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Abstract

In Section A, the analysis with binary outcomes and discrete covariates is extended

to continuous outcomes and covariates, and time-varying covariates and stochastic

regimes are discussed. Section B provides the detailed definition of the matrices used

in Section 3.3 of the main text. Section C contains most proofs of theorems and lem-

mas. Section D shows how to formally incorporate additional identifying assumptions

in the framework. Section E presents numerical exercises. Finally, Section F contains

discussions on topological sorts, cardinality reduction, and inference, among others.
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A Extensions

A.1 Continuous Yt and X

Suppose the outcomes Yt’s and pre-treatment covariate vector X are continuously distributed

on [yl, yu] and X , respectively. Consider the treatment allocation δ̃t with continuous yt ∈

[yl, yu] and binary dt ∈ {0, 1}:

δ̃t(y
t−1,dt−1) = dt ∈ {0, 1} (A.1)

for t = 2, ..., T and δ̃1(x) = d1 ∈ {0, 1} with continuous x. This rule may not be a feasible or

practical strategy considering the cost of incrementally customizing the allocation based on

continuous characteristics yt−1. Instead, the planner may want to employ a regime that is

only discretely adaptive to the continuous outcomes. This can be achieved by a threshold-

crossing allocation rule: for each t = 2, ..., T ,

δ̃t(y
t−1,dt−1;γt−1) = δt(1{y1 ≥ γ1}, ..., 1{yt−1 ≥ γt−1},dt−1), (A.2)

δ̃1(x; γ0) = δ1(1{γ′01x ≥ γ02}) (A.3)

where γt−1 ≡ (γ1, ..., γt−1) and γ0 ≡ (γ′01, γ02) are threshold parameter vectors and δt(·) is the

original treatment allocation rule (2.1)–(2.2) based on discrete outcomes and covariates. This

threshold-crossing rule is a popular decision rule in practice due to its intuitive form and is

considered in earlier theoretical studies such as in Murphy (2003) and Kitagawa and Tetenov

(2018). Note that the full regime (δ̃1(·; γ0), δ̃2(·; γ1), ..., δ̃T (·;γT−1)) can be characterized by

(δ(·),γ) where δ(·) the original regime with discrete outcomes and γ ≡ (γ0, γ1, ..., γT−1) .

Therefore, we proceed with latter in the following analysis.

Based on (δ,γ) ∈ D × Γ, we define the welfare Wδ,γ analogous to (2.5). For example,

Wδ,γ = E[YT (δ,γ)] where YT (δ,γ) is defined as (2.3)–(2.4) but each δt(·) and δ1(·) replaced

with δ̃t(·;γt−1) and δ̃1(x; γ0) defined above, respectively. We wish to find (δ∗,γ∗) that maxi-
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mize welfare Wδ,γ :

(δ∗,γ∗) = arg max
δ(·)∈D,γ∈Γ

Wδ,γ .

This maximization problem, equivalently the identification of (δ∗,γ∗), is challenging because

Wδ,γ may not be point identified. Therefore, analogous to the partial identification approach

in the main text, we proceed as follows. For a given pair (δ,γ) and (δ′,γ ′) in D × Γ, let

L(δ,γ, δ′,γ ′) be the lower bound on the welfare gap

Wδ,γ −Wδ′,γ′ .

Then, the identified set for (δ∗,γ∗) can be characterized as

{(δ′,γ ′) : L(δ,γ, δ′,γ ′) ≤ 0 for all (δ,γ) ∈ D × Γ and (δ,γ) 6= (δ′,γ ′)}. (A.4)

Note that, for given γ ∈ Γ, the maximization of Wδ,γ with respect to δ can be solved by

establishing the partial ordering of Wδ,γ with respect to δ. Therefore, for policy, it would

also be useful to inspect the partial ordering of Wδ,γ for any given γ. This analysis can be

done by constructing the DAG for Wδ,γ using the lower bound L(δ, δ′;γ) on the welfare gap

Wδ,γ −Wδ′,γ .

