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Abstract

In this paper, we explore optimal treatment allocation policies that target distribu-

tional welfare. Most literature on treatment choice has considered utilitarian welfare

based on the conditional average treatment effect (ATE). While average welfare is intu-

itive, it may yield undesirable allocations especially when individuals are heterogeneous

(e.g., with outliers)—the very reason individualized treatments were introduced in the

first place. This observation motivates us to propose an optimal policy that allocates

the treatment based on the conditional quantile of individual treatment effects (QoTE).

Depending on the choice of the quantile probability, this criterion can accommodate a

policymaker who is either prudent or negligent. The challenge of identifying the QoTE

lies in its requirement for knowledge of the joint distribution of the counterfactual out-

comes, which is generally hard to recover even with experimental data. Therefore, we

introduce minimax policies that are robust to model uncertainty. A range of identifying

assumptions can be used to yield more informative policies. For both stochastic and
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deterministic policies, we establish the asymptotic bound on the regret of implementing

the proposed policies. In simulations and two empirical applications, we compare opti-

mal decisions based on the QoTE with decisions based on other criteria. The framework

can be generalized to any setting where welfare is defined as a functional of the joint

distribution of the potential outcomes.

JEL Numbers: C14, C31, C54.

Keywords: Treatment regime, treatment rule, individualized treatment, distributional

treatment effects, quantile treatment effects, partial identification, sensitivity analysis.

1 Introduction

Individuals are heterogeneous, so are their responses to treatments or programs. When

designing policies (e.g., rules of allocating treatments or programs), it is important to reflect

the heterogeneity of individual treatment effects. A policymaker (PM), or equivalently an

analyst, would devise a policy to achieve a specific objective (e.g., welfare). Depending on

how the PM aggregates individual gains, her objective can be viewed as either utilitarian

or non-utilitarian. A utilitarian PM would consider welfare that takes the sum or average

of individual gains to ensure the greatest benefits for the greatest number, whereas a non-

utilitarian (e.g., prioritarian, maximin) PM would prioritize specific groups of individuals.

The utilitarian objective has been the most widely-used criterion in the literature of treatment

allocations and policy learning (e.g., Manski (2004); see below for a further review). However,

there may be settings where the utilitarian goal is less sensible. For example, the target

population may exhibit skewed heterogeneity (e.g., outliers). As another example, the PM

may want to target a vulnerable population or privileged individuals, or a certain share of

benefited individuals.1 The purpose of this paper is to explore objectives of a (non-utilitarian)

PM who is concerned with certain aspects of the distribution (e.g., tails) of treatment effects

or who has political incentives and thus makes decisions influenced by vote shares.

1The possibility of non-utilitarian welfare is also briefly mentioned in Manski (2004).

2



In this paper, we develop a policy learning framework that concerns distributional wel-

fare. A policy is defined as a mapping from individuals’ observed characteristics to either

a deterministic or stochastic decision of treatment allocation. Intuitively, the knowledge of

individual treatment effects conditional on characteristics plays a crucial role in learning such

a policy. We propose an objective function that is formulated based on the conditional quan-

tile of individual treatment effects (QoTE). This objective function is robust to outliers of

treatment effects and, more importantly, can reflect the PM’s level of prudence toward the

target population. As quantifying the uncertainty of allocation decisions is intrinsically dif-

ficult (e.g., Chen et al. (2023)), the ability to adjust the level of prudence can be practically

valuable to the PM.

Suppose the PM employs the utilitarian welfare, which can be written as a function of the

conditional average treatment effect (ATE). If the policy class is unconstrained, it is optimal

for the utilitarian PM to treat each subgroup (defined by observed characteristics) whenever

their ATE is positive. Suppose that this PM faces a target subgroup, say black females, whose

distribution of treatment effects exhibits that a small share of individuals enjoys positive

treatment effects that dominate the negative effects of the remaining majority. If the resulting

ATE is positive, then the PM would treat all black females, harming the majority. The

objective function based on the QoTE with the quantile probability τ = 0.5 (i.e., the median

of treatment effects) would not suffer from this sensitivity to outliers. Moreover, the PM

can choose the quantile probability τ (i.e., the rank in individual treatment effects) to set

a reference group. A large τ corresponds to a PM who is willing to focus on privileged

individuals in each subgroup, ignoring the majority of less advantaged, thus being a negligent

PM. A small τ corresponds to a PM who is concerned with the disadvantaged, treating each

subgroup only if most benefit from the treatment, thus being a prudent PM. Relatedly, we

show that the PM equipped with the QoTE can be interpreted as being concerned with vote

shares when each individual casts a vote whenever he or she experiences a positive gain from

the treatment.

An alternative objective function that can be robust to certain outliers is the one based
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on the conditional quantile treatment effect (QTE) which contrasts the quantiles of treated

and untreated outcomes. We argue that this quantity may not be an appropriate basis

for individualized treatment decisions because an individual represented by the quantile of

treated outcomes is not necessarily the same individual represented by the same quantile of

untreated outcomes. On the other hand, the QoTE by definition captures an individual with

a specific rank in gains. Moreover, as shown later, there is no clear interpretation of prudence

when the PM’s criterion is based on the QTE.

Despite the desirable properties of the PM’s objective function constructed from the

QoTE, the challenge is that the QoTE is not generally point-identified even when the PM

has access to experimental data. This is due to the fact that the joint distribution of counter-

factual outcomes is involved in the definition of the QoTE. We therefore propose a minimax

criterion that is robust to model ambiguity. In particular, we propose to minimize the worst-

case regret calculated over the class of joint distributions of counterfactual outcomes that

are compatible with the data and identifying assumptions. We then show that a range of

identifying assumptions that can be imposed to tighten the identified set of the QoTE, some-

times to a singleton, leading to more informative policies. These assumptions can be imposed

by practitioners depending on their specific settings. For some assumptions, bounds on the

QoTE may not have a closed-form expression. In this case, an optimization algorithm can

be used to compute the bounds. By using a Bernstein approximation, we show how the

optimization problem becomes a simple linear programming.

We establish theoretical properties of the proposed minimax policy by providing asymp-

totic bounds on the regret of implementing the estimated policy. First, when the policy

class is unconstrained, we show that the estimated policy is consistent if either the bounds

on the QoTE are sign-determining or the QoTE is point-identified. Otherwise, the leading

term of the regret bound has a magnitude that depends on the relative location of zero in

the QoTE bounds. It is important to allow the policy class to be constrained as the PM

may prefer a parsimonious policy or face institutional or budget constraints. In this case of

constrained policy classes, we propose to use the machine learning (ML) technique of the
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outcome-weighting framework with a surrogate loss (Zhao et al. (2012)). We then show that

the ML-estimated policy is consistent and characterize the rate in terms of approximation

and estimation errors. We provide the theory for both stochastic and deterministic policies.

Through numerical exercises, we show how the treatment allocations can differ across welfare

criteria especially when the QoTE is partially identified and when one is preferred over the

others. We find that the correct classification rate tends to be high when the welfare criterion

of the estimated policy matches that of the population policy.

In this paper, we consider empirical applications in two well-known randomized control

trials in medicine and economics . The first application concerns the allocation of a diagnostic

procedure for critically ill patients using data from the Study to Understand Prognoses and

Preferences for Outcomes and Risks of Treatments (Hirano and Imbens (2001)). The second

application examines the allocation of job training using data from the US National Job

Training Partnership Act (Bloom et al. (1997)). In both applications, a common finding is

that there exists substantial heterogeneity in the distributional treatment effects and thus in

the corresponding allocation decisions based on the QoTE. To deliver the main messages of

this paper, we show in the space of covariates how the allocation decisions take place (see

Figures 2–3 and 5–6 below). As expected, the allocation becomes more aggressive as the

quantile probability τ increases. We compare this result with the decisions based on the

QTE and ATE. The QTE decisions do not exhibit the change in the degree of prudence in τ .

Comparing the ATE decisions with the QoTE decisions with τ = 0.5, we can inspect whether

outliers are problematic in calculating the ATE decision in these data sets. In this sense, we

view the QoTE decisions as a means of a robustness check for the ATE decisions prevalent

in the literature.

The policy learning framework of this paper can be generalized to any setting where

welfare is defined as a functional of the joint distribution of potential outcomes. Towards the

end of the paper, we introduce a general framework and propose other examples of welfare

criteria that may be interest a non-utilitarian PM. These include criteria targeting individuals

who are either worst off in the counterfactual baseline or worst-affected by the treatment.
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1.1 Related Literature

Learning optimal treatment regimes has received considerable interest in the past few years

across multiple disciplines including computer science (Dud́ık et al., 2011), econometrics

(Manski, 2004; Hirano and Porter, 2009; Stoye, 2009; Kitagawa and Tetenov, 2018; Athey and

Wager, 2021; Mbakop and Tabord-Meehan, 2021; Ida et al., 2022), and statistics (Murphy,

2003; Kosorok and Moodie, 2015; Kosorok and Laber, 2019; Tsiatis et al., 2019; Jiang et al.,

2019). In statistics, existing methods for learning optimal treatment regimes are mostly

through either Q-learning (Watkins and Dayan, 1992; Qian and Murphy, 2011) or A-learning

(Murphy, 2003; Robins, 2004; Shi et al., 2018). Alternative approaches have emerged from

a classification perspective (Zhao et al., 2012; Zhang et al., 2012; Rubin and van der Laan,

2012), which has proven more robust to model misspecification in some settings.

Recently, there is a growing literature on learning optimal treatment allocations that aims

to relax the unconfoundedness assumption. Within this literature, a strand of work considers

cases where the welfare and optimal treatment regime is point-identified, that is, the treat-

ment decision is free from ambiguity given the observed data. Cui and Tchetgen Tchetgen

(2021b); Qiu et al. (2021) consider instrumental variable (IV) approaches under a point iden-

tification and Han (2021); Cui and Tchetgen Tchetgen (2021a) consider IV methods under

a sign identification. Kallus et al. (2021); Qi et al. (2023a); Shen and Cui (2023) consider

optimal policy learning under the proximal causal inference framework. Another strand of

work considers robust policy learning under ambiguity. Kallus and Zhou (2021) propose to

learn an optimal policy in the presence of partially identified treatment effects under a sen-

sitivity model. Pu and Zhang (2021) consider a minimax regret policy for IV models under

partial identification. Cui (2021) and D’Adamo (2021) consider a variety of decision rules in

general settings where treatment effects are partially identified. Stoye (2012); Yata (2021)

develop finite-sample minimax regret rules under partial identification of welfare. Moreover,

Han (2023) proposes optimal dynamic treatment regimes through a partial welfare ordering

when the sequential randomization assumption is violated. Policy learning under ambiguity
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is not limited to confounded settings. There are other settings of robust decisions under

ambiguity, for example, when the treatment positivity assumption is violated (Ben-Michael

et al., 2021), when data sets are aggregated in meta analyses (Ishihara and Kitagawa, 2021)

and when the target population is shifted from the experiment population (Adjaho and

Christensen, 2022). The present paper contributes to this literature of model ambiguity by

considering a distributional welfare that is partially identified.

There is also work focused on policy learning based on distributional properties under

point identification. Leqi and Kennedy (2021) consider the QTE as a criterion and Qi et al.

(2023b) consider maximizing the average outcomes that are below a certain quantile. Wang

et al. (2018); Linn et al. (2017) consider maximizing the quantile of global welfare, which

can be viewed as a special case of Kitagawa and Tetenov (2021). The latter study considers

estimating the optimal treatment allocation based on individual characteristics when the ob-

jective is to maximize an equality-minded rank-dependent welfare function, which essentially

puts higher weights on individuals with lower-ranked outcomes. Our work complements this

line of literature by introducing a different type of distributional welfare using the distribution

of treatment effects and proposing decision-making under ambiguity. Further comparisons to

this line of work are made in Section 2. Finally, Manski and Tetenov (2023); Kitagawa et al.

