IH(u3) ⊆ [0, 1] and H(u1|u3) and H(u2|u3), each of which is either a

conditional copula or a survival function.

Henceforth in the proof, we suppress ρ23 and ρ13 for simplicity. For given u3 and ρ̃12 > ρ12

being the dependence parameters for (u1, u2), consider

H (u∗1, u2, u3; ρ̃12) = H (u1, u2, u3; ρ12) , (A.14)

where u∗1 ≡ u∗1(u1, u2, u3; ρ̃12, ρ12) is the root of the equation. To prove Assumption 2.4∗(ii),

we want to show that u∗1 is strictly increasing in u2. Under Assumption 2.5(ii), (A.14) can
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be expressed as

∫
IH(u3)

CH
(
H1|3(u∗1|u), H2|3(u2|u); ρ̃

)
du =

∫
IH(u3)

CH
(
H1|3(u1|u), H2|3(u2|u); ρ

)
du, (A.15)

where the outer copula CH(·, ·) satisfies the ≺S∗-ordering and, under Assumption 2.5(iii),

ρ̃ ≡ ρ(ρ̃12) and ρ ≡ ρ(ρ12) are strictly increasing in ρ12 and thus ρ̃ > ρ. Using the notion of

functional differentiation (Gelfand et al. (2000)), differentiating (A.15) w.r.t. H2|3(u2|ū) for

fixed ū yields

CH,2
(
H1|3(u∗1|ū), H2|3(u2|ū); ρ̃

)
= CH,2

(
H1|3(u1|ū), H2|3(u2|ū); ρ

)
or equivalently,

CH
(
H1|3(u∗1|ū)

∣∣H2|3(u2|ū); ρ̃
)

= CH
(
H1|3(u1|ū)

∣∣H2|3(u2|ū); ρ
)
. (A.16)

The functional derivatives are well-defined because the copulas are continuously differentiable

and they are bounded functions on the compact support of [0, 1]. Let

CH

(
u†1|H2|3(u2|ū); ρ̃

)
= CH

(
H1|3(u1|ū)|H2|3(u2|ū); ρ

)
, (A.17)

where u†1 ≡ u†1(H1|3(u1|ū), H2|3(u2|ū); ρ̃, ρ) is the root of the equation. This root is strictly

monotonic in H2|3 because ρ̃ > ρ and the outer conditional copula CH(·|u2; ρ) satisfies the

≺S∗-ordering as mentioned above. Since the outer conditional copula CH(·|u2; ρ) is strictly

increasing for any ρ, from (A.16) and (A.17), we then have

H1|3(u∗1|ū) = u†1(H1|3(u1|ū), H2|3(u2|ū); ρ̃, ρ).
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By differentiating both sides w.r.t. u2 yields

h13(u∗1, ū)
∂u∗1
∂u2

=
∂u†1
∂H2|3

·
∂H2|3(u2|ū)

∂u2

=
∂u†1
∂H2|3

· h23(u2, ū),

where hij is the cross derivative of H(ui, uj). In the case of H(u1, u2, u3) = C(u1, u2, u3),

hij is the copula density with H(ui|uj) = C(ui|uj). In this case,
∂u†1
∂H2|3

> 0 and hij’s are

non-negative, and therefore we have
∂u∗1
∂u2

> 0. In other cases, h13 and h23 has opposite signs

and
∂u†1
∂H2|3

< 0 (e.g., in the case of (A.3), H1|3(u1|u3) = 1 − C(u1|u3) and thus h13 = −c13,

while H2|3 = C2|3 and thus h23 = c23), and therefore again, we have
∂u∗1
∂u2

> 0. This proves the

claim for trivariate copulas. We omit the proof for 4-variate copulas.

A.2 Proof of Lemma 4.1

We prove the case whereH is the original copula. Let ρ′ < ρ′′ and v∗1 ≡ v∗1(v1, v2, u1; ρ′′, ρ′, ρv1u1)

be the root of

H(v∗1, v2, u1; ρ′′, ρv1u1) = H(v1, v2, u1; ρ′, ρv1u1). (A.18)

Note that
∂v∗1
∂v2

> 0 by Assumption 2.4∗(ii), which in turn holds by Assumption 2.5 and

Lemma A.2. For notational simplicity, we henceforth drop the argument ρv1u1 from v∗1 and

the copulas. Differentiating (A.18) w.r.t. v2 yields

H1(v∗1, v2, u1; ρ′′)
∂v∗1
∂v2

+H2(v∗1, v2, u1; ρ′′) = H2(v1, v2, u1; ρ′).