We first consider the calculation of L(δ, δ′;γ) for given γ, which can be done by solving

a sequence of LPs. The challenge is that the continuous outcome variables generate infinite-

dimensional programs, which are infeasible to solve in practice. We overcome this challenge

by means of approximation. Let Ỹ t ≡ {Yt(dt)}dt ∈ [yl, yu]
2t and D̃t ≡ {Dt(z

t)}zt ∈ {0, 1}2t

be vectors that constitute S̃t ≡ (Ỹ t, D̃t), which is defined analogous to that in the text,

and let yt(d
t) and dt(z

t) be the realized mappings of Yt(d
t) and Dt(z

t). Also, define Ỹ ≡

(Ỹ 1, ..., Ỹ T ) and D̃ ≡ (D̃1, ..., D̃T ). The key element in the formulation is the following
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conditional cumulative distribution function:

q(ỹ, d̃, x) ≡ Pr[Ỹ ≤ ỹ|D̃ = d̃, X = x]

≡ Pr[Yt(d
t) ≤ yt(d

t) ∀dt and t|Dt(z
t) = dt(z

t) ∀zt and t,X = x],

where “≤” between vectors is understood as element-wise inequalities. The infinite-dimensional

object q(·) is the decision variable in the optimization. LetQ be the infinite-dimensional space

of all q(·, ·, ·)’s.

To construct the constraints of the program, consider the distribution of the data:

Pr[Y ≤ y,D = d|Z = z, X = x]

= Pr[Yt(d
t) ≤ yt, Dt(z

t) = dt ∀t|X = x]

= Pr[Dt(z
t) = dt ∀t|X = x] Pr[Yt(d

t) ≤ yt ∀t|Dt(z
t) = dt ∀t,X = x]

=
∑
x∈X

p(x)
∑

d̃:dt(zt)=dt∀t

Pr[D̃ = d̃|X = x]×

×
∫ yu

yl

· · ·
∫ yu

yl

{∫ y1

yl

· · ·
∫ yT

yl

q(ỹ, d̃, x)dy1(d1) · · · dyT (dT )

}
dỹ−1 · · · dỹ−T

≡ Ty,d|z ◦ q,

where ỹ−t is ỹt without yt(d
t) (with some ambiguity of notation),

∫ yu
yl

(·)dỹ−t is the corre-

sponding multivariate integral, and Ty,d|z : Q → R is the operator of q(·, ·, ·). Then, the

continuum of constraints can be written as

(Ty ◦ q)(x) = p(y, x) ∀(y, x) ∈ [yl, yu]
T ×X ,

where Ty is a vector of operators Ty,d|z’s across (d, z) for q(·, ·, x) and p(y, x) is a dp-vector

of Pr[Y ≤ y,D = d|Z = z, X = x]’s across (d, z). Fix γ ∈ Γ. Since the welfare is also an
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integral of q(·, ·, ·), we can write

Wδ,γ = Tδ,γ ◦ q

for an operator Tδ,γ : Q → R. Consequently, for δ, δ′ ∈ D, we have the following program:

U(δ, δ′;γ) = maxq∈Q(Tδ,γ − Tδ′,γ) ◦ q,

L(δ, δ′;γ) = minq∈Q(Tδ,γ − Tδ′,γ) ◦ q,
s.t. (Ty ◦ q)(x) = p(y, x) ∀(y, x) ∈ [yl, yu]

T ×X .

(A.5)

Because q(·, ·, ·) ∈ Q is an infinite-dimensional object (unlike q in the case of discrete Yt)

and the constraints are also infinite dimensional, the program (A.5) is infinite-dimensional.

To gain feasibility, we transform this infinite-dimensional program into a (finite-dimensional)

linear program as follows. First, we approximate q(·, d̃, ·) using the method of sieve. In

particular, the Bernstein polynomial is a suitable choice for sieve basis, because equality and

inequality constraints on q(·, ·, ·) can be easily imposed as equality and inequality constraints

on the coefficients of the basis functions. Consider

q(ỹ, d̃, x) ≈
K∑
k=1

θd̃kbk(ỹ, x),

where bk(ỹ, x) ≡ bk,K(ỹ, x) is a multivariate Bernstein polynomial with its coefficient θd̃k ≡

