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Abstract. Many applications involve a censored dependent variable, an endoge-
nous independent variable, or both. Chernozhukov, Fernández-Val, and Kowalski
(2015, Journal of Econometrics 186: 201–221) introduced a censored quantile
instrumental-variable (CQIV) estimator for use in those applications. The estima-
tor has been applied by Kowalski (2016, Journal of Business & Economic Statistics

34: 107–117), among others. In this article, we introduce a command, cqiv, that
simplifies application of the CQIV estimator in Stata. We summarize the CQIV

estimator and algorithm, describe the use of cqiv, and provide empirical examples.
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1 Introduction
In 2015, Chernozhukov, Fernández-Val, and Kowalski introduced a censored quantile
instrumental-variables (CQIV) estimator. In this article, we introduce a command, cqiv,
that implements the CQIV estimator in Stata. Our goal is to facilitate the use of cqiv
in many applications.

Many applications involve censoring and endogeneity. For example, suppose that
we are interested in the price elasticity of medical expenditure, as in Kowalski (2016).
Medical expenditure is censored from below at 0, and the price of medical care is en-
dogenous to the level of medical expenditure through the structure of the insurance
contract. Given an instrument for the price of medical care, the CQIV estimator facil-
itates estimation of the price elasticity of expenditure on medical care in a way that
addresses censoring and endogeneity.

The CQIV estimator addresses censoring using the censored quantile regression (CQR)
approach of Powell (1986), and it addresses endogeneity using a control function ap-
proach. For computation, the CQIV estimator adapts the Chernozhukov and Hong
(2002) algorithm for CQR estimation. An important side feature of cqiv is that it
can also be used in quantile regression applications that do not include censoring or
endogeneity.
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In section 2, we summarize the theoretical background of the cqiv command, follow-
ing Chernozhukov, Fernández-Val, and Kowalski (2015). In section 3, we introduce the
use of cqiv. We provide an empirical application with examples that involve estimating
Engel curves, as in Chernozhukov, Fernández-Val, and Kowalski (2015).

2 CQIV estimation

We first describe a model of triangular system for CQIV regression. Suppose y is an
observed response variable obtained by censoring a continuous latent response y∗ from
below at the level determined by the variable c. Let d be the continuous regressor of
interest, possibly endogenous;1 w be a vector of covariates, possibly containing c; and z

be a vector of (possibly discrete) instrumental variables excluded from the equation for
y∗. We observe {yi, di,wi, zi, ci}ni=1, a sample of size n of independent and identically
distributed observations from the random vector (y, d,w, z, c), which obeys

y = max(y∗, c) (1)

y∗ = Qy∗(u | d,w, v) = x′β0(u) (2)

d = Qd(v | w, z) (3)

where v is a latent unobserved variable that accounts for the possible endogeneity of
d, x = x (d,w, v) with x (d,w, v) being a vector of transformations of (d,w, v), Qy∗(u |
d,w, v) is the u-quantile of y∗ conditional on (d,w, v), β0(u) is the vector of coefficients
in the u-quantile function of y∗ conditional on (d,w, v), Qd(v | w, z) is the v-quantile
of d conditional on (w, z), and

u ∼ U(0, 1) | d,w, z, v, c

v ∼ U(0, 1) | w, z, c

This CQIV regression model nests the uncensored case of the quantile instrumental-
variable (QIV) regression by making c arbitrarily small. As an example for the CQIV

model, in the Engel curve application of Chernozhukov, Fernández-Val, and Kowalski
(2015), y is the expenditure share in alcohol (bounded from below at c = 0), d is total
expenditure on nondurables and services, w are household demographic characteristics,
and z is labor income measured by the earnings of the head of the household. To-
tal expenditure is likely to be jointly determined with the budget composition in the
household’s allocation of income across consumption goods and leisure. Thus, house-
holds with a high preference to consume “nonessential” goods, such as alcohol, tend to
expend a higher proportion of their incomes, and therefore they tend to have a higher
expenditure. The control variable v in this case is the marginal propensity to consume,
measured by the household ranking in the conditional distribution of expenditure given
labor income and household characteristics. This propensity captures unobserved pref-
erence variables that affect both the level and the composition of the budget. Under the
conditions for a two-stage budgeting decision process (Gorman 1959), where the house-
hold first divides income between consumption and leisure or labor and then decides