(2023) consider a distribution or nonlinear function of regret and establish admissible treat-

ment rules within that framework. Although our welfare has distributional aspects, when

showing the theoretical guarantee of the estimated rules, we use the standard the notion of

the (mean) regret.

1.2 Organization of the Paper

The paper is organized as follows. The next section formally introduces our welfare criterion

and compare it with criteria previously considered in the literature. Then the minimax

framework is proposed. Section 3 lists a menu of identifying assumptions that can be used

to narrow the bounds on the QoTE. Section 4 presents the theoretical properties of the
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estimated policies for constrained and unconstrained policy classes. Section 5 discusses how

to systematically calculate the bounds on the QoTE using linear programming. Section 6

presents the two empirical applications. Finally, Section 7 concludes the paper by generalizing

the paper’s framework to other related non-utilitarian welfare criteria. In the Appendix,

Section A contains numerical exercises. Section B further discusses stochastic rules and

Section C contains proofs.

2 Treatment Rules and Distributional Welfare

Let Y ∈ Y be the outcome, X ∈ X be covariates, and D ∈ {0, 1} be binary treatment in

respective supports. Let Yd be the potential outcome that is consistent with the observed

outcome, that is, Y = DY1 +(1−D)Y0. We define a treatment allocation rule, or equivalently

a policy, as δ : X → A ⊆ [0, 1] where A is the action space. A deterministic rule corresponds

to A = {0, 1} and a stochastic rule corresponds to A = [0, 1]. Unless noted otherwise, we

allow both in our general framework. Let δ ∈ D where D is the (potentially constrained)

space of δ. For the allocation problem, a policymaker (PM) would set an objective function

that she maximizes to find the optimal allocation rule.

2.1 Introducing Distributional Welfare

To motivate the objective function we propose, we first review the most common objective

function considered in the literature: the average welfare.2 The optimal policy under this

welfare criterion can be defined as

δ∗ATE ∈ arg max
δ∈D

E[δ(X)Y1 + (1− δ(X))Y0].

With deterministic rules in particular, the welfare can be written as E[δ(X)Y1 + (1 −

δ(X))Y0] = E[Yδ(X)]. See Section B in the Appendix that shows how E[δ(X)Y1+(1−δ(X))Y0]

2Welfare is sometimes called a value function in the literature.
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(and other welfare criteria appearing below) is compatible with stochastic rules. Because

E[δ(X)Y1 + (1− δ(X))Y0] = E[Y0 + δ(X)(Y1 − Y0)] = E[Y0] + E[δ(X)E[Y1 − Y0|X]],

δ∗ATE also satisfies

δ∗ATE ∈ arg max
δ∈D

E[δ(X)E[Y1 − Y0|X]], (2.1)

where the objective function corresponds to the welfare gain. Therefore, subject to the

constraints, δ∗ATE maximizes the average of conditional average treatment effects (ATEs)

either chosen (in the case of deterministic policies) or weighted (in the case of stochastic

policies) by δ, thus the notation “δ∗ATE.” For example, when D is not constrained, δ∗ATE(x) =

1{E[Y1 − Y0|X = x] ≥ 0} for both deterministic and stochastic policies. In general, the

formulation (2.1) reveals an important fact: the conditional treatment effect is the important

basis for the policy choice. This makes sense because the treatment should be allocated to

those who would benefit the most from it. This idea becomes important in introducing our

distributional welfare later.

Although it is the most common form of welfare, the average welfare is obviously sensitive

to outliers. For example, a small share of individuals with X = x and substantially large Y1−

Y0 can make E[Y1 − Y0|X = x] positive, suggesting to treat all individuals with X = x even

though the majority suffers from receiving the treatment. This can be especially problematic

when the distribution of Y1 − Y0|X = x is skewed and heavy-tailed. This motivates us to

alternatively consider the quantile of individual treatment effects Y1 − Y0 (QoTE) as the

basis for a welfare criterion (analogous to (2.1)) and a corresponding optimal policy. Let

Qτ (Y ) ≡ inf{y : FY (y) ≥ τ} be the τ -quantile of Y and Qτ (Y |X) ≡ inf{y : FY |X(y) ≥ τ} be

the τ -quantile of Y conditional on X. We consider an optimal policy that satisfies

δ∗ ≡ δ∗τ ∈ arg max
δ∈D

E[δ(X)Qτ (Y1 − Y0|X)], (2.2)
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where Qτ (Y1−Y0|X) is the τ -quantile of Y1−Y0 given X. That is, δ∗ maximizes the average

of conditional QoTEs chosen (in the case of deterministic policies) or weighted (in the case

of stochastic policies) by δ. With no constraint in D, δ∗(x) = 1{Qτ (Y1 − Y0|X = x) ≥ 0}

for both deterministic and stochastic policies. The QoTE is less sensitive to outliers than

the ATE, so for example (2.2) with τ = 0.5 may be preferred to (2.1). This aspect makes

the allocation decision within the X = x group not driven by treatment effects of a small

share of individuals. In this sense, this aspect of robustness can be viewed as the “within-

group fairness” (Leqi and Kennedy (2021)).3 In general, τ (i.e., the rank in individual

treatment effects) represents individuals in that specific quantile as a reference group chosen

by the PM. For example, by choosing low τ , the PM allocates the treatment only if most

individuals benefit from it because Qτ ′(Y1 − Y0|X) ≥ Qτ (Y1 − Y0|X) for any τ ′ > τ . In

other words, she ensures that disadvantaged individuals with poor treatment effects are not

harmed from receiving the allocation. In this sense, low τ corresponds to a prudent PM.

On the other hand, by choosing high τ , the PM focuses on benefiting solely the top-ranked

individuals even though the majority would suffer from it. In this sense, high τ corresponds

to a negligent PM. Therefore, the choice of τ reflects the level of prudence of the policy that

the PM commits to.

The proposed optimal policy has another interesting interpretation that relates to the

PM’s incentive. Let δ†τ ≡ 1{Qτ (Y1 − Y0|X) ≥ 0} ∈ arg maxδ:X→AE[δ(X)Qτ (Y1 − Y0|X)] be

the first-best rule for A being either [0, 1] or {0, 1}. As mentioned above, δ†τ is an optimal rule

when no restriction is imposed on the class of δ. Suppose individuals who benefit from the

treatment would vote for it. Also suppose τ = 0.5. Then δ†0.5(X) = 1{Q0.5(Y1 − Y0|X) ≥ 0}

can be viewed as a policy that obeys majority vote. To see this, note the following for

3In fact, we show below that the notion of within-group fairness fits better in our framework than that of
Leqi and Kennedy (2021)’s framework.
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continuously distributed Yd:

Q0.5(Y1 − Y0|X) ≥ 0 ⇔ FY1−Y0|X(0) ≤ 1/2

⇔ P [Y1 ≥ Y0|X] ≥ 1/2

⇔ P [Y1 ≥ Y0|X] ≥ P [Y1 < Y0|X]

Therefore, the distributional welfare criterion (2.2) is consistent with a PM who has polit-

ical incentive and whose decision is influenced by vote shares. This interpretation can be

generalized by considering Q0.5−α/2(Y1 − Y0|X) ≥ 0 for 0 ≤ α ≤ 1, which is equivalent to

P [Y1 ≥ Y0|X] ≥ P [Y1 < Y0|X] + α where α can be viewed as the vote share margin.

Exploring this interpretation further, we can show that the first-best policy for the median

can be viewed as the one that maximizes the share of positively affected individuals or the

correct classification rate over a class of deterministic policies:

Theorem 2.1. Suppose Yd is continuously distributed and A is either [0, 1] or {0, 1}. Then,

the first best rule δ†τ (x) ≡ 1{Qτ (x) ≥ 0} for τ = 0.5 satisfies

δ†0.5 ∈ arg max
δ:X→A

E[δ(X)Q0.5(X)] = arg max
δ:X→{0,1}

P
[
Yδ(X) − Y1−δ(X) > 0

]
(2.3)

= arg max
δ:X→{0,1}

P
[
δ(X) ∈ arg max

d
Yd

]
. (2.4)

In the theorem, (2.3) holds by the equivalence result in the previous paragraph and (2.4)

is immediate. Note that P [δ(X) ∈ arg maxd Yd] is the correct classification rate. We can

equivalently say that δ†0.5 minimizes the fraction negatively affected by switching from 1− δ

to δ, namely, P [Yδ(X) − Y1−δ(X) < 0], or the misclassification rate, P [δ(X) /∈ arg maxd Yd].

The latter extends Kallus (2022)’s definition which focuses on binary Yd.
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2.2 Other Related Quantile Welfare Criteria

Related to the proposed welfare criterion, one can consider alternative criteria that are robust

to outliers. Focusing on a deterministic policy (i.e., A = {0, 1}), Wang et al. (2018) consider

the marginal quantile of Yδ(X) as their criterion, while Leqi and Kennedy (2021) focus on the

average of conditional quantile Yδ(X). First, Wang et al. (2018) explore the optimal policy

under Qτ (Yδ(X)), which can be viewed as a sensible quantity robust to outliers. Note that the

randomness in Yδ(X) arises from both Yd and X. Because of that, the optimal policy under

Qτ (Yδ(X)) does not have a closed form solution, which make the interpretation of the optimal

policy somewhat elusive. Moreover, Leqi and Kennedy (2021) demonstrate that the policy

under this welfare criterion lacks “across-group fairness,” in that the allocation decision for

one group (defined by X = x) can be influenced by the treatment effects of other groups

(defined by other X = x′). This issue stems from the difficulty in associating the objective

function Qτ (Yδ(X)) with a clear notion of treatment effects or gains, unlike the other criteria

discussed in this section.

To overcome this issue, Leqi and Kennedy (2021) consider the optimal policy under

E[Qτ (Yδ(X)|X)], which achieves across-group fairness as X is fixed in the calculation of quan-

tile. As shown in their paper,

E[Qτ (Yδ(X)|X)] = E[δ(X)Qτ (Y1|X) + (1− δ(X))Qτ (Y0|X)]

= E[Qτ (Y0|X)] + E[δ(X){Qτ (Y1|X)−Qτ (Y0|X)}]

and therefore the optimal policy also satisfies

δ∗QTE ∈ E[δ(X){Qτ (Y1|X)−Qτ (Y0|X)}].

That is, δ∗QTE maximizes the average of conditional QTEs chosen by δ. However, allocating

the treatment based on the QTE may be questionable because the individual at the τ -quantile

of Y1 may not be the same individual as the one at the τ -quantile of Y0. This aspect is also
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reflected in the fact that generally Qτ (Y1|X) − Qτ (Y0|X) 6= Qτ (Y1 − Y0|X) unlike in the

expectation operator (i.e., the ATE). Since the QTE is introduced in Doksum (1974) and

Lehmann (1975), its limitation as a causal parameter has been acknowledged in the literature

but the problem seems more pronounced in the context of treatment allocation. Moreover,

this aspect implies that there is no clear notion of a negligent or prudent PM associated with

the level of τ ; see Figures 3 and 6 in the application (Section 6) for related discussions.

2.3 Policies Robust to Model Ambiguity

Despite the desirable properties of our proposed objective function, the main challenge of

using (2.2) as the welfare criterion is that the QoTE is generally not point-identified even

under unconfoundedness. Therefore, we propose optimal policies that are robust to this

ambiguity. One may consider maximizing the worst-case gain:

δ∗mmw ∈ arg max
δ∈D

min
FY1,Y0|X∈F

E[δ(X)Qτ (Y1 − Y0|X)], (2.5)

where FY1,Y0|X is the joint distribution of (Y1, Y0) conditional on X and F ≡ F(P ) is the

identified set of FY1,Y0|X given the data P . However, this criterion is known to be overly

pessimistic (Savage (1951)). Therefore, one may instead consider minimizing the worst-case

regret:

δ∗mmr ∈ arg min
δ∈D

max
FY1,Y0|X∈F

E[{δ†(X)− δ(X)}Qτ (Y1 − Y0|X)], (2.6)

where δ† ≡ δ†τ ≡ 1{Qτ (Y1 − Y0|X) ≥ 0} is the first-best rule. The minimax regret criterion

is free from priors and thus avoids the feature of maximin mentioned above. Therefore, our

primary focus is the minimax policy.

