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Endogeneity and Heterogeneity

Endogeneity and heterogeneity are key challenges in causal
inference

» accounting for them in estimating treatment effects is crucial
to answer policy questions

> e.g. how to allocate social resources and combat inequalities

This paper proposes a flexible IV modeling framework for
identifying heterogeneous treatment effects under endogeneity

» that yields straightforward semiparametric estimation and
inference procedures



Example: Effects of Sleep on Well-Being

v

Y: well-being index of workers in a developing country

v

D: sleep hours per night

v

Yy: counterfactual well-being with sleep level d
e causal object of interest (e.g., DE[Yy]/0d)

v

Z: randomly assigned sleep support from RCT
e affects D but independent of Yy

v

D,: counterfactual sleep level with assignment z

v

X: observed characteristics of worker (e.g., gender, age)



Example: Effects of Sleep on Well-Being

v

Y: well-being index of workers in a developing country

v

D: sleep hours per night

v

Yy: counterfactual well-being with sleep level d
e causal object of interest (e.g., DE[Yy]/0d)

v

Z: randomly assigned sleep support from RCT
e affects D but independent of Yy

v

D,: counterfactual sleep level with assignment z

v

X: observed characteristics of worker (e.g., gender, age)

= D is endogenous (e.g., underlying health conditions)
® Y, and D, are dependent, even after controlling for X
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Previous Approaches
IV alone cannot point-ID meaningful treatment effects

{ Ya H Outcome formation J< e.g., IV approach

Dependence structure

{ D, H Treatment assignment }« -- e.g., CF or LATE approach

Two approaches:

1. Restricting structure/heterogeneity of potential outcomes

» |V approach: Ai & Chen 03; Newey & Powell 03; Chernozhukov &
Hansen 05; Blundell, Chen & Kristensen 07; Vuong & Xu 17

2. Restricting structure/heterogeneity of treatment assignment
» CF approach: Newey et al 99; Imbens & Newey 09

> LATE/MTE approach: Imbens & Angrist 94; Heckman & Vytlacil 05



This Paper's Approach

L Yy H Outcome formation }é -- e.g., IV approach

Dependence structure

---- This paper

[ D, H Treatment assignment ]<——— e.g., CF or LATE approach

We explore an intermediate route:

= imposing structure on relationship between treatment
assignment and potential outcomes

» achieve point ID of various heterogeneous treatment effects



This Paper: Local Copula Representation

Basis of our approach: Local Gaussian Representation (LGR)

> copula representing the joint distribution of the potential
outcomes Yy and treatment assignment unobservables D,

» this representation is fully nonparametric (Chernozhukov,
Fernandez-Val & Luo 24)

® by treating the correlation parameter as an implicit function

® not require (Yy, D,) being jointly or marginally Gaussian

Use this representation to introduce an assumption that has not
been previously considered for ID of treatment effects:

» copula invariance

> restricts the shape of local dependence



This Paper: Expands Modeling Trade-Offs

We show that, even with a binary IV, copula invariance identifies...

> quantile and average treatment effects (QTE and ATE) of
binary and ordered treatments

» quantile and average structural functions (QSF and ASF) of
continuous treatment

We expand the directions of modeling trade-offs:

» compared to IV, CF, LATE approaches...

> we impose more restrictions on the dependence structure (i.e.,
the form of endogeneity),

> while allowing for richer patterns of effect heterogeneity
Our identification strategy is constructive

» leads to simple semiparametric estimation procedures



Related Literature

Identification and estimation in nonparametric models with
endogenous explanatory variables:

» nonparametric IV approach: Ai & Chen 03; Newey & Powell 03; Hall
& Horowitz 05; Chernozhukov & Hansen 05; Blundell, Chen & Kristensen
07; Chen & Pouzo 09, 12, 15; Vuong & Xu 17; Chen & Christensen 18

» nonparametric CF approach: Newey, Powell & Vella 99; Das, Newey
& Vella 03; Blundell & Powell 04; Imbens & Newey 09; D'Haultfoeuille,
Hoderlein & Sasaki 21; Newey & Stouli 21