1. We consider a single endogenous regressor d in the model and in the cqiv procedure.
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the consumption allocation, some sources of income can provide plausible exogenous
variation with respect to the budget shares. For example, if preferences are weakly
separable in consumption and leisure or labor, then the consumption budget shares
do not depend on labor income given the consumption expenditure (see, for example,
Deaton and Muellbauer [1980]). This justifies the use of labor income as an exclusion
restriction.

A simple version of the model (1)–(3) is

y∗ = β00 + β01d+ β02w +Φ−1(ǫ) ǫ ∼ U(0, 1) (4)

where Φ−1 denotes the quantile function of the standard normal distribution. Also
assume that {Φ−1(v), Φ−1(ǫ)} is jointly normal with correlation ρ0. From the properties
of the multivariate normal distribution, Φ−1(ǫ) = ρ0Φ

−1(v) + (1− ρ20)
1/2Φ−1(u), where

u ∼ U(0, 1). This result yields a specific expression for the conditional quantile function
of y∗,

Qy∗(u | d,w, v) = x′β0(u) = β00 + β01d+ β02w + ρ0Φ
−1(v)

+ (1− ρ20)
1/2Φ−1(u) (5)

where v enters the equation through Φ−1(v).

Given this model, Chernozhukov, Fernández-Val, and Kowalski (2015) introduce the
estimator for the parameter β0(u) as

β̂(u) = arg min
β∈Rdim(x)

1

n

n∑

i=1

1 (ŝ′iγ̂ > ς) ρu (yi − x̂′
iβ) (6)

where ρu(z) = {u− 1(z < 0)}z is the asymmetric absolute loss function of Koenker and
Bassett (1978), x̂i = x (di,wi, v̂i), ŝi = s(x̂i, ci), s(x, c) is a vector of transformations of
(x, c), ς is a positive cutoff, and v̂i is an estimator of vi (which is described below).

The estimator in (6) adapts the algorithm of Chernozhukov and Hong (2002) devel-
oped for the CQR estimator to a setting where there is possible endogeneity. As described
in Chernozhukov, Fernández-Val, and Kowalski (2015), this algorithm is based on the
following implication of the model:

P {y ≤ x′β0(u) | x, c,x′β0(u) > c} = P {y∗ ≤ x′β0(u) | x, c,x′β0(u) > c} = u

provided that P{x′β0(u) > c} > 0. In other words, x′β0(u) is the conditional u-quantile
of the observed outcome for the observations for which x′β0(u) > c; that is, the condi-
tional u-quantile of the latent outcome is above the censoring point. These observations
change with the quantile index and may include censored observations. Chernozhukov,
Fernández-Val, and Kowalski (2015) refer to them as the “quantile-uncensored” obser-
vations. The multiplier 1(ŝ′iγ̂ > ς) is a selector that predicts if observation i is quantile-
uncensored. For the conditions on this selector, consult assumptions 4(a) and 5 in
Chernozhukov, Fernández-Val, and Kowalski (2015).
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cqiv implements the CQIV estimator, which is computed using an iterative proce-
dure where each step takes the form specified in equation (6) with a particular choice
of 1(ŝ′iγ̂ > ς). We briefly describe this procedure here and then provide a practical
algorithm in the next section. The procedure first selects the set of quantile-uncensored
observations by estimating the conditional probabilities of censoring using a flexible
binary choice model. Because {x′β0(u) > c} ≡ {P (y∗ ≤ c | x, c) < u}, quantile-
uncensored observations have a conditional probability of censoring that is lower than
the quantile index u. The linear part of the conditional quantile function, x′

iβ0(u),
is estimated by standard quantile regression using the sample of quantile-uncensored
observations. Then the procedure updates the set of quantile-uncensored observations
by selecting those observations with conditional quantile estimates that are above their
censoring points, x′

iβ̂(u) > ci, and iterate.