θd̃k,K ≡ q(k1/K, ...,kT/K, d̃, kx/K) with the following definition: k ≡ (k1, ...,kT , kx) is a

vector of indices where kt ≡ {kt(dt)}dt , kt/K stands for elementwise devision, and
∑K
k=1

stands for multiple summations, each of which is the sum from each element of k up to

K. By replacing q(·, ·, ·) with this Bernstein expansion in (A.5), we obtain a semi-infinite

linear program where the decision variables are simply θd̃k for all k, d̃ and there are the

continuum of constraints. Next, we combine the continuum of constraints using the following

result: for any measurable function h : [yl, yu]
T × X → Rdp , E ‖h(Y , X)‖ = 0 if and only if

h(y, x) = 0 almost everywhere in [yl, yu]
T × X . Therefore, the constraints can be replaced
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with E ‖(TY ◦ q)(X)− p(Y , X)‖ = 0. Consequently, we obtain a (finite-dimensional) linear

program. We refer the reader to Section 7 of Han and Yang (2022) for the full details of

the Bernstein approximation and the transformation of constraints. Finally, an analogous

approach can be used to calculate L(δ,γ, δ′,γ ′) for each pair of (δ,γ) and (δ′,γ ′) in D× Γ.

In practice, we can use grid Γ̄ ⊆ Γ for Γ to characterize the identified set (A.4).

A.2 Time-Varying Covariates

Earlier, we assume for simplicity that potentially endogenous covariates are time-invariant

and determined before treatments. Extending the setting to time-varying covariates is

straightforward. When covariates are discrete, the allocation rule (2.1) can simply be modi-

fied to δt(y
t−1,dt−1,xt−1) and δ1(x0) where xt for t = 2, ..., T is time-varying covariates and

x0 is pre-treatment covariates. When time-varying covariates are continuous, the threshold-

crossing rule introduced in (A.2) may be modified to 1{γt1yt+γ′t2xt ≥ γt3} for each t = 2, ..., T .

That is, for each t = 2, ..., T ,

δ̃t(y
t−1,dt−1,xt−1;γt−1) = δt(1{y1 + γ′11x1 ≥ γ12}, ..., 1{yt + γ′t−1,1xt ≥ γt−1,2},dt−1), (A.6)

δ̃1(x0; γ0) = δ1(1{γ′01x0 ≥ γ02}), (A.7)

where γt−1 ≡ (γ1, ..., γt−1) with γt ≡ (γ′t1, γt2) and γ0 ≡ (γ′01, γ02). With time-varying covari-

ates, the main assumption (Assumption SX) may be modified as follows: Z ⊥ (Y (d),D(z))|X, X0

where X = (X1, ..., XT ). The construction of the linear program is very similar to the ones

in the earlier cases and therefore omitted.
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A.3 Stochastic Regimes

For each t = 2, ..., T , define an adaptive stochastic treatment rule ρt : {0, 1}t−1×{0, 1}t−1 →

[0, 1] that allocates the probability of treatment:

ρt(y
t−1, rt−1) = rt ∈ [0, 1] (A.8)

and ρ1(x) = r1 ∈ [0, 1]. Then, the vector of these ρt’s is a dynamic stochastic regime

ρ(·) ≡ ρT (·) ∈ Dstoch where Dstoch is the set of all possible stochastic regimes. Dynamic

stochastic regimes are considered in, e.g., Murphy et al. (2001), Murphy (2003), and Manski

(2004). A deterministic regime is a special case where ρt(·) takes the extreme values of 1 and

0. Therefore, D ⊂ Dstoch where D is the set of deterministic regimes. We define YT (ρ(·)) with

ρ(·) ∈ Dstoch as the counterfactual outcome YT (δ(·)) where the deterministic rule δt(·) = 1 is

randomly assigned with probability ρt(·) and δt(·) = 0 otherwise for all t ≤ T . Finally, define

Wρ ≡ E[YT (ρ(·))],

where E denotes an expectation over the counterfactual outcome and the random mechanism

defining a rule, and define ρ∗(·) ≡ arg maxρ(·)∈Dstoch
Wρ. The following theorem show that a

deterministic regime is achieved as being optimal even though stochastic regimes are allow.