» related approaches:
® Chesher 03

® D'Haultfoeuille & Février 15; Torgovitsky 15

» monotonicity assumption with binary or discrete D: Imbens &
Angrist 94; Abadie et al 02; Heckman & Vytlacil 05



Related Literature

Copula for identification and estimation in econometrics:

>

>

Chen et al 06: semiparametric copula models for distributions

Han & Vytlacil 17; Han & Lee 19: a class of single-parameter
copulas to model endogeneity for binary outcome & treatment

Han & Lee 24: dynamic treatment effect models using copula

Chen & Fan 06a, b; Chen et al 22, Chen et al 24; Ghanem, Kédagni &
Mourifie 24: use of copula in TS and DiD settings

Arellano & Bonhomme 17: real analytical copula and continuous
instrument in sample selection model

Chernozhukov, Fernandez-Val & Luo 24: use of LGR in sample
selection model



Related Literature

= this paper:
e two-way sample selection in the binary treatment case

e general selection model without threshold-crossing

e completely new results with ordered and continuous treatments



|. Setup and Assumptions



Variables

Y € Y C R scalar outcome (continuous, discrete or mixed)
D € D C R scalar treatment
» D ={0,1} for binary D
» D ={1,...,K} for ordered D
» D uncountable for continuous D
Z € {0,1} binary IV
» most challenging case; extends to discrete or continuous Z
Yy potential outcome given d € D; and Y = Yp

D, potential treatment given z € {0,1}; and D = D

X € X C R% vector of covariates (explicit in estimation)



Generalized Treatment Equation

General treatment assignment equation:

D, = h(z,V;)

» V, ~ UJ0,1] as normalization (assuming h is weakly
monotonic)

» permit D to be a function of vector (Vo, V1)

> (even this is not necessary but simplifies the exposition)



Parameters of Interest

Interested in identifying Fy, for d € D and functionals of Fy,

» quantile and average structural functions:
QSFT(d) = QYd(T) = QT(FYd)7
ASF(d) = E[Yq4] = E(Fy,),

> QSF.(d) — QSF,(d") and ASF(d) — ASF(d'") for binary or
ordered treatment

> OQSF.(d)/dd and OASF.(d)/dd for continuous treatment



Local Gaussian Representation
Let C(uy, u2; p) be Gaussian copula

Lemma (LGR) (Chernozhukov et al 24)

For any r.v.'s Y, V and Z, the joint distribution admits the
representation:

Fyviz(y;v|z) = C(Fyz(y | 2), Fviz(v | 2); py,v:z(y, v; 2))
for all (y, v, z), where py v.z(y, v; z) is the unique solution in p to

Fyviz(y;v | z) = C(Fy|z(y | 2), Fv|z(v | 2); p)-

> Gaussianity is not essential for the local representation, but
convenient

» other (comprehensive) copulas can be used for representation
e e.g., Clayton copula, Frank copula, t copula



Assumptions

Assumption EX
FordeDand z€{0,1}, Z L Yyand Z 1L V,.

Assumption REL
(i) Z € {0,1}; (ii) 0 < Pr(Z =1) < 1; and (iii) Z is relevant.

Assumption Cl

For d € D, py, v,.z(y, v; z) is a constant function of (v, z), that is
PYVeiz(¥,viZ) = py,(¥),

and py,(y) € (—1,1).

» Under joint independence of Z and rank invariance in selection,
Cl holds if C(uy | u2) = C(u1 | u2; p(u1)) (more later)



Examples of Distributions under Copula Invariance
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Figure: Joint Distributions under Copula Invariance

Notes: We depict joint distributions of (Yy, V') under Cl with Gaussian marginals
(left) and nonparametric marginals (right).