cqiv provides different ways of estimating the control variable v, which can be
chosen with the option firststage(string). If Qd(v | w, z) is invertible in v, the
control variable has several equivalent representations:

v = ϑ0(d,w, z) ≡ Fd(d | w, z) ≡ Q−1
d (d | w, z) ≡

∫ 1

0

1{Qd(v | w, z) ≤ d}dv

Fd(d | w, z) is the distribution of d conditional on (w, z). Different estimators of v
can be constructed based on parametric or semiparametric models for Fd(d | w, z) and
Qd(v | w, z). Let r = r (w, z), with r (w, z) being a vector of collecting transformations
of (w, z) specified by the researcher. When string is quantile, a quantile regression
model is assumed, where Qd(v | w, z) = r′π0(v), π0(v) is the vector of coefficients in
the v-quantile function of d conditional on (w, z), and

v =

∫ 1

0

1{r′π0(v) ≤ d}dv

The estimator of v then takes the form

v̂ = τ +

∫ 1−τ

τ

1{r′π̂(v) ≤ d}dv (7)

where π̂(v) is the Koenker and Bassett (1978) quantile regression estimator, which is
calculated within cqiv using the built-in qreg command in Stata, and τ is a small
positive trimming constant that avoids estimation of tail quantiles. The integral in (7)
can be approximated numerically using a finite grid of quantiles.2 Specifically, the fitted
values for prespecified quantile indices (whose number nq is controlled by the option
nquant(#)) are calculated, which then yields

v̂i =
1

nq

nq∑

j=1

1{r′iπ̂(vj) ≤ di}

2. The use of the integral to obtain a generalized inverse is convenient to avoid monotonicity problems
in v 7→ r′π̂(v) that are due to misspecification or sampling error. Chernozhukov, Fernández-Val,
and Galichon (2010) developed asymptotic theory for this estimator.
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For other related quantile regression models that can alternatively be used, see Cher-
nozhukov, Fernández-Val, and Kowalski (2015).

When string is distribution, ϑ0 is estimated using distribution regression. In
this case, we consider a semiparametric model for the conditional distribution of d to
construct a control variable,

v = Fd(d | w, z) = Λ {r′π0(d)}

where Λ is a probit or logit link function that can be chosen using the ldv1(string)

option, where string is either probit or logit. The estimator takes the form

v̂ = Λ {r′π̂(d)} (8)

where π̂(d) is the maximum likelihood estimator of π0(d) at each d (see, for example,
Foresi and Peracchi [1995], and Chernozhukov, Fernández-Val, and Melly [2013]).3 The
expression (8) can be approximated by considering a finite grid of evenly spaced thresh-
olds for the conditional distribution function of d, where the number of thresholds, nt, is
controlled by the option nthresh(#). Concretely, for threshold dj with j = 1, . . . , nt,

v̂i = Λ {r′iπ̂(dj)} for i’s s.t. dj−1 ≤ di < dj with d0 = −∞ and dnt
= ∞

where π̂(dj) is a probit or logit estimate with d̃i(dj) = 1{di ≤ dj} as a dependent
variable and ri as regressors.

Lastly, when string is ols, a linear regression model d = r′π0 + v is assumed, and v̂
is a transformation of the ordinary least-squares (OLS) residual:

v̂i = Φ {(di − r′iπ̂) /σ̂} (9)

where Φ is the standard normal distribution, π̂ is the OLS estimator of π0, and σ̂ is the
estimator of the error standard deviation. In estimation of (6) using cqiv, we assume
that the control function v̂ enters the equation through Φ−1(v̂). This is motivated by
the example (4)–(5).