Theorem A.1. Suppose Wρ ≡ E[YT (ρ(·))] for ρ(·) ∈ Dstoch and Wδ ≡ E[YT (δ(·))] for

δ(·) ∈ D. It satisfies that

δ∗(·) ≡ arg max
δ(·)∈D

Wδ = arg max
ρ(·)∈Dstoch

Wρ.

By the law of iterative expectation, we have

E[YT (ρ(·))] = E
[
E
[
E
[
· · ·E

[
E[YT (r)|Y T−1(rT−1)]

∣∣Y T−2(rT−2)
]
· · ·
∣∣Y1(r1)

]∣∣X]] , (A.9)
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where the bridge variables r = (r1, ..., rT ) satisfy

r1 = ρ1(x),

r2 = ρ2(Y1(ρ1), ρ1),

r3 = ρ3(Y 2(ρ2),ρ2),

...

rT = ρT (Y T−1(ρT−1),ρT−1).

Given (A.9), we prove the theorem by showing that the solution ρ∗(·) can be justified by

backward induction in a finite-horizon dynamic programming. To illustrate this with deter-

ministic regimes when T = 2, we have

δ∗2(y1, d1) = arg max
d2

E[Y2(d)|Y1(d1) = y1], (A.10)

and, by defining V2(y1, d1) ≡ maxd2 E[Y2(d)|Y1(d1) = y1],

δ∗1(x) = arg max
d1

E[V2(Y1(d1), d1)|X = x]. (A.11)

Then, δ∗(·) is equal to the collection of these solutions: δ∗(·) = (δ∗1, δ
∗
2(·)).

Proof. First, given (A.9), the optimal stochastic rule in the final period can be defined as

ρ∗T (yT−1, rT−1) ≡ arg max
rT∈[0,1]

E[YT (r)|Y T−1(rT−1) = yT−1].

Define a value function at period T as VT (yT−1, d̃
T−1

) ≡ maxrT E[YT (r)|Y T−1(rT−1) = yT−1].

Similarly, for each t = 1, ..., T − 1, let

ρ∗t (y
t−1, rt−1) ≡ arg max

rt∈[0,1]
E[Vt+1(Y t(rt), rt)|Y t−1(rt−1) = yt−1]

8



and Vt(y
t−1, rt−1) ≡ maxrt E[Vt+1(Y t(rt), rt)|Y t−1(rt−1) = yt−1]. Finally, let

ρ∗1(x) ≡ arg max
r1∈[0,1]

E[V2(Y1(r1), r1)|X = x].

Then, ρ∗(·) = (ρ∗1(·), ..., ρ∗T (·)). Since {0, 1} ⊂ [0, 1], the same argument can apply for the

deterministic regime using the current framework but each maximization domain being {0, 1}.

This analogously defines δ∗t (·) ∈ {0, 1} for all t, and then δ∗(·) = (δ∗1(·), ..., δ∗T (·)), similarly

as in Murphy (2003).

Now, for the maximization problems above, let W̃t(r
t,yt−1) represent the objective func-

tion at t for 2 ≤ t ≤ T with W̃1(r1) for t = 1. By the definition of the stochastic regime, it

satisfies that

W̃t(r
t,yt−1) = rtWt(1, r

t−1,yt−1) + (1− rt)Wt(0, r
t−1,yt−1)

= rt
{
Wt(1, r

t−1,yt−1)−Wt(0, r
t−1,yt−1)

}
+Wt(0, r

t−1,yt−1).

Therefore, Wt(1, r
t−1,yt−1) ≥ Wt(0, r

t−1,yt−1) or 1 = arg maxrt∈{0,1} W̃t(r
t,yt−1) if and only

if 1 = arg maxrt∈[0,1] W̃t(r
t,yt−1). Symmetrically, 0 = arg maxrt∈{0,1} W̃t(r

t,yt−1) if and only

if 0 = arg maxrt∈[0,1] W̃t(r
t,yt−1). This implies that ρ∗t (·) = δ∗t (·) for all t = 1, ..., T , which

proves the theorem.