[I. lIdentification Analysis



Binary Treatment

Suppose D € D = {0, 1} and consider

D, = h(z,V;) = 1{V, < n(z)}
with propensity score (by EX)

PriD=1|Z=2z]=Pr[D,=1|Z = z] = Pr[V, < 7(2)] = 7(2)

» LATE monotonicity if Vi = V
For ID analysis, consider
PrilY <y,D=1|Z=2z]=Pr[Y1<y,D,=1|2Z =Z]

= C(Fy,z(y|2),7(2); pvy, vz (v, 7(2); 2))
= C(Fvy(y),m(2): pv1(v))

by LGR, EX and CI



Binary Treatment

By varying Z € {0,1}, a system nonlinear equations:

PrlY <y,D=1|Z=0]= C(Fy,(y),7(0); pv4(y¥))
PrlY <y,D=1|Z=1]= C(Fy,(y),7(1); pv4(¥))

Then, the system has unique solution for (Fy,(y), py,(y)) by Gale &
Nikaido 65's global univalence

» because its Jacobian is P-matrix under REL

Theorem 1

Suppose D, = 1{V, < 7w(z)} for z € {0,1}. Under EX, REL and
Cl, the functions y — Fy,(y) and y — py,(y) are identified on
y € Y for d € {0,1}.



Ordered Treatment
Suppose D € D ={1,..., K} and consider
1, mo(z) <V, <mi(2)
2, m(z) <V, <mz)
K, ;TK_l(Z) <V, <7k(z)
where mp(z) = 0 and 7x(z) =1
» this model generalizes Heckman & Vytlacil 07 who consider
1, m<wlz)+V<m

2, m<uz)+V<m

K, mk_1 <M(Z)—}— V < 7wk



Ordered Treatment

For ID analysis, consider

PrlY <y,D=d | Z=72¢]
=Pr[Yy <y, m4-1(2) < Vz: < 7my4(2) | Z = Z]
= C(Fy,(y), ma(2); pyy(v)) = C(Fyy(v): ma-1(2); py,y(y))
by LGR, EX and ClI
» for d € {1, K}, REL identifies Fy,(y) and py, (as before)
> but, for d € D\{1, K}, Gale & Nikaido 65 doesn't apply



Ordered Treatment
To apply different global univalence, we assume:

Assumption Upc

Either Fp z(d [ 0) > Fp z(d | 1) for all d € D\{K} or
Fpjz(d | 0) < Fpjz(d | 1) for all d € D\{K}.

» Uopc is directly testable from data
» Heckman & Vytlacil 07's model satisfies Upc

» when Vj and V; are exchangeable, Upc (with >) implies
Pr[ all complier groups | > Pr[ all defier groups |

e cf. de Chaisemartin 17 with binary D

» when Vo = Vi, Upc (with >) implies

Pr[ all defier groups | =0



Ordered Treatment

Then, we apply the inverse theorem in Ambrosetti & Prodi 95 by
showing...

1. the system has a unique solution when py,(y) = 0 (locally no
endogeneity)

2. the function that defines the system is proper

3. the Jacobian has full-rank (by Upc)

Theorem 2

Suppose D,, z € {0, 1}, satisfies the ordered selection model.
Under EX, REL, Cl and Ugc, the functions y — Fy,(y) and
y — py,(y) are identified on y € Y for d € D.



Continuous Treatment
Suppose D € D C R and Fpz(: | z) is strictly increasing on D
Consider
D; = h(z,V;) = Fp,(Vz | 2)
For ID analysis, consider

Fyip,z(y | d,2) = Fy,p,.z(y | d,2) = Fy, v, z(y | Fpjz(d | 2), 2)

By LGR, EX and properties of cond’l CDF and Gaussian copula,

(0/0Vv)Fy, v,1z(y, v | 2) By — Pygviiz(y, viZ)n

F a2 y|V,Z: d>Vz :¢ D dsVz: )
valvez ) (0/0v)Fv,1z(v | 2) V1=pv,v,z(y,viz)2

+ G2(ptd,ys Mvi Py vz (v, vi 2))(0/0V)pyy vz (v, vi 2)

where 14, = CD*I(Fyd(y)) and n, = d>*1(v)




Continuous Treatment

Wd,y — Py vy:z(Y, F d|z);z)n
FYD,Z(Y|d,Z)—¢< 4 0 v:iz(y; Foiz(d | 2);2) )

V1= pvv.z(y, Foiz(d | 2); 2)2
+ G2(pd.y nvi vy veiz(ys Foiz(d | 2):2))(0/0V)py,.v.iz(y, Foiz(d | 2); 2)

Cl implies

Py, Vveiz(y, Fpiz(d | 2); 2)
(0/0v)py,v..z(y, Fpiz(d | z); 2)

Therefore, for z € {0,1},

Py,(y)
0

& (Fyipz(y | d,2)) = aqg, + ba,y® *(Fpiz(d | 2))

with ag, = pd,y/\/1 = py,(¥)? bay = —pv,(¥)/v1— pv,(y)?