For each x, define the identified interval for Qτ (Y1 − Y0|X = x) as

[QL
τ (x), QU

τ (x)] = {Qτ (Y1 − Y0|X = x) : FY1,Y0|X ∈ F}.
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Using these lower and upper bounds, we can derive closed-form expressions for the inner

optimization in (2.5) and (2.6). To this end, we impose a very weak assumption on the

identified interval.

Assumption RC. The identified set Q(P ) of Qτ (Y1 − Y0|X = ·) is rectangular, that is,

Q(P ) = {Qτ (Y1 − Y0|X = ·) : Qτ (Y1 − Y0|X = x) ∈ [QL
τ (x), QU

τ (x)]}.

This assumption holds for the identified sets we derive in this paper. It will be violated

if one imposes certain shape restrictions on Qτ (Y1 − Y0|X = ·) such as monotonicity. We

do not consider shape restrictions in this paper as allowing for unrestricted heterogeneity

across X is important in the context of optimal allocations. Essentially, this assumption

allows us to interchange the maximum or minimum over F with the expectation over X

(Kasy (2016); D’Adamo (2021)).4 Under Assumption RC, we can easily show that δ∗mmr

equivalently satisfies

δ∗mmr ∈ arg max
δ∈D

E[δ(X)Q̄τ (X)], (2.7)

where

Q̄τ (x) = QU
τ (x)1{QL

τ (x) ≥ 0}+QL
τ (x)1{QU

τ (x) ≤ 0}

+
(
QU
τ (x) +QL

τ (x)
)

1{QL
τ (x) < 0 < QU

τ (x)}.

Also, we can show δ∗mmw ∈ arg maxδ∈D E[δ(X)QL
τ (X)]. In general, finding the optimal δ for

(2.7) does not yield a closed-form expression when the policy class D is constrained. Addi-

4To illustrate this, consider a simple case of binary X ∈ {0, 1} and let Qτ (x) ≡ Qτ (Y1 − Y0|X = x) and
px ≡ Pr[X = x]. Then Assumption RC imposes that {(Qτ (0), Qτ (1)) : Qτ (x) ∈ [QLτ (x), QUτ (x)], x ∈ {0, 1}}
is rectangular, which implies that, for example,

min
FY1,Y0|X

E[δ(X)Qτ (X)] = min
FY1,Y0|X

[p1δ(1)Qτ (1) + p0δ(0)Qτ (0)]

= p1δ(1) min
FY1,Y0|X

Qτ (1) + p0δ(0) min
FY1,Y0|X

Qτ (0) = E[δ(X) min
FY1,Y0|X

Qτ (X)].
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tionally, solving maxδ∈D E[δ(X)Q̄τ (X)] proves to be a challenging task as Q̄τ (·) incorporates

an indicator function. Nonetheless, allowing the policy class to be constrained is important

because the PM may prefer a more parsimonious rule (e.g., a linear rule) or be limited by

certain institutional constraints. Following Zhao et al. (2012), we consider a convex and

continuous relaxation of (2.7) by utilizing the hinge loss function φ(t) = max(1 − t, 0) and

introducing a regularization term. This is done in Section 4.2 below. The consistency of

hinge loss is shown even when the class of δ is restricted (Kitagawa et al. (2021)).

3 Possible Identifying Assumptions

We now provide a menu of identifying assumptions that researchers may want to consider

imposing to shrink F (i.e., the identified set for the joint distribution of (Y1, Y0) conditional

on X). This would consequently tighten [QL
τ (x), QU

τ (x)] (i.e., the bounds on the conditional

QoTE), and sometimes reduce it to a singleton, achieving point identification. First, there

are ways to identify the marginal distribution of Yd. The most obvious approach is to impose

conditional independence.

Assumption CI (Conditional Independence). For d ∈ {0, 1}, Yd ⊥ D|X.

An clear example where this assumption holds is when data from randomized experiments

are available. In general, one can argue that the treatment is exogenous after adequately

controlling for covariates. Alternatives to Assumption CI, such as panel quantile regression

models (Chernozhukov et al. (2013)), can be used to identify Qτ (Yd|X).

The identification of the marginal distribution of Yd yields bounds on the QoTE, Qτ (Y1−

Y0|X = x). The best-known sharp bounds on the QoTE are derived by Makarov (1982) and

Williamson and Downs (1990) without imposing further restrictions on the data-generating

mechanism. We describe the Makarov bounds here by trivially extending Lemma 2.3 in Fan

and Park (2010) to incorporate covariates.5

5The Makarov bounds are not achieved at the Fréchet-Hoeffding bounds for the joint distribution of
(Y1, Y0) (Fan and Park (2010, Lemma 2.1)). Also, the bounds are point-wise but not uniformly sharp (Firpo
and Ridder (2019)).
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Proposition 3.1. For 0 ≤ τ ≤ 1, QL
τ (x) ≤ Qτ (Y1 − Y0|X = x) ≤ QU

τ (x) where

QL
τ (x) =


infu∈[τ,1][Qu(Y1|X = x)−Qu−q(Y0|X = x)] if q 6= 0

Q0(Y1|X = x)−Q1(Y0|X = x) if q = 0,

QU
τ (x) =


supu∈[0,τ ][Qu(Y1|X = x)−Q1+u−q(Y0|X = x)] if q 6= 1

Q1(Y1|X = x)−Q0(Y0|X = x) if q = 1.

It is known that the Makarov bounds tend to be uninformative, which may result in the

subsequent treatment allocation decisions being similarly uninformative. We now consider a

range of identifying assumptions that can be used to yield tighter bounds, leading to more

informative decisions.

Assumption PD (Positive Dependence). For x ∈ X , either (i) P [Y1 ≤ y1, Y0 ≤ y0|X =

x] ≤ P [Y1 ≤ y1|X = x]P [Y0 ≤ y0|X = x], (ii) P [Y1 > y1|Y0 > ·|X = x] and P [Y0 > y0|Y1 >

·|X = x] are non-decreasing and P [Y1 ≤ y1|Y0 ≤ ·|X = x] and P [Y0 ≤ y0|Y1 ≤ ·|X = x]

are non-increasing, or (iii) P [Y1 > y1|Y0 = ·, X = x] and P [Y0 > y0|Y1 = ·, X = x] are

non-decreasing, for all y1, y0 ∈ Y.

Assumption PD imposes various versions of positive dependence between Y1 and Y0. This

assumption makes sense when individuals with high Y1 (e.g., potential earning with the job

training) tend to have high Y0 (e.g., potential earning without the job training) and vice

versa. Due to its plausibility in many settings, we consider this assumption as our leading

one in later analyses.6 Note that Assumption PD(i) is implied by (ii), and (ii) by (iii) (Joe

(2014)). Maintaining Assumption CI, Assumption PD is helpful to obtain more informative

bounds on the conditional QoTE. For example, Frandsen and Lefgren (2021) derive bounds

on the distribution of treatment effects under an unconditional version of PD(iii). Instead

of assuming positive dependence between Y1 and Y0, one may want to impose stochastic

6One can conversely impose negative dependence although it may be easier to find contexts in which
positive dependence is more plausible.
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dominance of Yd between treatment and control groups or stochastic dominance between Y1

and Y0 for each subgroup:

Assumption SD (Stochastic Dominance). For x ∈ X , either (i) P [Yd ≤ y|D = 1, X = x] ≤

P [Yd ≤ y|D = 0, X = x], or (ii) P [Y1 ≤ y|D = d,X = x] ≤ P [Y0 ≤ y|D = d,X = x].

Either under Assumption CI or the existence of instrumental variables (IVs), Assumption

SD(i) or SD(ii) can be used to narrow the bounds on the distribution of treatment effects

(Blundell et al. (2007), Lee (2021)) and thus on the QoTE.

Next, we present assumptions that help point-identify the conditional QoTE.

Assumption CI2 (Joint Conditional Independence). (Y1, Y0) ⊥ D|X.

This assumption is stronger than Assumption CI.

Assumption DC (Deconvolution). Y1 − Y0 ⊥ Y0|X.

Heckman and Smith (1995) show how Assumption DC can be useful to point identify

FY1,Y0|X when combined with Assumption CI2. Interested readers can refer to Section 2.5.5

of Abbring and Heckman (2007), which shows that this assumption relates to a normal

random coefficient model. The next set of assumptions explicitly posits that the treatment

selection is determined by the net gain from the treatment.

Assumption RY (Roy Model). D = 1{Y1 ≥ Y0} and X = (X0, X1, Xc) where (i) Y1 =

g1(X1, Xc)+U1 and Y0 = g0(X0, Xc)+U0, (ii) (U0, U1) ⊥ (X0, X1, Xc), (iii) (U0, U1) are abso-

lutely continuous with Supp(U0, U1) = R2, (iv) for each Xc and d ∈ {0, 1}, gd(Xd, Xc) : Rkd →

R for all X1−d, Supp(gd(Xd, Xc)|Xc, X1−d) = R for all Xc, X1−d, and Supp(Xd|X1−d, Xc) =

Supp(Xd) = R for all Xc, X1−d, and (v) for d ∈ {0, 1}, Ud has zero median.

Under Assumption RY, g0, g1, and FU0,U1 are point identified (Heckman and Smith (1995,

Theorem A-1)); see Heckman and Honore (1990) for Gaussian case.

Assumption RY2 (Extended Roy Model). D = 1{Y1 ≥ h(Y0, X, Z)} where (i) (Y0, Y1) ⊥

Z|X, (ii) Supp(Y0, Y1|X) = R2, (iii) h(y0, x, ·) and h(·, x, z) are strictly increasing for any

(y0, x, z), and (iv) h(y0, x, ·) is differentiable.
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Under Assumption RY2, Lee and Park (2023) show that FY1,Y0|X(y1, y0|x) is point iden-

tified for (y1, y0) ∈ H(x) where H(x) ≡ {(y1, y0) ∈ R2 : y1 = h(y0, x, z) for some z ∈

Supp(Z|X = x)}. Its implication for our purpose is that Qτ (Y1 − Y0|X = x) is identified if

and only if {(y1, y0) ∈ R2 : y1− y0 = Qτ (Y1− Y0|X = x)} ⊆ H(x). The next assumption is a

special instance of Assumption PD.

Assumption RI (Rank Invariance). For d ∈ {0, 1}, Yd = md(X,Ud) where md(x, ·) is

strictly increasing and Ud|X = x is absolutely continuous and satisfies U1|X=x = U0|X=x for

given x ∈ X .

Heckman et al. (1997) and Chernozhukov and Hansen (2005) show the identifying power

of Assumption RI. This assumption essentially restricts heterogeneity by holding the ranks

in Y1 and Y0 the same. This implies that, under this assumption, the QTE can be interpreted

as the difference between Y1 and Y0 for the same individual. Yet, the QTE is not identical

to the OoTE even under this assumption. Moreover, Assumption RI implies Assumption

PD because, suppressing X, Pr[Y1 ≤ y1|Y0 = y0] = Pr[m1(U) ≤ y1|m0(U) = y0] = Pr[U ≤

m−1
1 (y1)|U = m−1

0 (y0)] and thus the probability is 1 when y0 ≤ m0(m−1
1 (y1)) and 0 otherwise.

Under Assumptions CI and RI, F∆|X(δ) is point identified. More generally, Heckman et al.