B Matrices in Section 3.3

We show how to construct matrices Ak and B in (3.2) and (3.4) for the linear programming

(3.6). The construction of Ak and B uses the fact that any linear functional of Pr[Y (d) =

y|X = x] or Pr[Y (d) = y,D(z) = d|X = x] can be characterized as a linear combination of

qs(x). Although the notation of this section can be somewhat heavy, if one is committed to

the use of linear programming instead of an analytic solution, most of the derivation can be

systematically reproduced in a standard software, such as MATLAB and Python.
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Consider B first. By Assumption SX, we have

py,d|z,x = Pr[Y (d) = y,D(z) = d|X = x]

= Pr[S : Yt(d
t) = yt, Dt(z

t) = dt ∀t|X = x]

=
∑

s∈Sy,d|z

qs(x), (B.1)

where Sy,d|z ≡ {S = β(S̃) : Yt(d
t) = yt, Dt(z

t) = dt ∀t}, S̃ ≡ (S̃1, ..., S̃T ) with S̃t ≡

({Yt(dt)}dt , {Dt(z
t)}zt), and β(·) is a one-to-one map that transforms a binary sequence into

a decimal value. Then, for a 1× dim(q(x)) vector By,d|z of ones and zeros,

py,d|z,x =
∑

s∈Sy,d|z

qs(x) = By,d|zq(x)

and the dim(px)×dim(q(x)) matrixB0 vertically stacksBy,d|z so that px = B0q(x) where px ≡

{py,d|z,x}y,d,z except redundant elements. Finally, we have p = Bq where p ≡ (p′x1 , ..., p
′
xL

)′,

B ≡


B0

. . .

B0

, and q = (q(x1)′, ..., q(xL)′)′ with X ≡ {x1, ..., xL}.

For Ak, recall Wδk is a linear functional of qδk(y) ≡ Pr[Y (δk(·)) = y]. For given δ(·), by

repetitively applying the law of iterated expectation, we can show

Pr[Y (δ(·)) = y]

= Pr[YT (d) = yT |Y T−1(dT−1) = yT−1]

× Pr[YT−1(dT−1) = yT−1|Y T−2(dT−2) = yT−2]× · · · × Pr[Y1(d1) = y1], (B.2)

where, because of the appropriate conditioning in (B.2), the bridge variables d = (d1, ..., dT )
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satisfies

d1 = δ1,

d2 = δ2(y1, d1),

d3 = δ3(y2,d2),

...

dT = δT (yT−1,dT−1).

Therefore, (B.2) can be viewed as a linear functional of Pr[Y (d) = y]. To illustrate, when

T = 2, the welfare defined as the average counterfactual terminal outcome satisfies

E[YT (δ(·))] =
∑
y1

Pr[Y2(δ1, δ2(Y1(δ1), δ1)) = 1|Y1(δ1) = y1] Pr[Y1(δ1) = y1]

=
∑
y1

Pr[Y2(δ1, δ2(y1, δ1)) = 1, Y1(δ1) = y1]. (B.3)

Then, for a chosen δ(·), the values δ1 = d1 and δ2(y1, δ1) = d2 at which Y2(δ1, δ2(y1, δ1)) and

Y1(δ1) are defined is given in Table 1 as shown in the main text. Therefore, E[Y2(δ(·))] can

be written as a linear functional of Pr[Y2(d1, d2) = y2, Y1(d1) = y1].

Now, define a linear functional hk(·) that maps Pr[Y (d) = y] into Pr[Y (δk(·)) = y]

according to (B.2). But note that Pr[Y (d) = y] =
∑

s∈Sy,d
qs by

Pr[Y (d) = y]

= Pr[S : Yt(d
t) = yt ∀t]

=
∑
s∈Sy,d

qs, (B.4)
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where Sy,d ≡ {S = β(S̃) : Yt(d
t) = yt ∀t}. Consequently, we have

Wk = f(qδk) = f(Pr[Y (δk(·)) = ·])

= f ◦ hk(Pr[Y (·) = ·,D(z) = ·]),

= f ◦ hk

 ∑
s∈S·,·|z

qs

 ≡ Akq.