Therefore,
∂v∗1
∂v2

> 0 is equivalent to that

H2(v1, v2, u1; ρ′)−H2(v∗1, v2, u1; ρ′′) > 0, (A.19)
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because C1(v∗1, v2, u1; ρ′′) = C(v2, u1|v∗1; ρ′′) > 0. From equation (A.18), v∗1 = v∗1(v1, v2, u1; ρ′′, ρ′)→

v1 as ρ′ → ρ′′ (while ρ′ < ρ′′). Let v∗1(ρ) ≡ v∗1(v1, v2, u1; ρ, ρ′). Then, (A.19) is also equivalent

to

∂

∂ρ
C2(v∗1(ρ), v2, u1; ρ) < 0,

or equivalently

C21(v∗1(ρ), v2, u1; ρ)
∂v∗1(ρ)

∂ρ
+ C2ρ(v

∗
1(ρ), v2, u1; ρ) < 0. (A.20)

Also, by differentiating (A.18) w.r.t. ρ′′ and letting ρ′′ = ρ,

∂v∗1(ρ)

∂ρ
= −Cρ(v

∗
1(ρ), v2, u1; ρ)

C1(v∗1(ρ), v2, u1; ρ)
. (A.21)

By combining (A.20) and (A.21), we have

C2ρ(v
∗
1(ρ), v2, u1; ρ)C1(v∗1(ρ), v2, u1; ρ) < C21(v∗1(ρ), v2, u1; ρ)Cρ(v

∗
1, v2, u1; ρ). (A.22)

Finally, note that

∂

∂v2

(
Cρ(v1, v2, u1; ρ)

C1(v1, v2, u1; ρ)

)
=
C2ρ(v1, v2, u1; ρ)C1(v1, v2, u1; ρ)− Cρ(v1, v2, u1; ρ)C21(v1, v2, u1; ρ)

C1(v1, v2, u1; ρ)2
,

which is negative by (A.22). This completes the proof when H is the original copula. The

other cases can be symmetrically shown. The remaining proof with 4-variate copula is anal-

ogous so omitted.
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B Proofs for the Section on Estimation (Section 7)

B.1 Proof of Theorem 7.1

Proof. We verify the sufficient conditions of Proposition B.1 in Han and Lee (2019). Con-

dition (i) of Proposition B.1 is satisfied under the identification conditions and Assumption

7.2 with Q0(α) = L0(α) ≡ E [Ln(α)]. Conditions (ii), (iii), and (iv) are satisfied by the same

logic of the proof of Theorem 4.1 in Han and Lee (2019). We thus turn to verifying condition

(v) in Proposition B.1. Let δ > 0 . For any α, α̃ ∈ An such that ||α− α̃||∞ ≤ δ, we have, by

the mean value theorem, Theorem 2.10.7 in Nelsen (2006), and Assumption 7.4,

∣∣∣l(W,α)− l(W, α̃)| . U(W )||α− α̃||∞ ≤ U(W )δ, (B.1)

where E [U(W )2] < ∞. Therefore, the second condition of Condition 3.5M in Chen (2007)

is satisfied with s = 1. Finally, by Lemma 2.5 in van de Geer (2000), we have

logN (δ,An, || · ||∞) = kn log

(
1 +

C

δ

)

for some finite C > 0. By Assumption 7.3, logN (δ,An, || · ||∞) = o(n). In all, condition (v)

of Proposition B.1 in Han and Lee (2019) is met, and thus, we have ||α̂n−α0||∞ = op(1).