Continuous Treatment

ot (Fyipz(y | d,z)) = 3d,y+bd,y¢71(FD|Z(d | z)) for z € {0,1}

This is a linear system of two equations on two unknowns, which
has solution

®~(Fyp,z(y | d,0)®~1(Fpz(d | 1)) — @~ (Fy|p,z(y | d,1))®~(Fpz(d | 0))

ad,y = S=1(Fpz(d | 1)) — ®=1(Fp z(d | 0))

®~Y(Fyp,z(y | d,1)) =9~ (Fy|p z(y | d,0))
&=1(Fpz(d | 1)) — ®=1(Fp z(d | 0))

by, =

Then, we can ID pig, = ®~1(Fy,(y)) and py,(y) from

ady = pdy/\/1 = pv,(¥)%  bay = —pv,(¥)/\/1— pv,(¥)?



Continuous Treatment

Theorem 3

Suppose D,, z € {0, 1}, satisfies D, = 5|12(V2 | z). Under EX,
REL and Cl, the functions y — Fy (y) and y — py,(y) are

identified on y € Y for d € D by

ad, —byg,
Fy,(y) =% | —2— v, (y) = -

, P ——
,/1+b§7y 1+b§,y

» unlike Imbens & Newey 09, this approach does not require large
support 1V nor rank invariance in selection (V4 = W)

e instead, it imposes Cl

» unlike D'Haultfoeuille & Février 15; Torgovitsky 15, Cl does not
impose any structural models for Y and D nor restrictions on
the dimension of unobservables



[11. Discussions on Copula Invariance



Sufficient Conditions for Cl

Recall

» EXi Z1L Yyand Z LV,

> Clpy,viiz(y, viz) = py,(v)
Assumption EX2
Ford € D and z € {0,1}, Z L (Yy, V).

Assumption Rls
V1 = Vo =V as.
Assumption CI2
Pysv(ysv) = py,(y)-

» Cl2 is Cl in treatment propensity

Proposition 1
Under EX2 and Rlg, CI2 implies CI.



Equivalent Condition for Cl
Recall CI2: py, v(y,v) = py,(¥)

Assumption S|
For d € D,

Fyv(y | v) = ® (agy + bay® ' (v)), (y,v) €Y xV,

where ay, = ®=1(Fy,(y))/1/1 — pv,(¥)? and by, = —py,(y)/1/1 — pv,(y)?.

» Sl is single index restriction on local relationship btw (Yy, V)
» Sl does not require Gaussianity

> still, e.g., sign of (0/0v)Fy, v z(y | v) should not depend on
v, but can change with y

Proposition 1
ClI2 is equivalent to SI.



Local Dependence as Implicit Function

LGR can be expressed for arbitrary copula C:

C(ur, w2 | 2) = C(ur, u2; p(u, u2; 7))
where C is Gaussian copula

For simplicity, maintain EX2 so that

C(u17 U2) = C(u17 uz, p(ula U2))

By implicit function theorem, p is differentiable and

~ 0 ,
Clun | ) = Clln | o, 2)) + Gy, i, ) P2

Proposition 2
Under EX2, CI2 is equivalent to C(u; | u2) = C(uy | uo; p(u1)).



Examples of Distributions under Copula Invariance
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Figure: Joint Distributions under CI2

Notes: We depict joint distributions of (Yy, V') under Cl with Gaussian marginals.



Examples of Distributions under Copula Invariance
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Figure: Joint Distributions under CI2

Notes: We depict joint distributions of (Yy, V') under Cl with Gaussian marginals
(left) and nonparametric marginals (right).



Examples of Selection Patterns under Copula Invariance
Suppose Y =p+eand D=1{V < n(Z)}
» which yields E[Y|D =1,Z] = p+ E[e|V < 7(Z)]
We depict E[¢|V < 7] as a function of ...