2.1 CQIV algorithm

The algorithm recommended in Chernozhukov, Fernández-Val, and Kowalski (2015) to
obtain CQIV estimates is similar to Chernozhukov and Hong (2002), but it additionally
has an initial step to estimate the control variable v. This step is numbered as 0 to fa-
cilitate comparison with the Chernozhukov and Hong (2002) three-step CQR algorithm.

3. Chernozhukov, Fernández-Val, and Melly (2013) developed asymptotic theory for this estimator.
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For each desired quantile u, perform the following steps:

0. Obtain v̂i = ϑ̂(di,wi, zi) from (7), (8), or (9), and construct x̂i = x (di,wi, v̂i).

1. Select a set of quantile-uncensored observations J0 = {i : Λ(ŝ′iδ̂) > 1 − u +
k0}, where Λ is a known link function, ŝi = s(x̂i, ci), s is a vector of collecting
transformations specified by the researcher, k0 is a cut-off such that 0 < k0 < u,
and δ̂ = argmaxδ∈Rdim(s)

∑n
i=1[1(yi > ci) log Λ(ŝ

′
iδ) + 1(yi = ci) log{1− Λ(ŝ′iδ)}].

2. Obtain two-step CQIV coefficient estimates, β̂
0
(u) = argminβ∈Rdim(x)

∑
i∈J0

ρu(yi − x̂′
iβ), and update the set of quantile-uncensored observations,

J1 = {i : x̂′
iβ̂

0
(u) > ci + ς1}.

3. Obtain the three-step CQIV coefficient estimates β̂
1
(u), solving the same mini-

mization program as in step 2 with J0 replaced by J1.
4

Remark 1 (Step 1). To predict the quantile-uncensored observations, one can use
a probit, logit, or any other model that fits the data well. cqiv provides the option
ldv2(string), where string can be probit or logit. Note that the model does not need
to be correctly specified; it suffices that it selects a nontrivial subset of observations
with x′

iβ0(u) > ci. To choose the value of k0, it is advisable that a constant fraction of

observations satisfying Λ(ŝ′iδ̂) > 1− u is excluded from J0 for each quantile. To do so,

one needs to set k0 as the q0th quantile of Λ(ŝ′iδ̂) conditional on Λ(ŝ′iδ̂) > 1− u, where
q0 is a percentage (10% worked well in our simulation with little sensitivity to values
between 5% and 15%). The value for q0 can be chosen with the option drop1(#).

Remark 2 (Step 2). To choose the cutoff ς1, it is advisable that a constant fraction

of observations satisfying x̂′
iβ̂

0
(u) > ci is excluded from J1 for each quantile. To do so,

one needs to set ς1 to be the q1th quantile of x̂′
iβ̂

0
(u)− ci conditional on x̂′

iβ̂
0
(u) > ci,

where q1 is a percentage less than q0 (3% worked well in our simulation with little
sensitivity to values between 1% and 5%). The value for q1 can be chosen with the
option drop2(#).5

4. As an optional fourth step, one can update the set of quantile-uncensored observations J2 by

replacing β̂
0
(u) with β̂

1
(u) in the expression for J1 in step 2 and iterate this and the previous

step a bounded number of times. This optional step is not incorporated in the cqiv command,
because Chernozhukov, Fernández-Val, and Kowalski (2015) find little gain of iterating in terms of
bias, root mean squared error, and value of Powell objective function in their simulation exercise.