To continue the illustration (3.3) in the main text, note that

Pr[Y (1, 1) = (1, 1)] = Pr[S : Y1(1) = 1, Y2(1, 1) = 1] =
∑
s∈S11

qs,

where S11 ≡ {S = β(S̃1, S̃2) : Y1(1) = 1, Y2(1, 1) = 1}. Similarly, we have

Pr[Y (1, 1) = (0, 1)] = Pr[S : Y1(1) = 0, Y2(1, 1) = 1] =
∑
s∈S01

qs,

where S01 ≡ {S = β(S̃1, S̃2) : Y1(1) = 0, Y2(1, 1) = 1}.

C Proofs

C.1 Proof of Theorem 3.1

Let Qp ≡ {q : Bq = p} ∩ Q be the feasible set. To prove part (i), first note that the sharp

DAG can be explicitly defined as G(K, Ep) with

Ep ≡ {(k, k′) ∈ K : Akq > Ak′q for all q ∈ Qp}.

Here, Akq > Ak′q for all q ∈ Qp if and only if Lk,k′ > 0 as Lk,k′ is the sharp lower bound of

(Ak −Ak′)q in (3.6). The latter is because the feasible set {q : Bq = p and q ∈ Q} is convex

and thus {∆k,k′q : Bq = p and q ∈ Q} is convex, which implies that any point between
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[Lk,k′ , Uk,k′ ] is attainable.

To prove part (ii), it is helpful to note that D∗p in (3.5) can be equivalently defined as

D∗p ≡ {δk′(·) : @k ∈ K such that Akq > Ak′q for all q ∈ Qp}

= {δk′(·) : Akq ≤ Ak′q for all k ∈ K and some q ∈ Qp}.

Let D̃∗p ≡ {δk′(·) : @k ∈ K such that Lk,k′ > 0 and k 6= k′}. First, we prove that D∗p ⊂ D̃∗p.

Note that

D\D̃∗p = {δk′ : Lk,k′ > 0 for some k 6= k′}.

Suppose δk′ ∈ D\D̃∗p. Then, for some k 6= k′, (Ak − Ak′)q ≥ Lk,k′ > 0 for all q ∈ Qp.

Therefore, for such k, Akq > Ak′q for all q ∈ Qp, and thus δk′ /∈ D∗p ≡ {arg maxδk Akq : q ∈

Qp}.

Now, we prove that D̃∗p ⊂ D∗p. Suppose δk′ ∈ D̃∗p. Then @k 6= k′ such that Lk,k′ > 0.

Equivalently, for any given k 6= k′, either (a) Uk,k′ ≤ 0 or (b) Lk,k′ < 0 < Uk,k′ . Consider (a),

which is equivalent to maxq∈Qp(Ak −Ak′)q ≤ 0. This implies that Akq ≤ Ak′q for all q ∈ Qp.

Consider (b), which is equivalent to minq∈Qp(Ak − Ak′)q < 0 < maxq∈Qp(Ak − Ak′)q. This

implies that ∃q ∈ Qp such that Akq = Ak′q. Combining these implications of (a) and (b), it

should be the case that ∃q ∈ Qp such that, for all k 6= k′, Ak′q ≥ Akq. Therefore, δk ∈ D∗p.

�

C.2 Alternative Characterization of the Identified Set

Given the DAG, the identified set of δ∗(·) can also be obtained as the collection of initial

vertices of all the directed paths of the DAG. For a DAG G(K, E), a directed path is a

subgraph G(Kj, Ej) (1 ≤ j ≤ J ≤ 2|K|) where Kj ⊂ K is a totally ordered set with initial
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vertex k̃j,1.1 In stating our main theorem, we make it explicit that the DAG calculated by

the linear programming is a function of the data distribution p.

Theorem C.1. Suppose Assumptions SX and B hold. Then, D∗p defined in (3.5) satisfies

D∗p = {δk̃j,1(·) ∈ D : 1 ≤ j ≤ J}, (C.1)

where k̃j,1 is the initial vertex of the directed path G(Kp,j, Ep,j) of G(K, Ep).