» under Gaussian joint distribution (left) and Cl (right)

Figure: Control Functions under CI2



Partial Identification and Copula Invariance

When the copula of (Yy, V) is completely unrestricted (true under
LGR), it lies between Fréchet-Hoeffding (FH) bounds

» under LGR and EX2, FH lower and upper bounds correspond
to py, v,(y,v) = —1and 1 resp. for all (y, v)

> then, worst-case bounds on Fy, and its functionals can be
obtained
® e.g., Manski 90's bounds

CI2 achieves intersection of two manifolds: for given y,

{(Fra(¥), p(y, m(1)))}
{(Fva(¥), p(y, m(0)))}

generated by the system of equations

> leading to point-identification of Fy,(y)



Comparison to Previous Approaches
Chernozhukov & Hansen 05's IVQR model assumes:
> Yy = Qy,(Uq) for Uy ~ U[0,1]
» rank similarity: Uy 4 U | Z,V
Then, IVQR vyields a conditional moment restriction:
T =Pr[Y1 < Qv,(7), D; = 1|z] 4+ Pr[Yo < Qy,(7), D = 0|Z]
which can be rewritten as
T =Pr[Y1 < Qy,(7), V> <7(2)|z] + 7 — Pr[Yo < Qy,(7), V> < 7(2)|2]
or equivalently

PriY1 < Qy,(7), V> < 7(z)|z] = Pr[Yo < Qy,(7), V> < 7(2)|Z]



Comparison to Previous Approaches

PriY1 < Qy,(7), V2 < 7(z)|z] = Pr[Yo < Qy,(7), V> < 7(2)|Z]

Using LGR, we can further rewrite above as
C(1,m(2); pva,viz(Qyy (7). 7(2): 2)) = C(7,7(2); pyo,v.:z(Qvo (7). 7(2); 2))

This shows that the IVQR also relies on copula invariance:

pyl’vz;z(le(T),ﬂ'(Z);Z) = pYo,Vz;Z(QYo(T)’ﬂ-(Z);Z)v zc {07 1}

In the paper, we also make comparison to other approaches, such
as D'Haultfoeuille & Février 15; Torgovitsky 15



V. Estimation and Inference



Estimation Algorithms

Assume a random sample {(Y;, D;, Z;, X;)}!_;
Notation:
» B(X;), B(Xi, Z;), and B(D;j, X;, Z;): vectors of transformations
> li(y) = 1{Y; <y} and Ji(d) = 1{D; < d}
» D and ) finite grids covering D and
» &5 and ® are bivariate and univariate Gaussian CDFs

We provide an algorithm for each case

> two-step ML estimation based on distribution regression



Estimation Algorithm: Binary D
Algorithm 1 (Binary D)
1. (Treatment eq.) Estimate 7 using a Probit regression

7T =arg mcaxz [Dilog ®(B(X;, Z;)'c) + (1 — Di) log(1 — ®(B(X;, Zi)'c))] .

2. (Outcome eq.) For y € Y and d € {0,1},
Fy,x(ylx) = ®(B(x)Ba(y)) and py,.x(vix) = p(B(x)Fa(y)),

where p(u) = tanh(uv) € (—1,1) and

(Ba(v), 71 (y)) =arg TZXZ Dilli(y)log ®2(B(X:)'b, B(X;, Z;)'%, p(B(X;)'g))
Z =1
+ (1 = £i(y)) log ®2(—B(X:)'b, B(Xi, Z:)'®, p(B(Xi) g))],
(Bo(y):F0(y)) =arg (e D (1= D)li(y) log ®2(B(Xi)' b, —B(X;, Z))' 7, —p(B(X;) g))
® =1

+ (1 = li(y)) log ®2(=B(Xi)'b, = B(X;, Z))' &, —p(B(X;)'g))]-



Estimation Algorithm: Ordered D
Algorithm 2 (Ordered D)

1. (Treatment eq.) Set To(z,x) = 0 and 7k(z,x) = 1 for all (z, x).
Ford € {1,...,K — 1}, m4(z,x) = ®(B(z,x)'7(d)), where

7i(d) € arg mﬁxzn: [Ji(d) log ®(B(Z;, Xi)'p) + (1 — Ji(d)) log ®(—B(Z;, Xi)'p)] -