5. In practice, it is desirable that J0 ⊂ J1. If this is not the case, Chernozhukov, Fernández-Val,
and Kowalski (2015) recommend altering q0, q1, or the specification of the regression models. At
each quantile, the percentage of observations from the full sample retained in J0, the percentage
of observations from the full sample retained in J1, and the percentage of observations from J0

not retained in J1 can be computed as simple robustness diagnostic tests. The estimator β̂
0
(u) is

consistent but will be inefficient relative to the estimator obtained in the subsequent step because
it uses a smaller conservative subset of the quantile-uncensored observations if q0 > q1.
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Remark 3 (Steps 1 and 2). In terms of the notation of (6), the selector of step 1

can be expressed as 1(ŝ′iγ̂ > ς0), where ŝ′iγ̂ = ŝ′iδ̂ − Λ−1(1 − u) and ς0 = Λ−1(1 − u +
k0) − Λ−1(1 − u). The selector of step 2 can also be expressed as 1(ŝ′iγ̂ > ς1), where

ŝi = (x̂′
i, ci)

′ and γ̂ = {β̂0
(u)′,−1}′.

2.2 Weighted bootstrap algorithm

Chernozhukov, Fernández-Val, and Kowalski (2015) recommend obtaining standard er-
rors and confidence intervals through either weighted bootstrap or nonparametric boot-
strap procedures. We focus on the weighted bootstrap here. To speed up the compu-
tation, we propose a procedure that uses a one-step CQIV estimator in each bootstrap
repetition.

For b = 1, . . . , B, repeat the following steps:

1. Draw a set of weights (e1b, . . . , enb) independent and identically distributed from
the standard exponential distribution.

2. Reestimate the control variable in the weighted sample, v̂eib = ϑ̂e
b(di,wi, zi), and

construct x̂e
ib = x (di,wi, v̂

e
ib).

3. Estimate the weighted quantile regression

β̂
e

b(u) = arg min
β∈Rdim(x)

∑

i∈J1b

eibρu
(
yi − β′x̂e

ib

)

where J1b = {i : β̂(u)′x̂e
ib > ci + ς1} and β̂(u) is a consistent estimator of β0(u),

for example, the three-stage CQIV estimator β̂
1
(u).

Remark 4 (Step 2). The estimate of the control function, ϑ̂e
b, can be obtained by

weighted least squares, weighted quantile regression, or weighted distribution regression,
depending upon which string is chosen among ols, quantile, or distribution in the
option firststage(string).

Remark 5 (Step 3). A computationally less expensive alternative is to set J1b = J1 in
all the repetitions, where J1 is the subset of selected observations in step 2 of the CQIV

algorithm. This alternative is not considered in the cqiv routine, because while it is
computationally faster, it sacrifices accuracy.

Remark 6. As discussed in Chernozhukov, Fernández-Val, and Kowalski (2015), we
focus on weighted bootstrap, partly because it has practical advantages over nonpara-
metric bootstrap to deal with discrete regressors with small cell sizes, because it avoids
having singular designs under the bootstrap data-generating process. The cqiv proce-
dure allows both weighted and nonparametric bootstraps.

Remark 7. For a cluster bootstrap procedure with clustered data, the bootstrap
weights are generated after treating the cluster unit as the unit at which observations
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are assumed to be independent. In this procedure, the same weight is drawn for all the
observations within each cluster.

3 The cqiv command

3.1 Syntax

The syntax for cqiv is as follows:

cqiv depvar
[
varlist

] [
(endogvar = instrument)

] [
if
] [

in
] [

weight
] [

,

quantiles(numlist) censorpt(#) censorvar(varname) top uncensored

exogenous firststage(string) firstvar(varlist) nquant(#) nthresh(#)

ldv1(string) ldv2(string) corner drop1(#) drop2(#) viewlog

confidence(string) cluster(string) bootreps(#) setseed(#) level(#)

norobust
]

3.2 Description

cqiv conducts CQIV estimation. It can implement both censored and uncensored
QIV estimation under either exogeneity or endogeneity. The estimators proposed by
Chernozhukov, Fernández-Val, and Kowalski (2015) are used if CQIV estimation or QIV

without censoring estimation are implemented. The estimator proposed by Cherno-
zhukov and Hong (2002) is used if CQR is estimated without endogeneity.