(1997) consider Markov kernels M and M̃ so that FY1|X(y1) =
∫
M(y1, y0|X)dFY0|X(y0) and

FY0|X(y0) =
∫
M̃(y1, y0|X)dFY1|X(y1). Also see Vuong and Xu (2017) for the case of endoge-

nous treatment with IVs. Abbring and Heckman (2007, Section 2.5.3) also consider perfect

negative dependence.7

Assumption SY (Symmetric Distribution). The distribution of Y1 − Y0|X is symmetric.

Under this assumption, Q0.5(Y1 − Y0|X) = E[Y1 − Y0|X], which is point-identified under

Assumption CI. Other possible assumptions for point identification can be found in Abbring

and Heckman (2007).

7Related to the previous footnote, we can also consider perfect negative dependence by U1|X=x =
−U0|X=x.
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4 Theoretical Properties of Estimated Policy

Henceforth, let Qτ (X) ≡ Qτ (Y1 − Y0|X) for notational simplicity. Focusing on the opti-

mal policy δ∗mmr based on the minimax criterion, we provide theoretical guarantees for the

estimated policy. The policy can be readily estimated once the bounds [QL
τ (X), QU

τ (X)]

on Qτ (X) are estimated using parametric or nonparametric methods with the sample of

(Y,D,X). The theory includes the case of point identification as a special case in which

Qτ (X) = QL
τ (X) = QU

τ (X).

Recall that our objective function is

V (δ) ≡ E[δ(X)Qτ (X)].

To define the regret, we introduce a r.v. A(x) that is distributed as Bernoulli(δ(x)). For

a stochastic policy δ(x) ∈ [0, 1], δ(x) is the probability that A(x) = 1. For a deterministic

policy δ(x) ∈ {0, 1}, the distribution of A(x) is degenerate and thus A(x) = δ(x). Define the

regret of the “classification” as

R(δ) ≡ V (δ†)− V (δ) = E[|Qτ (X)|1{A(X) 6= sign(Qτ (X))}],

where δ†(X) = 1{Qτ (X) ≥ 0} and sign(q) = 1 when q ≥ 0 and sign(q) = 0 when q < 0.

Note that R(δ) is generally not point-identified and thus we define maximum regret as

R̄(δ) ≡ max
Qτ (·)∈[QLτ (·),QUτ (·)]

E[|Qτ (X)|1{A(X) 6= sign(Qτ (X))}]. (4.1)

The maximum regret can be expressed in different ways, which are useful in the analysis

below.

Lemma 4.1. Suppose Assumption RC hold. For a stochastic or deterministic rule δ, the
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maximum regret can be expressed as

R̄(δ) = E
[
max

{
[1− δ(X)] max(QU

τ (X), 0), δ(X) max(−QL
τ (X), 0)

}]
(4.2)

= −E[δ(X)Q̄τ (X)] + E
[
QU
τ (X)1{QU

τ (X) ≥ 0}
]

(4.3)

= E[|Q̄τ (X)|1{A(X) 6= sign(Q̄τ (X))}]

+ E

[
min(QU

τ (X),−QL
τ (X))1{QL

τ (X) < 0 < QU
τ (X)}

]
, (4.4)

where

Q̄τ (X) =QU
τ (X)1{QL

τ (X) ≥ 0}+QL
τ (X)1{QU

τ (X) ≤ 0}

+ (QU
τ (X) +QL

τ (X))1{QL
τ (X) < 0 < QU

τ (X)}.

Note that (4.3) is used in expressing (2.7). Below, (4.2) is used in Section 4.1 and (4.4) in

Section 4.2. Now, we provide asymptotic bounds on these regrets evaluated at the estimated

stochastic and deterministic policies when D is unconstrained and constrained.

4.1 Regret Bounds with Unconstrained Policy Class

For this part, we assume that we are equipped with the consistent estimators for QL
τ (X) and

QU
τ (X).

Assumption EST. Qτ (X) is bounded almost surely and

Q̂L
τ (X)−QL

τ (X) = op(1),

Q̂U
τ (X)−QU

τ (X) = op(1).

When QL
τ (X) and QU

τ (X) are known functions of FY1|X and FY0|X , Assumption EST is

implied from the consistency of F̂Y1|X and F̂Y0|X by the continuous mapping theorem; see

Section 5 for the case of bounds that are computationally derived. Let δ∗,stoch ≡ δ∗,stochmmr and

δ∗,determ ≡ δ∗,determmmr are the optimal policies that minimize R̄(δ) when δ is stochastic and

20



deterministic policies, respectively. Given the expression (4.2), a simple calculation yields

δ∗,stoch(x) =


1 if QL

τ (x) ≥ 0,

0 if QU
τ (x) ≤ 0,

QUτ (x)
QUτ (x)−QLτ (x)

if QL
τ (x) < 0 < QU

τ (x),

and

δ∗,determ(x) =



1 if QL
τ (x) ≥ 0,

0 if QU
τ (x) ≤ 0,

1 if QL
τ (x) < 0 < QU

τ (x) and |QL
τ (x)| < |QU

τ (x)|,

0 if QL
τ (x) < 0 < QU

τ (x) and |QL
τ (x)| > |QU

τ (x)|.

Let δ̂stoch and δ̂determ are the estimates of δ∗,stoch and δ∗,determ, respectively.

Theorem 4.1. Suppose Assumptions RC and EST hold and |Y | ≤M for some constant M .

The regret of δ̂stoch is bounded by

R(δ̂stoch) ≤ E

[
QL
τ (X)QU

τ (X)

QL
τ (X)−QU

τ (X)
1{QL

τ (X) < 0 < QU
τ (X)}

]
+ op(1),

where the ratio is defined to be 0 whenever its denominator is 0. The regret regret of δ̂determ

is bounded by

R(δ̂determ) ≤ E
[
min(max(QU

τ (X), 0),max(−QL
τ (X), 0))

]
+ op(1).

The proof of this theorem and all other proofs are collected in the appendix. The leading

term in each asymptotic regret bound collapses to zero when either (i) the bounds on Qτ (X)

exclude zero almost surely or (ii) Qτ (X) is point-identified. These are the situations in which

we can identify the sign of Qτ (X). Recalling δ†(X) = 1{Qτ (X) ≥ 0}, this is enough to
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achieve consistency R→ 0 as the second term in each regret bound is the sampling error. In

general, the leading term becomes larger as the endpoints [QL
τ (X), QU

τ (X)] are farther away

from zero, which is intuitive. An immediate corollary of Theorem 4.1 establishes the bound

for the regret averaged over the sample of estimated policies. Let En denote the expectation

over the sample of (Y,D,X).

Corollary 4.1. Suppose Assumptions RC and EST hold. Then,

En
[
R(δ̂stoch)

]
≤ E

[
QL
τ (X)QU

τ (X)

QL
τ (X)−QU

τ (X)
1{QL

τ (X) < 0 < QU
τ (X)}

]
+ op(1),

where the ratio is defined to be 0 whenever its denominator is 0, and

En
[
R(δ̂determ)

]
≤ E

[
min(max(QU

τ (X), 0),max(−QL
τ (X), 0))

]
+ op(1).

4.2 Regret Bounds with Constrained Policy Class

As mentioned, allowing for a constrained policy class is crucial for practical and institutional

reasons. Our proposed method readily extends to a scenario in which the policy class D is

constrained. Define the estimator of Q̄τ (·) as

̂̄Qτ (X) ≡ Q̂U
τ (X)1{Q̂U

τ (X) ≥ 0}+ Q̂L
τ (X)1{Q̂L

τ (X) ≤ 0}

by noting that Q̄τ (x) also satisfies Q̄τ (x) = QU
τ (x)1{QU

τ (x) ≥ 0}+QL
τ (x)1{QL

τ (x) ≤ 0}. We

assume that the consistent estimators Q̂L
τ (X) and Q̂U

τ (X) are consistent with the specified

rate of convergence.

Assumption EST2. Qτ (X) is bounded almost surely and

Q̂L
τ (X)−QL

τ (X) = Op(n
−α),

Q̂U
τ (X)−QU

τ (X) = Op(n
−α)
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for some α > 0.

To overcome the computational problem of obtaining δ∗mmr, we adopt the outcome weighted

learning framework (Zhao et al. (2012)). We are interested in finding a decision function

f : X → R such that δ(x) = 1{f(x) ≥ 0}. Note that by (4.4), we have

R̄(f) ≡ R̄(1{f(·) ≥ 0}) = E[|Q̄τ (X)|1{sign(f(X)) 6= sign(Q̄τ (X))}]

+ E

[
min(QU

τ (X),−QL
τ (X))1{QL

τ (X) < 0 < QU
τ (X)}

]
.

Accordingly, we define the surrogate regret as

R̄S(f) ≡E[|Q̄τ (X)|φ{sign(Q̄τ (X))f(X)}]

+ E

[
min(QU

τ (X),−QL
τ (X))1{QL

τ (X) < 0 < QU
τ (X)}

]
.

Motivated by this expression, let f̂ be the ML estimator of f from the following problem:

f̂ = arg min
f∈H

{
1

n

n∑
i=1

∣∣∣ ̂̄Qτ (Xi)
∣∣∣φ{sign( ̂̄Qτ (Xi))f(Xi)}+ λn||f ||2

}
, (4.5)

where φ(t) = max{1 − t, 0} is the hinge loss, λn is the regularization parameter, and || · ||

is the norm in a function space. We focus on the reproducing kernel Hilbert space (RKHS)

Hk associated with Gaussian radial basis function kernels k(x, z) = exp(−σ2
n||x − z||2). By

Theorem 2.1 of Steinwart and Scovel (2007), the complexity of Hk in terms of the covering

number satisfies

sup
Pn

logN{BHk , ε, L2(Pn)} ≤ cnε
−p,

where Pn is the distribution of (Y,D,X), cn = cp,δ,dσ
(1−p/2)(1+δ)d
n , BHk is the closed unit ball
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of Hk, p ∈ (0, 2], δ > 0, and cp,δ,d is a constant. Define the approximation error function as

a(λn) = inf
f∈Hk

E[|Q̄τ (X)|φ{sign(Q̄τ (X))f(X)}+λn||f ||2]−inf
f
E[|Q̄τ (X)|φ{sign(Q̄τ (X))f(X)},

where the second infimum is over the unrestricted space of f . Note that a(λn) goes to zero if

the RKHS is rich enough. The following theorem establishes the asymptotic bound on R̄(f).

The asymptotic bound on the true regret can be similarly obtained.

Theorem 4.2. Suppose Assumptions RC and EST2 hold, and suppose that λn = o(1) and

λnn
min(2α,1) →∞. Then, with probability larger than 1− exp(−2η), we have

R̄(f̂) ≤ inf
f
R̄(f) + a(λn) +Op(n

−αλ−1/2
n ) +Mpc

2
p+2
n n−

2
p+2

(
λ
− 2
p+2

n + λ−1/2
n

)
+
Kη

nλn
(1 + 2λ1/2

n ),

where Mp and K are constants.

The first term of the regret bound is E

[
min(QU

τ (X),−QL
τ (X))1{QL

τ (X) < 0 < QU
τ (X)}

]
because f is not restricted and the following f ∗

f ∗(x) =


1 if QL

τ (X) ≥ 0

0 if QU
τ (X) ≤ 0

sign(QL
τ (X) +QU

τ (X)) if QL
τ (X) < 0 < QU

τ (X)

satisfies inff R̄(f) = R̄(f ∗) = E

[
min(QU

τ (X),−QL
τ (X))1{QL

τ (X) < 0 < QU
τ (X)}

]
. Note

that this term coincides with the leading term (i.e., E
[
min(max(QU

τ (X), 0),max(−QL
τ (X), 0))

]
)

derived in Theorem 4.1 for the deterministic rule. The second term is the approximation er-

ror due to using the RKHS. The third term is the estimation error in estimating the bounds.