2. (Outcome eq.) for y € Y and d € D,

Fy,ix(y1x) = ®(B(x) Ba(y)) and py,x(vix) = p(B(x)Fa(y));

where

(Ba(¥),3a(y)) € arg max > 1{D; = d} [Ii(y) log £4.i(b: &) + (1 = Ii()) log &4,i(b. £)]
=1

g4,i(b, 8) = ®2(B(X;) b, &~ (74(Z;, Xi)), p(B(X) &)
— &2(B(X)) b, @ (Ra—1(Z, Xi)), p(B(X:) g))s
84,i(b, &) = T4(Zi, Xi) — Ta—1(Zi, Xi) — ga,i(b, &)-



Estimation Algorithm: Continuous D
Algorithm 3 (Continuous D)
1. (Observable conditional dist.) For y € J and d € D,
EY|D,Z,X()/|d7 z,x) = <I>(B(d,z,x)’/§(y)) and
Fpiz x(d|z,x) = ®(B(z,x)'w(d)), where

Bly) =arg mgxz [li(y) log ®(B(D;, Z;, X;)'b) + (1 — li(y)) log(1 — ®(B(D;, Z;, X;)'b))]
i=1

7(d) = arg m,?XZ [Ji(d) log (B(Z;, X;)' p) + (1 — Ji(d)) log(1 — ®(B(Z;, X;)'p))]
i=1

2. (Potential outcome dist.) For y € Y and d € D,
FYd‘X(y‘X) = (D(//Zd,y;x) and ﬁYd§X(y;X) = _bd,y;X/ \/ 1 + bc21"y;x'
where fig . = 8ayix/(/1+ b2, and

5 (B(d,0,%)'B(y))(B(1,x)'7(d)) — (B(d, 1, %) B(y))(B(0, x)'7(d))
dyix = B(1, x)'7(d) — B(0, x)'7(d)

’B _ B(d,l,X)/E(y)— B(d70»X)/:B\(y)
YT TTB(1, x)7(d) — B(0,x)7(d)

)




Estimation Algorithm: Fy,, QSF and ASF

Algorithm 4 (Fy,, QSF and ASF)
1. Unconditional distribution: for y € Y and d € D,

F,(y Z Fy,x(y | Xi).

Foryc Y\Yand d € D,
Fy,(y) = max{Fy,(7) : 7 < y,y € J}.
2. Quantile and average structural functions:

6S\F7(d) = @yd(T) = QT(/F\Yd)7
ASF(d) = E[Y4] = £(Fy,).



Inference

Denote the functional parameters by
u—9d,, uel
> e.g., if we are interested in 7 — QSF.(d) on [.05,.95], then
u=r, 0, = QSF,(d) and U = [.05,.95]
> in practice, we approximate U using a fine grid U/

Let Su be the estimator of 4, obtained from Algorithms 1-4

Then, we establish FCLT that
Vn(8y = 84) ~ Zs in £°(U)

where Zs is a mean-zero Gaussian process and that the bootstrap is
consistent for estimating Zs



Inference
Algorithm 5 (Bootstrap for Uniform Confidence Band)

1. Foru GAZ/_{, obtain B bootstrap draws {gl(,b) :1 < b < B} of the
estimator d,,.

2. Foru el, compute the robust standard error,
SE(3u) = (Qs(0.75, u) — (Q5(0.25, u)) /(®~*(0.75) — (¢~1(0.25)),

where @5(7’, u) is the 7-quantile of {g,(,b) 1< b< B}
3. Compute the critical value as
1562 — 5,

cv(l —a) = (1—a)quantileof {max—=———% :1<hb<BS}.
(L=e)=(=aka {ueu SE(3,) - }

4. Compute the (1 — ) uniform confidence band as

CB(1-a)(0u) = [0u £ cv(1 — @)SE(6,)], uell.



Inference

The uniform confidence bands CB(;_)(dy) satisfies

Ii_>m Pr[dy € CB(1—q)(0u) forall ue U] =1 -«

For bootstrap in Step 1, we recommend...