All the variables in the parentheses of the syntax are those involved in the first-stage
estimation of CQIV and QIV.

3.3 Options

Model

quantiles(numlist) specifies the quantiles at which the model is fit and should contain
percentage numbers between 0 and 100. Note that this is not the list of quantiles
for the first-stage estimation with the quantile regression specification.

censorpt(#) specifies the fixed censoring point of the dependent variable. The default
is censorpt(0). An inappropriately specified censoring point will generate errors in
estimation.

censorvar(varname) specifies the censoring variable (that is, the random censoring
point) of the dependent variable.

top sets right-censoring of the dependent variable; otherwise, left-censoring is assumed
as the default.
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uncensored selects uncensored QIV estimation.

exogenous selects CQR with no endogeneity, which is proposed by Chernozhukov and
Hong (2002).

firststage(string) determines the first-stage estimation procedure, where string may
be specified as quantile for quantile regression (the default), distribution for
distribution regression (either probit or logit), or ols for OLS estimation. Be aware
that firststage(distribution) can take a long time to execute.

firstvar(varlist) specifies the list of variables other than instruments that are included
in the first-stage estimation. The default is all the variables that are included in the
second-stage estimation.

nquant(#) determines the number of quantiles used in the first-stage estimation when
the estimation procedure is firststage(quantile). The default is nquant(50);
that is, 50 evenly spaced quantiles from 1/51 to 50/51 are chosen in the estimation.
It is advisable to choose a value between 20 to 100.

nthresh(#) determines the number of thresholds used in the first-stage estimation
when the estimation procedure is specified as firststage(distribution). The
default is nthresh(50); that is, 50 evenly spaced thresholds (that is, the sample
quantiles of depvar) are chosen in the estimation. It is advisable to choose a value
between 20 and the value of the sample size.

ldv1(string) determines the limited dependent variable model used in the first-stage
estimation when the estimation procedure is firststage(distribution), where
string is either probit for probit estimation (the default) or logit for logit estima-
tion.

ldv2(string) determines the limited dependent variable model used in the first step of
the second-stage estimation, where string is either probit (the default) or logit.

CQIV estimation

corner calculates the (average) marginal quantile effects for the censored dependent
variable when the censoring is due to economic reasons, such as corner solutions.
Under this option, the reported coefficients are the average corner solution marginal
effects if the underlying function is linear in the endogenous variable; that is, the
average of

1{Qy∗(u | d,w, v) > c}∂dQy∗(u | d,w, v) =

1{x (d,w, v)′β0(u) > c}∂d x (d,w, v)′β0(u)

over all observations. If the underlying function is nonlinear in the endogenous
variable, average marginal effects must be calculated directly from the coefficients
without the corner option. For details of the related concepts, see section 2.1 of
Chernozhukov, Fernández-Val, and Kowalski (2015). The relevant example can be
found in section 3.5.
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drop1(#) sets the proportion of observations q0 with probabilities of censoring above
the quantile index that are dropped in the first step of the second stage (see remark 1
above for details). The default is drop1(10).

drop2(#) sets the proportion of observations q1 with estimates of the conditional quan-
tile above (below for right-censoring) that are dropped in the second step of the
second stage (see remark 2 above for details). The default is drop2(3).

viewlog shows the intermediate estimation results. The default is no log.