The rest of the terms are statistical errors in estimating the policy.

24



5 Calculating Bounds

When Qτ (X) is partially identified, we need a practical way of calculating its bounds

[QL
τ (x), QU

τ (x)] = {Qτ (x) : FY1,Y0|X ∈ F}.

Unlike the Makarov bounds, the closed-form expression of the bounds is not always avail-

able especially under Assumption PD. Therefore, it is fruitful to have a systematic proce-

dure of calculating the bounds. To this end, let C(u1, u2|X) be the copula for (U1, U2) ≡

(FY1(Y1), FY0(Y0)) conditional onX. By Sklar’s Theorem, C(u1, u2|X) = FY1,Y0|X(Qu1(Y1|X), Qu2(Y0|X)).

Then, it satisfies

P [Y1 − Y0 ≤ t|X] =

∫
1{Qu1(Y1|X)−Qu2(Y0|X) ≤ t}dC(u1, u2|X).

Therefore, we can calculate the lower and upper bounds on the distribution of ∆|X (recalling

∆ ≡ Y1 − Y0) by

FL
∆|X(t) = inf

C(·,·|X)∈C

∫
1{Qu1(Y1|X)−Qu2(Y0|X) ≤ t}dC(u, v|X), (5.1)

FU
∆|X(t) = sup

C(·,·|X)∈C

∫
1{Qu1(Y0|X)−Qu2(Y0|X) ≤ t}dC(u, v|X), (5.2)

where C is the class of copulas C(·, ·|X = x) restricted by identifying assumptions. Note that

(5.1) and (5.2) can be viewed as the (constrained version of the) Monge-Kantorovich problem

of finding the optimal coupling of marginal distributions in the optimal transport theory

(Villani (2009)). Then, for τ -quantile Qτ of ∆, we can obtain its lower and upper bounds as

QL
τ (X) = FU,−1

∆|X (τ) and QU
τ (X) = FL,−1

∆|X (τ), where the inverse denotes the generalized inverse.

In practice, (5.1)–(5.2) are infinite dimensional programs, and thus infeasible. To transform

them into a linear program, we propose to approximate C(u, v|x) using the Bernstein copula

CB(u, v|x) (Sancetta and Satchell (2004)).
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Definition 5.1 (Bernstein Copula). For j ∈ {1, 2}, let P
mj
vj (uj) ≡

 mj

vj

u
vj
j (1−uj)mj−vj .

Then, CB : [0, 1]2 → [0, 1] is a conditional Bernstein copula for any mj ≥ 1 and x ∈ X if

CB(u1, u2|x) =

m1∑
v1=0

m2∑
v2=0

β

(
v1

m1

,
v2

m2

, x

)
Pm1
v1

(u1)Pm2
v2

(u2)

satisfies the usual properties of the copula function.

Then we can compute a feasible version of (5.1)–(5.2) as

min
β∈B

m1∑
v1=0

m2∑
v2=0

β

(
v1

m1

,
v2

m2

, X

)∫ 1

0

∫ 1

0

1{Qu1(Y1|X)−Qu2(Y0|X) ≤ t}dPm1
v1

(u1)dPm2
v2

(u2),

(5.3)

max
β∈B

m1∑
v1=0

m2∑
v2=0

β

(
v1

m1

,
v2

m2

, X

)∫ 1

0

∫ 1

0

1{Qu1(Y1|X)−Qu2(Y0|X) ≤ t}dPm1
v1

(u1)dPm2
v2

(u2),

(5.4)

where B is the restricted set of β(·) to impose identifying assumptions and guarantee that

CB is a proper copula. We omitted the latter restrictions for succinctness; see Theo-

rem 2 in Sancetta and Satchell (2004) for details. For example, to impose Assumption

PD(iii) it is necessary to ensure that CB(u1|u2, x) = ∂CB(u1, u2, x)/∂u2 and CB(u2|u1, x) =

∂CB(u1, u2, x)/∂u1 are non-increasing. Then, by the desirable property of Bernstein, this

corresponds to β
(
v1
m1
, v2
m2
, X
)

being weakly increasing in v1 and v2. The use of Bernstein

approximation for the systematic calculation of bounds on treatment effects also appears in

Han (2023) and Han and Yang (2024) in different contexts. As an alternative to the Bern-

stein approximation, one can discretize the space of (U1, U2) ∈ [0, 1]2 (Blundell et al. (2007);

Frandsen and Lefgren (2021)). This approach can be viewed as a simple local approxima-

tion involving a uniform kernel. Finally, in practice, the inputs Qu1(Y1|X) and Qu2(Y0|X)

of the linear program can be estimated using standard nonparametric or parametric meth-

ods. When they are estimated consistently, we can show that Assumption EST holds for the
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estimated outputs, Q̂L
τ (X) and Q̂U

τ (X), of the linear program:

Lemma 5.1. Suppose that, for d ∈ {0, 1}, FYd|X(y|X) and Qτ (Yd|X) are absolutely con-

tinuous in y ∈ Y and τ ∈ (0, 1), respectively, and Q̂τ (Yd|X) is a consistent estimator

of Qτ (Yd|X) for any τ ∈ (0, 1), almost surely. Then, |Q̂L
τ (X) − QL

τ (X)| = op(1) and

|Q̂U
τ (X)−QU

τ (X)| = op(1).

6 Empirical Applications

6.1 Application I: Allocation of Right Heart Catheterization

We consider the right heart catheterization (RHC) dataset from the Study to Understand

Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT) (Hirano and

Imbens (2001)). The treatment D in question is the RHC (1 if received and 0 otherwise), a

diagnostic procedure for critically ill patients. The outcome Y is the number of days from

admission to death within 30 days (t3d30), whose value ranges from 2 to 30. In contrast

to the belief of practitioners that the RHC is beneficial, studies like Connors et al. (1996)

found that patient survival is lower with the RHC than without. Therefore, a relevant policy

question in this critical situation is to find patients for whom allocating (or avoiding) the

RHC is life-saving. In the dataset, 5735 patients are divided into a treatment group (2184

patients) and a control group (3551 patients). We consider the following covariates as X:

age, sex, coma in primary disease 9-level category (cat1 coma), coma in secondary disease

6-level category, (cat2 coma), do not resuscitate (DNR) status on day 1 (i.e., DNR when

heart stops) (dnr1), estimated probability of surviving 2 months (surv2md1), and APACHE

III score ignoring coma (i.e., ICU mortality score) (aps1).

To estimate the counterfactual distributions FY1|X and FY0|X of the outcome (t3d30) for

different groups defined by the covariates, we conduct a kernel regression in the treatment and

control groups separately with bandwidth under Scott’s rule of thumb.8 Then we calculate the

8To simplify this process, we run the regression P [Y < yj |X = x] = E[1{Y < yj}|X = x] on a series of
yj = F−1

Y ( 2j−1
2k ), where k = 1000 and j = 1, ..., k.
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upper and lower bounds of the QoTE under stochastic increasingness (SI) (i.e., Assumption

PD(iii)) and no assumption and make the decisions by using the proposed criterion based

on the QoTE. As shown in the simulation results in Section A, the SI and no-assumption

bounds will not always give the same decisions, and the information provided by the bounds

differs from person to person.

In Table 1 and Figure 1, we present six cases to show the SI and no-assumption bounds of

the QoTE. We only focus on deterministic policies and τ = 0.25. These results illustrate how

the actual implementation of our proposed policies would look like for each individual. It is

shown that there is much heterogeneity in terms of the QoTEs and thus the corresponding

optimal decisions.

Next, in Figure 2, we present the decisions of allocating the RHC in terms of age and

survival rate, which are two important covariates for the allocation decision. We focus on

the male group whose primary and secondary disease categories are not coma and APACHE

score at day 1 is 54 and with resuscitate status. We use the 0.25-quantile, median, and

0.75-quantile QoTE bounds to represent prudent, majority-minded, and negligent PMs, re-

spectively. As expected, the 0.75-quantile bounds suggest the treatment option more often

than the bounds with the other quantile probabilities. Given that the 0.25-quantile bounds

suggest the most prudent decisions, the suggested treatment option can be viewed as a com-

pelling recommendation.

For comparison, in Figure 3, we present the allocation decisions based on the 0.25-quantile,

median, and 0.75-quantile QTE and the ATE. Interestingly, there is no obvious tendency

in decisions when the quantile probability increases from 0.25 to 0.75, which reflects the

limitation of using the QTE as the basis for decisions (e.g., the quantile probability does

not capture the level of prudence). The decisions based on the ATE show how they can

be viewed as the most common approach in the literature. They look very similar to the

decisions based on the median QoTE bounds, although there are a few points that differ

from the latter. Note that the policy based on the median QoTE bounds can be viewed as

a robustness check for the policy based on the ATE.
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Patient ID (QL
τ , Q

U
τ ) δ̂ (QL,SI

τ , QU,SI
τ ) δ̂SI

3412 (−14.27, 0.69) 0 (−0.65, 0.69) 1
168 (−8.07, 0.40) 0 (−4.63, 0.40) 0
345 (−7.17, 3.69) 0 (0.73, 3.16) 1
1727 (−2.50, 6.75) 1 (1.50, 2.13) 1
160 (−5.88,−4.44) 0 (−5.69,−4.49) 0
3738 (3.7, 15.12) 1 (7.24, 11.37) 1

Table 1: Bounds on the QoTE (τ = 0.25) and Estimated Policies

In the figure, the vertical line indicates zero and the horizontal line indicates τ = 0.25.

Figure 1: Bounds on the QoTE of Six Representative Patients
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(a) QoTE with τ = 0.25 (b) QoTE with τ = 0.5 (c) QoTE with τ = 0.75

Figure 2: Treatment Decisions for Male Patients with Specific Health Conditions

(a) QTE with τ = 0.25 (b) QTE with τ = 0.5 (c) QTE with τ = 0.75 (d) ATE

Figure 3: Treatment Decisions Based on the QTEs and the ATE
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6.2 Application II: Allocation of Job Training

The dataset is collected from the National Job Training Partnership Act (JTPA) Study

(Bloom et al. (1997)). We use a subset that includes 9,223 adults; 6,133 of them received

job training, while the remaining 3,090 did not. The treatment D in question is the job

training. In this experiment, we use the 30-month earnings after the job training program

as the measure of outcome Y and the sex, years of education, high school diploma, and

previous earnings in $10K before the program as covariates X. Based on the data, the kernel

regression has been conducted in the treatment and control groups separately to obtain the

F̂Y1|X and F̂Y0|X . From the estimated conditional distributions, we obtain the upper and

lower bounds under SI (i.e., Assumption PD(iii)) and no assumption for each individual.

In Table 2 and Figure 4, we present six cases and their covariates to show bounds on

the QoTE (i.e., the effect of job training on earnings) under SI and no assumption. Similar

to the first application, we find heterogeneity in the treatment effects and thus the optimal

decisions, but less so than the first application.

Next, in Figure 5, we present the decisions of allocating the job training to the female

group without a high school diploma in the space of education and previous earnings (i.e.,

the two important covariates for the allocation decision). Again, we use the 0.25-quantile,

median, and 0.75-quantile QoTE bounds to represent prudent, majority-minded, and negli-

gent PMs, respectively. The 0.75-quantile bounds suggest the treatment option more often

than the other cases. It would be compelling to treat workers suggested by the 0.25-quantile

bounds, as they produce prudent decisions.