Proof. Let D̃∗ ≡ {δk̃j,1(·) ∈ D : 1 ≤ j ≤ J}. First, note that since k̃j,1 is the initial vertex

of directed path j, it should be that Wk̃j,1
≥ Wk̃j,m

for any k̃j,m in that path by definition.

We begin by supposing D∗p ⊃ D̃∗. Then, there exist δ∗(·; q) = arg maxδk(·)∈D Akq for some

q that satisfies Bq = p and q ∈ Q, but which is not the initial vertex of any directed path.

Such δ∗(·; q) cannot be other (non-initial) vertices of any paths as it is contradiction by

the definition of δ∗(·; q). But the union of all directed paths is equal to the original DAG,

therefore there cannot exist such δ∗(·; q).

Now suppose D∗p ⊂ D̃∗. Then, there exists δk̃j,1(·) 6= δ∗(·; q) = arg maxδk(·)∈D Akq for

some q that satisfies Bq = p and q ∈ Q. This implies that Wk̃j,1
< Wk̃ for some k̃. But k̃

should be a vertex of the same directed path (because Wk̃j,1
and Wk̃ are ordered), but then

it is contradiction as k̃j,1 is the initial vertex. Therefore, D∗p = D̃∗.

C.3 Proof of Theorem F.1

Given Theorem C.1, proving D̃∗ = {δkl,1(·) : 1 ≤ l ≤ LG} will suffice. Recall D̃∗ ≡ {δk̃j,1(·) ∈

D : 1 ≤ j ≤ J} where k̃j,1 is the initial vertex of the directed path G(Kp,j, Ep,j). When all

topological sorts are singletons, the proof is trivial so we rule out this possibility. Suppose

D̃∗ ⊃ {δkl,1(·) : 1 ≤ l ≤ LG}. Then, for some l, there should exist δkl,m(·) for some m 6= 1 that

is contained in D̃∗ but not in {δkl,1(·) : 1 ≤ l ≤ LG}, i.e., that satisfies either (i) Wkl,1 > Wkl,m

or (ii) Wkl,1 and Wkl,m are incomparable and thus either Wkl′,1
> Wkl,m for some l′ 6= l or

1For example, in Figure 1(a), there are two directed paths (J = 2) with V1 = {1, 2, 3} (k̃1,1 = 1) and

V2 = {2, 3, 4} (k̃2,1 = 4).
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Wkl,m is a singleton in another topological sort. Consider case (i). If δkl,1(·) ∈ Dj for some j,

then it should be that δkl,m(·) ∈ Dj as δkl,1(·) and δkl,m(·) are comparable in terms of welfare,

but then δkl,m(·) ∈ D̃∗ contradicts the fact that δkl,1(·) the initial vertex of the topological

sort. Consider case (ii). The singleton case is trivially rejected since if the topological sort

a singleton, then δkl,m(·) should have been already in {δkl,1(·) : 1 ≤ l ≤ LG}. In the other

case, since the two welfares are not comparable, it should be that δkl,m(·) ∈ Dj′ for j′ 6= j.

But δkl,m(·) cannot be the one that delivers the largest welfare since Wkl′,1
> Wkl,m where

δkl′,1(·). Therefore δkl,m(·) ∈ D̃∗ is contradiction. Therefore there is no element in D̃∗ that is

not in {δkl,1(·) : 1 ≤ l ≤ LG}.

Now suppose D̃∗ ⊂ {δkl,1(·) : 1 ≤ l ≤ LG}. Then for l such that δkl,1(·) /∈ D̃∗, either

Wkl,1 is a singleton or Wkl,1 is an element in a non-singleton topological sort. But if it is a

singleton, then it is trivially totally ordered and is the maximum welfare, and thus δkl,1(·) /∈

D̃∗ is contradiction. In the other case, if Wkl,1 is a maximum welfare, then δkl,1(·) /∈ D̃∗

is contradiction. If it is not a maximum welfare, then it should be a maximum in another

topological sort, which is contradiction in either case of being contained in {δkl,1(·) : 1 ≤ l ≤

LG} or not. This concludes the proof that D̃∗ = {δkl,1(·) : 1 ≤ l ≤ LG}. �

D Incorporating Additional Identifying Assumptions

To incorporate additional identifying assumptions in Section 3.5, we extend the main frame-

work of Sections 3.3–3.4. Suppose h is a dq × 1 vector of ones and zeros, where zeros are

imposed by given identifying assumptions. Introduce dq × dq diagonal matrix H = diag(h).