B.2 Proof of Theorem 7.2

Proof. We verify the conditions of Theorem 3.2 in Chen (2007). For any α ∈ An(ε), we have

V ar (l(Wi, α)− l(Wi, α0)) ≤ E
[
(l(Wi, α)− l(Wi, α0))2]

. ||α− α0||22 ≤ Cε2

for some C > 0 under the imposed assumptions. Therefore, Condition 3.7 in Chen (2007)

is satisfied. Since ||α − α0||2 ≤ ||α − α0||∞, Condition 3.8 in Chen (2007) is also met with
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s = 1 by equation (B.1). Lastly, we follow the proof of Theorem 4.2 in Han and Lee (2019)

to calculate the bracketing number, and obtain that

||α̂n − α0||2 = Op

(
max

{√
kn
n
, ||πnα0 − α0||2

})

by applying Theorem 3.2 in Chen (2007).

The proof of the convergence rate with respect to || · ||∞ relies on equation (2.4) in Chen

and Liao (2014). Specifically, we have

||α̂n − α0||∞ ≤ ||α̂n − πnα0||∞ + ||πnα0 − α0||∞

≤ ||α̂n − πnα0||∞
||α̂n − πnα0||2

· ||α̂n − πnα0||2 + ||πnα0 − α0||∞

≤ sup
{α∈An:||α−πnα0||2 6=0}

||α− πnα0||∞
||α− πnα0||2

·Op

(√
kn
n

)
+ ||πnα0 − α0||∞

. sup
{β∈Rkn :pkn (x)′β∈An,β 6=βkn}

||pkn(x)||E · ||β − βkn||E
||β − βkn||E

Op

(√
kn
n

)
+ ||πnα0 − α0||∞

. ξn ·Op

(√
kn
n

)
+ ||πnα0 − α0||∞ = Op

(
max

{
ξn

√
kn
n
, ||πnα0 − α0||∞

})
.

B.3 Proof of Theorem 7.3

Let µn (g(W )) ≡ 1
n

∑n
i (g(Wi)− E[g(Zi)]) be the centered empirical process indexed by func-

tion g. We also define r(W,α)[v1, v2] ≡ limτ→0
∆(W,α+τv2)[v1]−∆(W,α)[v1]

τ
for given v1, v2 ∈ V and

α ∈ A.

Lemma B.1. Under the conditions imposed in Theorem 7.3, Assumption 2.2 (ii) in Chen

and Liao (2014) is satisfied.

Proof. We verify Assumption 2.2 (ii)’ in Chen and Liao (2014) by using Lemma 4.2 in Chen
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(2007). Note that for any α, α̃ ∈ Nn, by Assumption 7.7 and the Cauchy-Schwarz inequality,

∣∣∣∆(W,α)[u∗n]−∆(W, α̃)[u∗n]
∣∣∣2 =

∣∣∣r(W, ᾱ)[α− α̃, u∗n]|
∣∣∣2

≤ C· < α− α̃, u∗n >2
E

≤ C · ||α− α̃||2E · ||u∗n||2E

for some C > 0, where ᾱ lies between α and α̃ w.p.a.1. Therefore,

sup
α,α̃∈Nn

∣∣∣∆(W,α)[u∗n]−∆(W, α̃)[u∗n]
∣∣∣2 . δ2

∞,n · ||u∗n||2E,

which implies that

E

[
sup

α,α̃∈Nn

∣∣∣∆(W,α)[u∗n]−∆(W, α̃)[u∗n]
∣∣∣2] . δ2

∞,n

by that ||u∗n|| is bounded and that ||u∗n||2 . ||u∗n||. Also, it is easy to show that

∫ ∞
0

√
logN (ε,An, || · ||2)dε <∞

by Lemma 2.5 in van de Geer (2000). As a result, all conditions for Lemma 4.2 in Chen

(2007) are met, and thus,

sup
α∈Nn

µn (∆(W,α)[u∗n]−∆(Z, α0)[u∗n]) = op
(
n−1/2

)
by Lemma 4.2 in Chen (2007), which means that Assumption 2.2 (ii)’ is satisfied.

Lemma B.2. Under the conditions imposed in Theorem 7.3, Assumption 2.2 (iii) in Chen

and Liao (2014) is satisfied.