For comparison, in Figure 6, we present the decisions based on the 0.25-quantile, median,

and 0.75-quantile QTE and the ATE. Again, there is no obvious tendency in decisions when

the quantile probability increases from 0.25 to 0.75, which reflects the limitation of using

the QTE as the basis for decisions (e.g., the quantile probability does not capture the level

of prudence). The decisions based on the ATE (i.e., the most common approach in the

literature) look very similar to the decisions based on the median QoTE bounds, which
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Worker ID (QL
τ , Q

U
τ ) δ̂ (QL,SI

τ , QU,SI
τ ) δ̂SI

317237 (−14.27, 0.69) 0 (−1.44, 0.83) 0
310493 (−8.07, 0.40) 0 (−0.37, 0.45) 1
302861 (−7.17, 3.69) 0 (0.13, 0.44) 1
302890 (−2.50, 6.75) 1 (−2.23,−0.02) 0
305160 (−5.88,−4.44) 0 (−3.09,−2.48) 0
303890 (3.7, 15.12) 1 (−3.21,−1.19) 0

Table 2: Bounds on the QoTE (τ = 0.25) and Estimated Policies

suggests that the issue of outliers is not serious in this application. In this sense, the policy

based on the median QoTE bounds can be viewed as a robustness check for the policy based

on the ATE (e.g., Kitagawa and Tetenov (2018)).

In the figure, the vertical line indicates zero and the horizontal line indicates τ = 0.25.

Figure 4: Bounds on the QoTE of Six Representative Workers
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(a) QoTE with τ = 0.25 (b) QoTE with τ = 0.5 (c) QoTE with τ = 0.75

Figure 5: Treatment Decisions for Female Workers Without High School Diploma

(a) QTE with τ = 0.25 (b) QTE with τ = 0.5 (c) QTE with τ = 0.75 (d) ATE

Figure 6: Treatment Decisions Based on the QTEs and the ATE
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7 Generalization

The joint distribution of the potential outcomes may contain other useful information about

treatment effect heterogeneity for policy learning. The theoretical results of this paper can

be generalized to any setting where welfare is defined as a functional of the joint distribution

of potential outcomes. Consider an optimal rule that satisfies

δ∗∗ ∈ arg max
δ∈D

E
[
δ(X)Λ(FY1,Y0|X)

]
, (7.1)

where Λ : F̃ → R is some functional of the joint distribution of (Y1, Y0) given X. Our original

criterion (2.2) is a special case of (7.1) with Λ(FY1,Y0|X) = Qτ (Y1− Y0|X). We propose other

examples of the criterion Λ(FY1,Y0|X) that may interest a non-utilitarian PM.

Example 1. Consider

δ∗∗ȳ ∈ arg max
δ∈D

E [δ(X)E[Y1 − Y0|Y0 < ȳ,X]] (7.2)

for some predetermined ȳ. This can be motivated by maximizing the average of δ(X)Y1 +(1−

δ(X))Y0 (or simply Yδ(X) with deterministic δ), conditional on Y0 < ȳ:

δ∗∗ȳ ∈ arg max
δ∈D

E [δ(X)Y1 + (1− δ(X))Y0|Y0 < ȳ] , (7.3)

because E[δ(X)Y1 +(1−δ(X))Y0|Y0 < ȳ] = E[Y0|Y0 < ȳ]+E[δ(X)E[Y1−Y0|Y0 < ȳ,X]]. The

PM with the criterion (7.3) focuses on the welfare of a disadvantaged population, defined by

the baseline outcome Y0 being less than ȳ. A similar intuition applies to the criterion (7.2),

which can be interpreted as addressing the average gain for the disadvantaged. The ATE

for the disadvantaged, E[Y1 − Y0|Y0 < ȳ], appears as a parameter of interest in the context

of policy evaluation (Heckman and Smith (1995)), which is adapted here for the context of

optimal allocation.

Example 2. Alternative to Example 1, one can consider Λ(FY1,Y0|X) = Qτ (Y1−Y0|Y0 < ȳ,X).
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This would make the criterion robust to outliers and add an additional dimension, τ , to

target a specific subgroup. Analogous to Theorem 2.1, for continuously distributed Yd and

deterministic policy δ, the first-best policy under Q0.5(Y1 − Y0|Y0 < ȳ,X) is the one that

maximizes P
[
Yδ(X) − Y1−δ(X) > 0|Y0 < ȳ

]
= P [δ ∈ arg maxd Yd|Y0 < ȳ].

Example 3. One may wish to target individuals worst-affected by the treatment rather than

those who are worst off at baseline. The conditional value at risk (CVaR) of the distribution

of individual treatment effects can serve just that: Λ(FY1,Y0|X) = E[Y1 − Y0|Y1 − Y0 < ∆̄, X].

Kallus (2023) considers the CVaR, E[Y1 − Y0|Y1 − Y0 < ∆̄] with ∆̄ = Qτ (Y1 − Y0), as a

parameter related to distributional treatment effects and provides a sharp upper bound and,

under restricted heterogeneity, a sharp lower bound on the CVaR.

In all these examples, Λ(FY1,Y0|X) is not generally point-identified, so one can follow the

approach in Section 2.3 by considering

δ∗∗mmr ∈ arg min
δ∈D

max
FY1,Y0|X∈F

E
[
δ(X)Λ(FY1,Y0|X)

]
.

Then, one can apply the identifying assumptions listed in Section 3 and the computational

method proposed in Section 5 to systematically calculate the bounds on Λ(FY1,Y0|X) and

to eventually estimate δ∗∗mmr. Let ΛL(X) and ΛU(X) be the lower and upper bounds on

Λ(FY1,Y0|X). Then the theoretical properties of the estimated policies with constrained and

unconstrained policy classes can be established based on Section 4 by simply replacing QL
τ (X)

and QU
τ (X) with ΛL(X) and ΛU(X) throughout the section.
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A Numerical Illustrations

The question we want to answer via numerical exercises is: how the performance of treatment

allocations differ across welfare criteria, especially when the QoTE is partially identified. To

facilitate illustration, we focus on in the case of unconstrained D and no X.

A.1 Simulation Design

We consider the following data-generating processes (DGPs). We draw either (Y1, Y0) or

(log Y1, log Y0) from N(µ,Σ), where µ = (µ1, µ0)′ and Σ =
( σ1 ρ10

√
σ0σ1

ρ10
√
σ0σ1 σ0

)
, and D inde-

pendently from Bernoulli(0.5). Then, the observed outcome is generated by Y = DY1 +(1−

D)Y0. Note that, under the bivariate normal distribution, Y1|Y0 ∼ N(µ1+ρ10σ1Z0, (1−ρ2σ1))

where Z0 = Y0−µ0
σ0

. Therefore, Y1 and Y0 satisfying stochastically increasingness (SI) (i.e., As-

sumption PD(iii)) when ρ10 ≥ 0. In fact, this is also true when Y1 and Y0 are bivariate

log-normal; they are stochastically increasing when ρ10 ≥ 0. When D is unrestricted, the

true optimal policies based on the QoTE, QTE and ATE can be written as follows:

δ∗ = 1{Qτ (Y1 − Y0) > 0} where Qτ (Y1 − Y0) = µ1 − µ0 + Φ−1(τ)
√
σ2

1 + σ2
0 − 2ρ10σ1σ0,

δ∗QTE = 1{Qτ (Y1)−Qτ (Y0) > 0} where Qτ (Y1)−Qτ (Y0) = µ1 − µ0 + Φ−1(τ)(σ1 − σ0),

δ∗ATE = 1{E[Y1 − Y0] > 0} where E[Y1 − Y0] = µ1 − µ0.

Note that these policies are first-best regardless of whether we consider a deterministic or

stochastic policy. Unlike δ∗QTE and δ∗ATE, the proposed δ∗ involves model uncertainty. There-

fore we consider δ∗mmr that minimizes (4.1). Its expression for the optimal deterministic and

stochastic policies δ∗,determ and δ∗,stoch are given in Section 4.1.

In simulation, the bounds QL
τ and QU

τ are calculated under either no assumption (i.e.,

Makarov bounds) or SI. Under the latter, we use discretization to calculate the bounds. For

the population policies δ∗mmr, δ
∗
QTE and δ∗ATE, we estimate their sample counterparts δ̂∗, δ̂∗QTE

and δ̂∗ATE by estimating QU
τ , QL

τ , Qτ (Yd), and E[Yd] (d = 0, 1). Since D is exogenous in our
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simulated data, Qτ (Yd) = Qτ (Y |D = d) and E[Yd] = E[Y |D = d]. For each estimate δ̂j of δ∗j

(j ∈ {∅, QTE,ATE}), the misclassification error is En[1{δ̂j 6= δ∗j}] and regret is defined as

En[|Tj| ·1{δ̂j 6= δ∗j}] where T = Qτ (Y1−Y0), TQTE = Qτ (Y1)−Qτ (Y0), and TATE = E[Y1−Y0]

are the corresponding treatment effects (or equivalently the welfare gains). We focus on

τ = 0.25.

A.2 Simulation Results

Tables 3–4 present the simulated correct classification rates of the estimated policies relative

to the (true) population policies. We set n = 1000 for Table 3 and n = 50 for Table 4. To

calculate each classification rate, we replicate each experiment 200 times. We consider both

the correct specification of SI and misspecification. We also vary the parameter values in the

normal and log-normal distributions. We treat each DGP as a subgroup of population (as

if it corresponds to a particular value of X if covariates were to be introduced). Subgroups

1–4 and 7 follow the normal distribution and SI, and Subgroups 5–6 are where SI is violated.

Under bivariate normality and SI, if 0 < τ < 0.5, Qτ (Y1 − Y0) < Qτ (Y1) − Qτ (Y0) and

Qτ (Y1 − Y0) < E(Y1) − E(Y0). The purpose of Subgroup 8 is to break this mechanical

relationship. Subgroup 8 follows the log-normal distribution and SI.
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Optimal Policy
Estimated Policy

δ̂stoch,SI δ̂stoch δ̂determ,SI δ̂determ δ̂QTE δ̂ATE

Subgroup 1
δ∗ 100% 100% 100% 100% 1.5% 100%
δ∗QTE 0% 0% 0% 0% 98.5% 0%
δ∗ATE 100% 100% 100% 100% 1.5% 100%

Subgroup 2
δ∗ 100% 99% 100% 100% 0% 0%
δ∗QTE 0% 1% 0% 0% 100% 100%
δ∗ATE 0% 1% 0% 0% 100% 100%

Subgroup 3
δ∗ 89% 59% 100% 95% 100% 100%
δ∗QTE 89% 59% 100% 95% 100% 100%
δ∗ATE 89% 59% 100% 95% 100% 100%

Subgroup 4
δ∗ 21% 43% 0% 20% 0% 0%
δ∗QTE 79% 57% 100% 80% 100% 100%
δ∗ATE 79% 57% 100% 80% 100% 100%

Subgroup 5
δ∗ 92% 74% 100% 100% 100% 0%
δ∗QTE 92% 74% 100% 100% 100% 0%
δ∗ATE 8% 26% 0% 0% 0% 100%

Subgroup 6
δ∗ 34% 48% 6.5% 86% 0% 0%
δ∗QTE 66% 52% 93.5% 14% 100% 100%
δ∗ATE 66% 52% 93.5% 14% 100% 100%

Subgroup 7
δ∗ 76.5% 53% 100% 31.5% 100% 100%
δ∗QTE 76.5% 53% 100% 31.5% 100% 100%
δ∗ATE 76.5% 53% 100% 31.5% 100% 100%

Subgroup 8 (log normal)
δ∗ 99.5% 48% 100% 32.5% 100% 4.5%
δ∗QTE 99.5% 48% 100% 32.5% 100% 4.5%
δ∗ATE 0% 52% 0% 67.5% 0% 95.5%

Table 3: Correct Classification Rate (τ = 0.25, n = 1000)
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Optimal Policy
Estimated Policy

δ̂stoch,SI δ̂stoch δ̂determ,SI δ̂determ δ̂QTE δ̂ATE

Subgroup 1
δ∗ 100% 100% 100% 100% 33.5% 93%
δ∗QTE 0% 0% 0% 0% 66.5% 7%
δ∗ATE 100% 100% 100% 100% 33.5% 93%