» binary and ordered D: multiplier bootstrap (based on influence
function)

e as nonlinear optimization is involved

» continuous D: standard empirical bootstrap



V. Empirical Application with Continuous Treatment



Distributional Effects of Sleep on Well-Being

Bessone et al 2021 analyzed the effects of randomized interventions to
increase sleep of low-income adults in India

Bessone et al 2021; Dong & Lee 2023 used TSLS
> we estimate the distributional effects of sleep on well-being
Y overall index of individual well-being
D: sleep per night, in hours (continuous)
Z: randomly assigned experimental treatments (binary)
> Z;: devices + encouragement
» 75 devices + incentives
> Z =271+ Z, (= 1: any treatment; = 0 none)

X: gender, three age indicators, baseline well-being index



Distributional Effects of Sleep on Well-Being
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Figure: Distributional First Stage

Notes: Control for gender, three age indicators, and baseline well-being index.
n=226.



Distributional Effects of Sleep on Well-Being

QTE

(a) Quantile treatment effects
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(b) Lower tail quantile treatment effects

— QTE
- = 90% pointwise CI
90% uniform CI

020 025 030 035 040 045 050

Quantile level

Figure: Quantile Treatment Effects

Notes: We report the normalized QTE, (Q-,—(ﬁyd”) — QT(I?yd,))/(d” —d’) with d”’

and d’ being 75% and 25% quantiles of sleep. Uniform and pointwise Cls are

computed using empirical bootstrap with 5000 repetitions. We control for gender,
three age indicators, and baseline well-being index. n = 226.



Distributional Effects of Sleep on Well-Being

(a) Local dependence for different levels of sleep
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Figure: Local Dependence Functions

Notes: We report the average of py,(y; X;) with d being 25%, 50%, 75% quantiles of
sleep. We control for gender, three age indicators, and baseline well-being index.
n = 226.



Distributional Effects of Sleep on Well-Being

(a) Comparison to estimates under exogeneity (b) Comparison to 2SLS
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Figure: Comparison to Estimators under Conditional Exogeneity and 2S5LS

Notes: We report the normalized QTE, (Q-,—(ﬁyd”) — QT(I?yd,))/(d” —d’) with d”’
and d’ being 75% and 25% quantiles of sleep. Conditional exogeneity assumes
Yy L D|X. Pointwise Cls with empirical bootstrap with 5000 repetitions. We control
for gender, three age indicators, and baseline well-being index. n = 226.



VI. Conclusions



Conclusions

In identifying treatment effects under endogeneity, researchers face
modeling trade-offs

This paper proposes a new direction to explore modeling trade-offs

v

based on LGR
impose assumption on local dependence parameter
allow rich heterogeneity in outcome and treatment processes

lead to simple estimation and inference procedures, appealing
to practitioners

can also estimate the dependence function (which reveals
patterns of endogeneity)



Thank You! ®



Global Univalence by Gale & Nikaido 65

Definition (P-matrix)
A square matrix J is called a P-matrix if all its principal minors are
positive.

» a principal minor is the determinant of a submatrix obtained
from J when the same set of rows and columns are deleted

Theorem (Global Univalence by Gale & Nikaido 65)

If F:Q — R", where Q is a closed rectangular region of R”, is a
differentiable mapping such that the Jacobian matrix J(x) is a
P-matrix for all x in Q, then F is univalent in Q.

» Jacobian of our mapping N : 8 — p is P-matrix by the
properties of Gaussian copula



Global Identification Using Ambrosetti & Prodi 95

Theorem (Ambrosetti & Prodi 95)

Suppose F : X — Y is continuous, proper and locally invertible in
X and let Y be connected. Then, the cardinality of F~1({y}) is
constant for all y € Y.

» our mapping 1: 6 — p is proper by the properties of copula
» local invertibility is guaranteed by full rank Jacobian of I

> take the value of 6 such that p = 0; then |[M7*({M1(A)})| =1
for such 6



Comparison tO Torgovitsky 10

Both CCl and CI restrict the dependence of (Y4, D) on Z...
» by requiring p(-) not to depend on Z = z

But Torgovitsky 10 maintains RI...
> so restricting the copula of (U, D) is sufficient

Our strategy does not depend on RI...

» such that we need to impose Cl for both Y7 and Y

> as trade-off of not assuming RI, we require Cl that p(-) is not
a function of Fp,z