Proof. We verify Assumption 2.2(iii)” in Chen and Liao (2014). By the Taylor expansion,
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we have

E [l(W,α0)− l(W,α)]

=E

[
−
(

∆(W,α0)[α− α0] +
1

2
r(W, α̃)[α− α0, α− α0]

)]
=− 1

2
E [r(W,α0)[α− α0, α− α0]] +

1

2
E [r(W,α0)[α− α0, α− α0]− r(W, α̃)[α− α0, α− α0]]

=
1

2
||α− α0||2 +

1

2
E [r(W,α0)[α− α0, α− α0]− r(W, α̃)[α− α0, α− α0]] ,

where α̃ lies between α and α0. It follows that

sup
α∈Nn

∣∣∣∣∣E [l(W,α0)− l(W,α)]− ||α− α0||2

2

∣∣∣∣∣
= sup

α∈Nn

∣∣∣∣∣12E [r(W,α0)[α− α0, α− α0]− r(W, α̃)[α− α0, α− α0]]

∣∣∣∣∣
≤ sup

α∈Nn

1

2
E
[∣∣∣r(W,α0)[α− α0, α− α0]− r(W, α̃)[α− α0, α− α0]

∣∣∣]
.δ2

2,n · E
[

sup
α∈Nn

∣∣∣∣∣∣∂2C(α)

∂α∂α′
− ∂2C(α0)

∂α∂α′

∣∣∣∣∣∣] . δ2
2,nδ

γ
∞,n = o

(
n−1
)

by Assumption 7.8. Therefore, Assumption 2.2(iii)” in Chen and Liao (2014) is satisfied,

which implies that Assumption 2.2(iii) in Chen and Liao (2014) holds.

Proof of Theorem 7.3

Proof. Assumption 7.6 is the same as Assumption 2.1 in Chen and Liao (2014). By Lemmas

B.1 and B.2, Assumption 2.2 in Chen and Liao (2014) is satisfied. Assumption 7.9 is a

sufficient condition for Lyapounov’s central limit theorem, and thus, Assumption 2.3 in Chen

and Liao (2014) is also met. By Lemma 2.1 in Chen and Liao (2014) , we have

√
n
f(α̂n)− f(α0)

||v∗n||sd
d→ N(0, 1).
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B.4 Proof of Theorem 7.4

Let α∗(α) ≡ α± < u∗n, α̂n − α0 > u∗n and H(α) be the matrix of the second-order partial

derivatives of the copula function with respect to its arguments and dependence parameters,

evaluated at α.

Lemma B.3. Under the conditions imposed in Theorem 7.4, Assumption 4.1(ii)-(a) in Chen

and Liao (2014) is satisfied.

Proof. We use Theorem 2.14.2 in Van der Vaart and Wellner (1996) to verify Assumption

4.1(ii)-(a) in Chen and Liao (2014). Define

Gn ≡ {± < α̂n − α0, u
∗
n > · (∆(W,α)[u∗n]−∆(W,α0)[u∗n]) : α ∈ Nn} .

Assumption 4.1(ii)-(a) in Chen and Liao (2014) is implied if supg∈Gn µn (g) = op (n−1). Note

that g ∈ Gn, we have

|g| ≤

∣∣∣∣∣ < α̂n − α0, u
∗
n >

∣∣∣∣∣ ·
∣∣∣∣∣ (∆(W,α)[u∗n]−∆(W,α0)[u∗n])

∣∣∣∣∣
≤ ||α̂n − α0|| · ||u∗n|| ·

∣∣∣∣∣ (∆(W,α)[u∗n]−∆(W,α0)[u∗n])

∣∣∣∣∣
= ||α̂n − α0|| ·

∣∣∣∣∣r(W, α̃)[α− α0, u
∗
n]

∣∣∣∣∣
≤ C · ||α̂n − α0|| · ||α− α0||E · ||u∗n||E

≤ C · ||α̂n − α0|| · ||α− α0||∞

≤ C · ||α̂n − α0|| · δ∞,n ≡ Gn

where the second inequality holds by the Cauchy-Schwarz inequality, the third line holds for

some α̃ between α and α0 by the Taylor expansion, the fourth line holds by Assumption 7.7,

and the last line holds by that α ∈ Nn. Therefore, Gn is an envelope for Gn.