Subgroup 2
δ∗ 92% 90% 90.5% 94% 1% 17%
δ∗QTE 8% 10% 9.5% 6% 99% 83%
δ∗ATE 8% 10% 9.5% 6% 99% 83%

Subgroup 3
δ∗ 79% 51% 84% 62% 99.5% 100%
δ∗QTE 79% 51% 84% 62% 99.5% 100%
δ∗ATE 79% 51% 84% 62% 99.5% 100%

Subgroup 4
δ∗ 26% 49.5% 14.5% 44% 1.5% 0.5%
δ∗QTE 74% 50.5% 85.5% 56% 98.5% 99.5%
δ∗ATE 74% 50.5% 85.5% 56% 98.5% 99.5%

Subgroup 5
δ∗ 82% 81% 83% 93.5% 66.5% 4%
δ∗QTE 82% 81% 83% 93.5% 66.5% 4%
δ∗ATE 18% 19% 17% 6.5% 33.5% 96%

Subgroup 6
δ∗ 43% 61.5% 40% 61% 24% 0%
δ∗QTE 57% 38.5% 60% 39% 76% 100%
δ∗ATE 57% 38.5% 60% 39% 76% 100%

Subgroup 7
δ∗ 71.5% 48% 80% 49.5% 96% 99.5%
δ∗QTE 71.5% 48% 80% 49.5% 96% 99.5%
δ∗ATE 71.5% 48% 80% 49.5% 96% 99.5%

Subgroup 8 (log normal)
δ∗ 81% 53% 85% 48% 100% 58.5%
δ∗QTE 81% 53% 85% 48% 100% 58.5%
δ∗ATE 19% 47% 15% 52% 0% 41.5%

Table 4: Correct Classification Rate (τ = 0.25, n = 50)
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Here are the summary of the features in the DGP and corresponding results in Tables

3–4. Recall that τ = 0.25.

Overall, the correct classification rate tends to be high when the welfare criterion of the

estimated policy matches that of the population policy.

Subgroup 1 : Both intervals under SI and no assumption exclude 0 and lie relatively far from

it; therefore, both δ̂ and δ̂SI perform well; δ∗QTE 6= δ∗ = δ∗ATE.

Subgroup 2 : Both intervals under SI and no assumption exclude 0; δ̂determ does not perform

worse than δ̂determ,SI for δ∗ because QL,SI
τ −QL

τ > QU
τ −QU,SI

τ ; δ∗ 6= δ∗QTE = δ∗ATE.

Subgroup 3: Both intervals under SI and no assumption cover 0 (and the same holds for

Subgroups 4–7); δ̂SI performs better than δ̂; QL,SI
τ −QL

τ > QU
τ −QU,SI

τ and, under the bivariate

normal distribution and SI, Qτ (Y1−Y0) < Qτ (Y1)−Qτ (Y0) and Qτ (Y1−Y0) < E(Y1)−E(Y0)

always hold, and thus both δ̂QTE and δ̂ATE perform well; δ∗ = δ∗QTE = δ∗ATE = 1.

Subgroup 4: Both δ̂SI and δ̂ perform poorly for δ∗ because the bound on Qτ (Y1 − Y0) covers

zero, and the difference between the upper bound and zero is larger than the difference

between the lower bound and zero; δ∗ 6= δ∗QTE = δ∗ATE.

Subgroup 5: SI is false but δ̂SI does not perform so poorly because Qτ (Y1−Y0) is still covered

by a relatively long interval; for the same reason, δ̂ does not perform significantly better;

δ∗ = δ∗QTE 6= δ∗ATE.

Subgroup 6: SI is false and δ̂SI performs poorly because Qτ (Y1 − Y0) is not covered by a

relatively long interval; δ̂ does not perform well because QL,SI
τ − QL

τ < QU
τ − QU,SI

τ ; δ∗ 6=

δ∗QTE = δ∗ATE.

Subgroup 7: δ̂SI makes a correct decision while δ̂ performs worse; meanwhile, δ̂QTE and δ̂ATE

perform well.

Subgroup 8: The interval under SI excludes 0 while the interval under no assumption covers

0; therefore, δ̂SI performs better than δ̂; under this log-normal setting and SI, Qτ (Y1−Y0) <
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E(Y1)−E(Y0) may be violated, which occurs in the current subgroup and thus δ̂SI performs

better than δ̂ATE.

A.3 Additional Simulation Results

Tables 5 and 6 present the classification rates with τ = 0.75. The overall patterns are

analogous to the case with τ = 0.25.

A.4 Details of the DGPs of Subgroups in Simulation

Tables 7 and 8 show the details of the DGPs and related outputs used in the simulation

results of Sections A.2 (with τ = 0.25) and A.3 (with τ = 0.75), respectively.
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Optimal Policy
Estimated Policy

δ̂stoch,SI δ̂stoch δ̂determ,SI δ̂determ δ̂QTE δ̂ATE

Subgroup 1
δ∗ 100% 100% 100% 100% 1.5% 100%
δ∗QTE 0% 0% 0% 0% 98.5% 0%
δ∗ATE 100% 100% 100% 100% 1.5% 100%

Subgroup 2
δ∗ 100% 99% 100% 100% 0% 0%
δ∗QTE 0% 1% 0% 0% 100% 100%
δ∗ATE 0% 1% 0% 0% 100% 100%

Subgroup 3
δ∗ 89% 59% 100% 95% 100% 100%
δ∗QTE 89% 59% 100% 95% 100% 100%
δ∗ATE 89% 59% 100% 95% 100% 100%

Subgroup 4
δ∗ 21% 43% 0% 20% 0% 0%
δ∗QTE 79% 57% 100% 80% 100% 100%
δ∗ATE 79% 57% 100% 80% 100% 100%

Subgroup 5
δ∗ 92% 74% 100% 100% 100% 0%
δ∗QTE 92% 74% 100% 100% 100% 0%
δ∗ATE 8% 26% 0% 0% 0% 100%

Subgroup 6
δ∗ 34% 48% 6.5% 86% 0% 0%
δ∗QTE 66% 52% 93.5% 14% 100% 100%
δ∗ATE 66% 52% 93.5% 14% 100% 100%

Subgroup 7
δ∗ 76.5% 53% 100% 31.5% 100% 100%
δ∗QTE 76.5% 53% 100% 31.5% 100% 100%
δ∗ATE 76.5% 53% 100% 31.5% 100% 100%

Subgroup 8 (log normal)
δ∗ 99.5% 48% 100% 32.5% 100% 4.5%
δ∗QTE 99.5% 48% 100% 32.5% 100% 4.5%
δ∗ATE 0% 52% 0% 67.5% 0% 95.5%

Table 5: Correct Classification Rate (τ = 0.75, n = 1000)
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Optimal Policy
Estimated Policy

δ̂stoch,SI δ̂stoch δ̂determ,SI δ̂determ δ̂QTE δ̂ATE

Subgroup 1
δ∗ 100% 100% 100% 100% 33.5% 93%
δ∗QTE 0% 0% 0% 0% 66.5% 7%
δ∗ATE 100% 100% 100% 100% 33.5% 93%

Subgroup 2
δ∗ 92% 90% 90.5% 94% 1% 17%
δ∗QTE 8% 10% 9.5% 6% 99% 83%
δ∗ATE 8% 10% 9.5% 6% 99% 83%

Subgroup 3
δ∗ 79% 51% 84% 62% 99.5% 100%
δ∗QTE 79% 51% 84% 62% 99.5% 100%
δ∗ATE 79% 51% 84% 62% 99.5% 100%

Subgroup 4
δ∗ 26% 49.5% 14.5% 44% 1.5% 0.5%
δ∗QTE 74% 50.5% 85.5% 56% 98.5% 99.5%
δ∗ATE 74% 50.5% 85.5% 56% 98.5% 99.5%

Subgroup 5
δ∗ 82% 81% 83% 93.5% 66.5% 4%
δ∗QTE 82% 81% 83% 93.5% 66.5% 4%
δ∗ATE 18% 19% 17% 6.5% 33.5% 96%

Subgroup 6
δ∗ 43% 61.5% 40% 61% 24% 0%
δ∗QTE 57% 38.5% 60% 39% 76% 100%
δ∗ATE 57% 38.5% 60% 39% 76% 100%

Subgroup 7
δ∗ 71.5% 48% 80% 49.5% 96% 99.5%
δ∗QTE 71.5% 48% 80% 49.5% 96% 99.5%
δ∗ATE 71.5% 48% 80% 49.5% 96% 99.5%

Subgroup 8 (log normal)
δ∗ 81% 53% 85% 48% 100% 58.5%
δ∗QTE 81% 53% 85% 48% 100% 58.5%
δ∗ATE 19% 47% 15% 52% 0% 41.5%

Table 6: Correct Classification Rate (τ = 0.75, n = 50)
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Subgroup (µ1, µ0) (σ2
1, σ

2
0) ρ10 δ∗ δ∗QTE δ∗ATE

1 (2, 3) (1, 9) 0.5
0

(−2.97)
1

(0.34)
0

(−1)

2 (4, 3) (1, 25) 0.5
0

(−2.09)
1

(3.7)
1

(1)

3 (7, 3) (9, 25) 0.5
1

(1.1)
1

(5.35)
1

(4)

4 (3, 1) (5, 5) 0.1
0

(−0.23)
1

(2)
1

(2)

5 (3, 2) (9, 1) −0.5
0

(−1.43)
0

(−0.35)
1

(1)

6 (3, 0) (25, 4) −0.5
0

(−1.21)
1

(0.98)
1

(3)

7 (2, 0) (8, 4) 0.5
1

(0.30)
1

(1.44)
1

(2)

8 (3, 0) (2, 8) 0.8
1

(-)
1

(4.28)
0

(−1.5)

Subgroup QL,SI
τ QU,SI

τ QL
τ QU

τ δ∗,stoch,SI δ∗,stoch Y1 − Y0

1 −3.48 −1.84 −5.1 −1.1 100% 100% N(−1, 7)
2 −2.8 −1.19 −4.50 −0.17 100% 100% N(1, 21)
3 −0.74 3.91 −4.83 5.63 84% 54% N(4, 19)
4 −0.68 2.54 −3.1 3.38 21% 48% N(2, 9)
5 −1.48 0.16 −3.1 0.9 90% 77% N(1, 13)
6 −1.24 1.92 −4.3 3.5 39% 55% N(3, 39)

7 −0.86 2.17 −3.37 3.21 72% 49% N(2, 12− 4
√

2)
8 0.38 6.57 −8.5 7.75 100% 48% -

Subgroup 8 is under log-normal transformation, i.e., (log Y1, log Y0) ∼ N(µ,Σ).
In the parentheses of δ∗, δ∗QTE , and δ∗ATE are the values of Qτ (Y1 − Y0), Qτ (Y1) − Qτ (Y0), and
E[Y1 − Y0], respectively.