Inference

confidence(string) specifies the type of confidence intervals. If string is specified as
no, which is the default, then no confidence intervals are calculated. If string is
specified as boot or weightboot, then either nonparametric bootstrap or weighted
bootstrap (respectively) t-percentile symmetric confidence intervals are calculated.
The weights of the weighted bootstrap are generated from the standard exponential
distribution. Be aware that confidence(boot) and confidence(weightboot) can
take a long time to execute.

cluster(string) implements a cluster bootstrap procedure for clustered data when
confidence(weightboot) is selected, with string specifying the variable that defines
the group or cluster.

bootreps(#) sets the number of repetitions of bootstrap or weighted bootstrap if
confidence(boot) or confidence(weightboot) is also specified. The default is
bootreps(100).

setseed(#) sets the initial seed number in repetition of bootstrap or weighted boot-
strap. The default is setseed(777).

level(#) sets the confidence level. The default is level(95).

Robust check

norobust suppresses the robustness diagnostic test results. There are no diagnostic test
results to suppress when uncensored is used.
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3.4 Stored results

cqiv stores the following results in e():

Scalars
e(obs) number of observations
e(censorpt) fixed censoring point
e(drop1) q0
e(drop2) q1
e(bootreps) number of bootstrap or weighted bootstrap repetitions
e(level) significance level of confidence interval

Macros
e(command) cqiv
e(depvar) name of dependent variable
e(regression) name of the implemented regression: either cqiv, qiv, or cqr
e(endogvar) name of endogenous regressor
e(instrument) names of instrumental variables
e(censorvar) name of censoring variable
e(regressors) names of the regressors
e(firststage) type of first-stage estimation
e(confidence) type of confidence intervals

Matrices
e(results) matrix containing the estimated coefficients, means, standard errors,

and lower and upper bounds of confidence intervals
e(quantiles) row vector containing the quantiles at which CQIV has been estimated
e(robustcheck) matrix containing the results for the robustness diagnostic test results;

see table 1 below

In the following table, we present the CQIV robustness diagnostic tests suggested
in Chernozhukov, Fernández-Val, and Kowalski (2015) for the CQIV estimator with an
OLS estimate of the control variable. See section 2.1 of that article for the definitions
of k0, ς1, J0, and J1. In our estimates, we used a probit model in the first step, and
we set q0 = 10 and q1 = 3. In practice, we do not necessarily recommend reporting the
diagnostics in table 1, but we do recommend examining them.
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Table 1. CQIV robustness diagnostic test results for CQIV with OLS estimate of the
control variable—homoskedastic design