We calculate the bracketing integral of Gn, Jn(1,Gn, || · ||2).9 Since the class of functions,

9Jn(δ,Gn, || · ||2) ≡
∫ δ
0

√
1 + logN[](ε||Gn||2,Gn, || · ||2)dε
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Gn, is Lipschitz in α, we have

N[](ε||Gn||2,Gn, || · ||2) ≤ N(ε/2,Nn, || · ||2)

by Theorem 2.7.11 in Van der Vaart and Wellner (1996). Applying Lemma 2.5 in van de

Geer (2000) results in that

logN(ε/2,Nn, || · ||2) ≤ kn · log

(
1 +

2 · δ2,n

ε

)
.

Therefore,

√
1 + logN[](ε||Gn||2,Gn, || · ||2) .

√
kn · log

(
1 +

2 · δ2,n

ε

)
.
√
kn · δ2,n · ε−1/2,

and we have

Jn(1,Gn, || · ||2) .
√
kn · δ2,n.

Theorem 2.14.2 in Van der Vaart and Wellner (1996) implies that

sup
α∈Nn

µn (g(α)) .
1√
n

√
kn · δ2,n · ||Gn||2

.

√
kn
n
δ2,nδ∞,n,

and this is o (n−1) under Assumption 7.8. Therefore, Assumption 4.1.(ii)-(a) in Chen and

Liao (2014) is satisfied.

Lemma B.4. Under the conditions imposed in Theorem 7.4, Assumption 4.1(ii)-(b) in Chen

and Liao (2014) is satisfied.
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Proof. We first note that for any α ∈ Nn, α∗(α) ∈ Nn w.p.a.1. Pick any α ∈ Nn. Then,

||α∗(α)− α0||2 ≤ ||α− α0||2 + || < α̂n − α0, u
∗
n > u∗n||2

≤ δ2,n + | < α̂n − α0, u
∗
n > | · ||u∗n||2

≤ δ2,n + ||α̂n − α0|| · ||u∗n|| · ||u∗n||2

= δ2,n + op(1).

We also have

E [l(W,α)− l(W,α∗(α))]

=
1

2
E [r(W, α̃)[α− α0, α− α0]]− 1

2
E [r(W, α̃∗)[α∗(α)− α0, α

∗(α)− α0]]

=− 1

2
||α− α0||2 +

1

2
||α∗(α)− α0||2 +

1

2
E [r(W, α̃)[α− α0, α− α0]− r(W,α0)[α− α0, α− α0]]

− 1

2
E [r(W, α̃∗)[α∗(α)− α0, α

∗(α)− α0]− r(W,α0)[α∗(α)− α0, α
∗(α)− α0]] ,

and thus, it is enough to show that

E [r(W, α̃)[α− α0, α− α0]− r(W,α0)[α− α0, α− α0]]

− E [r(W, α̃∗)[α∗(α)− α0, α
∗(α)− α0]− r(W,α0)[α∗(α)− α0, α

∗(α)− α0]] = o
(
n−1
)
.

Since we have

∣∣∣r(W, α̃)[α− α0, α− α0]− r(W,α0)[α− α0, α− α0]
∣∣∣

≤||α− α0||2E ·
∣∣∣∣∣∣H(α̃)−H(α0)

∣∣∣∣∣∣
.||α− α0||2E · ||α̃− α0||κE

.||α− α0||2E · ||α̃− α0||κ∞,
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it follows that

E [r(W, α̃)[α− α0, α− α0]− r(W,α0)[α− α0, α− α0]] . δ2
2,n · δκ∞,n.

By Assumption 7.8, δ2
2,n · δκ∞,n = o (n−1); and therefore, Assumption 4.1 (ii)-(b) in Chen and

Liao (2014) holds.

Proof of Theorem 7.4

Proof. Since the objective function in (7.1) is a sample log-likelihood function, we have

||v∗n|| = ||v∗n||sd by the information equality. By Lemmas (B.3) and (B.4) and Assumption

(7.9), Assumption 4.1 in Chen and Liao (2014) is satisfied. In the proof of Theorem (7.3),

we have already shown that under the conditions imposed in Theorem 7.4, Assumption 2.2

in Chen and Liao (2014) is satisfied. By Theorem 4.1 in Chen and Liao (2014), we have

2n[Ln(α̂n)− Ln(α̃n)]
d→ χ2(1).
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