Table 7: DGP and Population Values
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Subgroup (µ1, µ0) (σ2
1, σ

2
0) ρ10 δ∗ δ∗QTE δ∗ATE

1 (2, 3) (1, 9) 0.5
1

(0.79)
0

(−2.35)
0

(−1)

2 (4, 3) (1, 25) 0.5
1

(4.09)
0

(−1.70)
1

(1)

3 (7, 3) (9, 25) 0.5
1

(6.94)
1

(2.65)
1

(4)

4 (3, 1) (5, 5) 0.1
1

(4.02)
1

(2)
1

(2)

5 (3, 2) (9, 1) −0.5
1

(3.43)
1

(2.35)
1

(1)

6 (3, 0) (25, 4) −0.5
1

(7.21)
1

(5.02)
1

(3)

7 (2, 0) (8, 4) 0.5
1

(3.70)
1

(2.56)
1

(2)

8 (3, 0) (2, 11) 0.8
1

(-)
1

(1.72)
0

(−1.5)

Subgroup QL,SI
τ QU,SI

τ QL
τ QU

τ δ∗,stoch,SI δ∗,stoch Y1 − Y0

1 −0.16 1.48 −0.92 3.10 95% 77% N(−1, 7)
2 3.19 4.80 2.17 6.50 100% 100% N(1, 21)
3 4.08 8.74 2.37 12.83 100% 100% N(4, 19)
4 1.46 4.68 0.61 7.10 100% 100% N(2, 9)
5 1.84 3.48 1.08 5.10 100% 100% N(1, 13)
6 4.08 7.25 2.50 10.25 100% 100% N(3, 39)

7 1.82 4.87 0.79 7.37 100% 100% N(2, 12− 4
√

2)
8 18.07 27.33 11.50 26.69 100% 100% -

Subgroup 8 is under log-normal transformation, i.e., (log Y1, log Y0) ∼ N(µ,Σ).
In the parentheses of δ∗, δ∗QTE , and δ∗ATE are the values of Qτ (Y1 − Y0), Qτ (Y1) − Qτ (Y0), and
E[Y1 − Y0], respectively.

Table 8: DGP and Population Values
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B Welfare Criteria with Stochastic Rules

We present a more rigorous formulation of the welfare criteria in Section 2 when a stochastic

rule is considered. Let A(x) is a r.v. representing the stochastic rule drawn from Bernoulli

with parameter δ(x) ≡ Pr[A(x) = 1|X = x]. Then, by assuming A(X) ⊥ Yd|X for any d

(and using it in the third equality below), we have

E[A(X)Y1 + (1− A(X))Y0] = E[Y0] + E[A(X)(Y1 − Y0)]

= E[Y0] + E[A(X)E[Y1 − Y0|A(X), X]]

= E[Y0] + E[A(X)E[Y1 − Y0|X]]

= E[Y0] + E[E[A(X)E[Y1 − Y0|X]|X]]

= E[Y0] + E[E[Y1 − Y0|X]E[A(X)|X]]

= E[Y0] + E[E[Y1 − Y0|X]δ(X)]

= E[δ(X)Y1 + (1− δ(X))Y0].

Similarly, motivated from the third line above

E[A(X)Q(Y1 − Y0|X)] = E[E[A(X)Q(Y1 − Y0|X)|X]]

E[Q(Y1 − Y0|X)E[A(X)|X]]

= E[Q(Y1 − Y0|X)δ(X)].

Based on these results, it suffices to use δ(x) for both deterministic and stochastic rules in

Sections 4 and 7.
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C Proofs

C.1 Proof of Lemma 4.1

Proof. Fix x and let R̄(δ;x) ≡ maxQτ (x)∈[QLτ (x),QUτ (x)] |Qτ (x)|1{A(x) 6= sign(Qτ (x))}. If 0 ≤

QL
τ (x) ≤ QU

τ (x),

R̄(δ;x) = |QU
τ (x)|1{A(x) 6= 1} = QU

τ (x)1{A(x) 6= 1}

and if 0 ≥ QU
τ (x) ≥ QL

τ (x),

R̄(δ;x) = |QL
τ (x)|1{A(x) 6= 0} = −QL

τ (x)1{A(x) 6= 0}.

Finally, if QL
τ (x) < 0 < QU

τ (x),

R̄(δ;x) = |QU
τ (x)|1{A(x) 6= 1}+ |QL

τ (x)|1{A(x) 6= 0}

= QU
τ (x)1{A(x) 6= 1} −QL

τ (x)1{A(x) 6= 0}.

Therefore, by the law of iterated expectation and Assumption RC, we have

R̄(δ) = E
[
QU
τ (X)[1− δ(X)]1{QL

τ (X) ≥ 0} −QL
τ (X)δ(X)1{QU

τ (X) ≤ 0}

+QU
τ (X)[1− δ(X)]1{QL

τ (X) < 0 < QU
τ (X)} −QL

τ (X)δ(X)1{QL
τ (X) < 0 < QU

τ (X)}
]
.

(C.1)

From (C.1), it is straightforward to show (4.2) and (4.3). To show (4.4), note that, if

QL
τ (x) < 0 < QU

τ (x),

QU
τ (x)1{A(x) 6= 1} −QL

τ (x)1{A(x) 6= 0}

= |QU
τ (x) +QL

τ (x)|1{A(x) 6= sign(QU
τ (x) +QL

τ (x))}+ min(QU
τ (x),−QL

τ (x)).
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This can be shown by inspecting each case of A(x) = 1 and A(x) = 0. If 0 ≤ QL
τ (x) ≤ QU

τ (x),

it is obvious that QU
τ (x)1{A(x) 6= 1} = QU

τ (x)1{A(x) 6= sign(QU
τ (x))} and similarly for the

case of 0 ≥ QU
τ (x) ≥ QL

τ (x). Then, by applying the law of iterated expectation, we have the

desired result.

C.2 Proof of Theorem 4.1

Proof. Given the expression of δ∗,stoch, the maximum risk of δ∗,stoch is

R̄(δ∗,stoch) = E

[
QL
τ (X)QU

τ (X)

QL
τ (X)−QU

τ (X)
1{QL

τ (X) < 0 < QU
τ (X)}

]
.

Without loss of generality, suppose X ∈ [0, 1]p. Since R(δ∗,stoch) ≤ R̄(δ∗,stoch), we have

R(δ̂∗,stoch) ≤ E

[
QL
τ (X)QU

τ (X)

QL
τ (X)−QU

τ (X)
1{QL

τ (X) < 0 < QU
τ (X)}

]
+ op(1),

because V (δ̂stoch)− V (δ∗,stoch) = op(1), which can be shown as follows:

V (δ̂stoch)− V (δ∗,stoch) = E[(Â(X)− A(X))Qτ (X)] = op(1)O(1) = op(1)

and E[Â(X)−A(X)] = E[δ̂stoch(X)− δ∗,stoch(X)] = op(1) by the definition of A(X) and the

definition of Â(X) with the estimated Bernoulli probability δ̂stoch(X).

Next, given the expression of δ∗,determ, the maximum risk of δ∗,determ is

R̄(δ∗,determ) = E[min(max(QU
τ (X), 0),max(−QL

τ (X), 0))].

Again, since R(δ∗,determ) ≤ R̄(δ∗,determ) we have

R̄(δ̂determ) ≤ E[min(max(QU
τ (X), 0),max(−QL

τ (X), 0))] + op(1),
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because V (δ̂determ)− V (δ∗,determ) = op(1), which can be shown as follows:

V (δ̂determ)− V (δ∗,determ)

=E[1(δ̂determ(X) = δ∗,determ(X))× 0 + 1(δ̂determ(X) = 1, δ∗,determ(X) = 0)×Qτ (X)

− 1(δ̂determ(X) = 0, δ∗,determ(X) = 1)×Qτ (X)]

=0 + op(1)O(1) = op(1),

and E[1(δ̂determ(X) 6= δ∗,determ(X))] = P [δ̂determ(X) 6= δ∗,determ(X)] = op(1) by the definition

of δ̂determ and δ∗,determ.

C.3 Proof of Theorem 4.2

Proof. By Theorem 3.2 of Zhao et al. (2012), we have that

R̄(f̂)− inf
f
R̄(f) ≤ R̄S(f̂)− inf

f
R̄S(f).

We essentially need to bound the right-hand side. Let

f̃ = arg min
f∈Hk

E[|Q̄τ (X)|φ{sign(Q̄τ (X))f(X)}+ λn||f ||2].
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Note that

R̄S(f̂)− inf
f
R̄S(f)

=R̄S(f̂)− R̄S(f̃) + R̄S(f̃)− inf
f∈Hk

[R̄S(f) + λn||f ||2] + inf
f∈Hk

[R̄S(f) + λn||f ||2]− inf
f
R̄S(f)

≤ inf
f∈Hk

[R̄S(f) + λn||f ||2]− inf
f
R̄S(f)

− 1

n

n∑
i=1

[| ̂̄Qτ (Xi)|φ{sign(Q̂τ (Xi))f̂(Xi)}+ λn||f̂ ||2 − | ̂̄Qτ (Xi)|φ{sign( ̂̄Qτ (Xi))f̃(Xi)} − λn||f̃ ||2]

+ E[| ̂̄Qτ (X)|φ{sign(Q̂τ (X))f̂(X)}+ λn||f̂ ||2 − | ̂̄Qτ (X)|φ{sign( ̂̄Qτ (X))f̃(X)} − λn||f̃ ||2]

+ E[| ̂̄Qτ (X)|φ{sign(Q̄τ (X))f̂(X)}]− E[| ̂̄Qτ (X)|φ{sign( ̂̄Qτ (X))f̂(X)}]

+ E[| ̂̄Qτ (X)|φ{sign(Q̂τ (X))f̃(X)}]− E[|Q̄τ (X)|φ{sign(Q̄τ (X))f̃(X)}].

Following the proof of Theorem 1 of Zhao et al. (2015), we have that

R̄S(f̂)− inf
f
R̄S(f)

≤a(λn) +Mpc
2
p+2
n (nλn)−

2
p+2 +Mpλ

−1/2
n c

2
p+2
n n−

2
p+2 +Kη

1

nλn
+ 2Kη

1

nλ
1/2
n

+Op(n
−αλ−1/2

n )

with probability larger than 1− 2 exp(−η).

C.4 Proof of Lemma 5.1

Proof. In terms of notation, let Qτ (Yd|X) = F−1
d|X(τ). For any ε > 0, as n goes to infinity,

P [|{F̂−1
1|X(v)− F̂−1

0|X(u)}−{F−1
1|X(v)−F−1

0|X(u)}| ≥ ε]→ 0. Therefore, on a set with probability

converging to 1, we have for F−1
1|X(v)− F−1

0|X(u) /∈ (t− ε, t+ ε),

∣∣∣∣∫ ∫ 1{F̂−1
1|X(v)− F̂−1

0|X(u) ≤ t}c(u, v)dudv −
∫ ∫

1{F−1
1|X(v)− F−1

0|X(u) ≤ t}c(u, v)dudv

∣∣∣∣ = 0,

50



where c(u, v) is the copula density (which is bounded), because 1{F̂−1
1|X(v)− F̂−1

0|X(u) ≤ t} =

1{F−1
1|X(v)− F−1

0|X(u) ≤ t}. For F−1
1|X(v)− F−1

0|X(u) ∈ (t− ε, t+ ε),

∣∣∣∣∫ ∫ 1{F̂−1
1|X(v)− F̂−1

0|X(u) ≤ t}c(u, v)dudv −
∫ ∫

1{F−1
1|X(v)− F−1

0|X(u) ≤ t}c(u, v)dudv

∣∣∣∣ ≤ Op(ε),

because
∫ ∫

(u,v):F−1
1|X(v)−F−1

0|X(u)∈(t−ε,t+ε) c(u, v)dudv = Op(ε). Hence, for the infeasible optimal

value F̃L
∆|X(t) of the linear program using F̂−1

1|X(v) and F̂−1
0|X(u), we have

|F̃L
∆|X(t)− FL

∆|X(t)| = op(1).

For the feasible optimal value F̂L
∆(t) using the discretization approach, we can show that

F̂L
∆(t) = min

c(·,·)

k∑
j=1

k∑
i=1

1{F̂−1
Y1

(r(i))− F̂−1
Y0

(r(j)) ≤ t}c(i, j)→ F̃L
∆(t),

as k = k(n) goes to infinity. Therefore, |F̂L
∆|X(t)− FL

∆|X(t)| = op(1). We can similarly prove

the claim for the upper bound F̂U
∆|X(t) and bounds that are obtained using the Bernstein

approximation.
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