CQIV-OLS Step 1

k0 Percent J0

Quantile Median Min Max Median Min Max

0.05 0.04 0.04 0.05 47.20 43.30 50.30

0.1 0.09 0.06 0.10 49.10 46.00 51.30

0.25 0.20 0.15 0.24 52.20 50.50 53.70

0.5 0.36 0.26 0.46 55.80 54.80 56.80

0.75 0.43 0.29 0.58 59.40 57.70 61.10

0.9 0.37 0.22 0.58 62.40 60.30 65.10

0.95 0.30 0.18 0.54 64.20 61.40 67.50

CQIV-OLS Step 2

1 Percent J1 Percent Predicted Above C

Quantile Median Min Max Median Min Max Median Min Max

0.05 1.7 1.45 2.01 50.7 46.7 54.9 52.3 48.2 56.7

0.1 1.71 1.44 1.96 52.8 49.5 55.5 54.5 51.1 57.3

0.25 1.71 1.46 1.98 56.3 53.6 58.7 58.1 55.3 60.6

0.5 1.72 1.44 2.02 60.1 57.6 63.4 62 59.4 65.4

0.75 1.73 1.47 1.99 64 61.2 66.8 66 63.1 68.9

0.9 1.75 1.44 2.01 67.4 64.6 70.6 69.5 66.6 72.8

0.95 1.76 1.49 2.02 69.3 65.6 72.8 71.5 67.7 75.1

Percent J0 in J1 Count in J1 not in J0

Quantile Median Min Max Median Min Max Median Min Max

0.05 1.6 1.33 1.85 100 97.7 100 36 0 81

0.1 1.6 1.33 1.85 100 99 100 37 7 74

0.25 1.6 1.33 1.85 100 99.6 100 40 15 68

0.5 1.6 1.33 1.85 100 99.6 100 43 23 78

0.75 1.6 1.33 1.85 100 99.7 100 47 17 74

0.9 1.6 1.33 1.85 100 99.7 100 50 15 88

0.95 1.6 1.33 1.85 100 99.1 100 51 16 97

Comparison of Objective Functions

Objective Step 3 0bjective Step 2 Objective Step 3<0bjective Step 2

Quantile Median Min Max Median Min Max Median Mean

0.05 5058 4458 5674 5054 4400 5753 0 0.44

0.1 8939 7925 9946 8927 7888 10049 0 0.47

0.25 17292 15100 19839 17271 14741 20052 0 0.44

0.5 22859 18692 27022 22837 18306 27091 0 0.45

0.75 16073 9603 22872 15895 8737 22866 0 0.42

0.9 -1016 -9624 7150 -1047 -10834 9265 0 0.45

0.95 -13815 -24602 -2884 -14034 -27816 -1919 0 0.44

N=1,000, Replications=1,000

In the top section of the table, we present diagnostics computed after CQIV step 1. In
the second section, we present robustness test diagnostics computed after CQIV step 2.
In the last section, we report the value of the Powell objective function obtained after
CQIV step 2 and CQIV step 3. See Chernozhukov, Fernández-Val, and Kowalski (2015)
for more discussion.

3.5 Examples

We illustrate how to use cqiv with some examples. For the dataset, we use a household
expenditure dataset for alcohol consumption drawn from the British Family Expenditure
Survey; see Blundell, Chen, and Kristensen (2007) and Chernozhukov, Fernández-Val,
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and Kowalski (2015) for a detailed description of the data. We are interested in learning
how the share of total expenditure on alcohol (alcohol) is affected by (the logarithm
of) total expenditure (logexp), controlling for the number of children (nkids). For the
endogenous expenditure, we use disposable income, that is, (the logarithm of) gross
earnings of the head of the household (logwages), as an excluded instrument.

. use alcoholengel

Given this dataset, we can generate part of the empirical results of Chernozhukov,
Fernández-Val, and Kowalski (2015):

. cqiv alcohol logexp2 nkids (logexp = logwages nkids), quantiles(25 50 75)

(output omitted )

Here logexp2 is the squared (logarithm of) total expenditure. Using the cqiv

command, the QIV estimation can be implemented with the uncensored option:

. cqiv alcohol logexp2 nkids (logexp = logwages nkids), uncensored

(output omitted )

And the CQR estimation can be implemented with the exogenous option:

. cqiv alcohol logexp logexp2 nkids, exogenous

(output omitted )

Here are other examples of the CQIV estimation with different specifications and
options. Outputs are all omitted.

. cqiv alcohol logexp2 (logexp = logwages), quantiles(20 25 70(5)90)
> firststage(ols)

. cqiv alcohol (logexp = logwages), firststage(distribution) ldv1(logit)

. cqiv alcohol logexp2 nkids (logexp = logwages), firstvar(nkids)

. cqiv alcohol logexp2 nkids (logexp = logwages nkids), confidence(weightboot)
> bootreps(10)

. cqiv alcohol nkids (logexp = logwages nkids), corner

In order of appearance, the commands conduct the estimation using OLS in the first
stage; the estimation using distribution regression with logistic distribution; the estima-
tion where nkids is the only variable other than the instrument that is included in the
first-stage estimation; the estimation with two instruments and calculating the confi-
dence interval using the weighted bootstrap; and the estimation calculating the marginal
effects when censoring is due to corner solutions. In this last example, logexp2 cannot
be included in the first-stage regression when distribution regression is implemented,
because logexp2 is a monotone transformation of logexp. Thus, the distribution esti-
mation yields a perfect fit.
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5 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-4

. net install st0576 (to install program files, if available)

. net get st0576 (to install ancillary files, if available)
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