Then, we can define a space for q̄ ≡ Hq as

Q̄ ≡ {q̄ :
∑
s

q̄s(x) = 1 ∀x and q̄s(x) ≥ 0 ∀s, x}. (D.1)
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Note that the dimension of this space is smaller than the dimension of Q if h contains zeros.

Then we can modify (3.2) and (3.4) as

Bq̄ = p,

Wk = Akq̄,

respectively. Let δ∗(·; q̄) ≡ arg maxδk(·)∈DWk = Akq̄. Then, the identified set with the

identifying assumptions coded in h is defined as

D̄∗p ≡ {δ∗(·; q̄) : Bq̄ = p and q̄ ∈ Q} ⊂ D, (D.2)

which is assumed to be empty when Bq̄ 6= p. Importantly, the latter occurs when any of the

identifying assumptions are misspecified. Note that H is idempotent. Define ∆̄ ≡ ∆H and

B̄ ≡ BH. Then ∆q̄ = ∆̄q̄ and Bq̄ = B̄q̄. Therefore, to generate the DAG and characterize

the identified set, Theorem 3.1 can be modified by replacing q, B and ∆ with q̄, B̄ and ∆̄,

respectively.

Then, for example, we can incorporate Assumption M1 by choosing appropriate h. Recall

S̃t ≡ ({Yt(dt)}, {Dt(z
t)}) ∈ {0, 1}2t×{0, 1}2t and Sy,d|z ≡ {S = β(S̃) : Yt(d

t) = yt, Dt(z
t) =

dt ∀t} given (y,d, z). For example, the no-defier assumption can be incorporated in h by

having hs = 0 for s ∈ {S ∈ Sy,d|z : Dt(z
t−1, 1) = 0 and Dt(z

t−1, 0) = 1 ∀t} and hs = 1

otherwise.

The following lemmas establish the equivalence between Assumptions M1 and M2 and

corresponding threshold-crossing models.

Lemma D.1. Suppose Assumption SX holds and Pr[Dt = 1|Y t−1,Dt−1,Zt, X] is a non-

trivial function of Zt. Assumption M1 is equivalent to (3.9) being satisfied conditional on

(Y t−1,Dt−1,Zt−1, X) for each t.

Lemma D.2. Suppose Assumption SX holds, Pr[Dt = 1|Y t−1,Dt−1,Zt, X] is a non-trivial

function of Zt, and Pr[Yt = 1|Y t−1,Dt, X] is a non-trivial function of Dt. Assumption M2
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is equivalent to (3.10)–(3.11) being satisfied conditional on (Y t−1,Dt−1,Zt−1, X) for each t.

D.1 Proof of Lemma D.1

Conditional on (Y t−1,Dt−1,Zt−1, X) = (yt−1,dt−1, zt−1, x), it is easy to show that (3.9)

implies Assumption M1. Suppose πt(y
t−1,dt−1, zt−1, 1, x) > πt(y

t−1,dt−1, zt−1, 1, x) as πt(·)

is a nontrivial function of Zt. Then, we have

1{πt(yt−1,dt−1, zt−1, 1, x) ≥ Vt} ≥ 1{πt(yt−1,dt−1, zt−1, 0, x) ≥ Vt}

w.p.1, or equivalently, Dt(z
t−1, 1) ≥ Dt(z

t−1, 0) w.p.1. Suppose πt(y
t−1,dt−1, zt−1, 1, x) <

πt(y
t−1,dt−1, zt−1, 1, x). Then, by a parallel argument, Dt(z

t−1, 1) ≤ Dt(z
t−1, 0) w.p.1.

Now, we show that Assumption M1 implies (3.9) conditional on (Y t−1,Dt−1,Zt−1, X).

For each t, Assumption SX implies Yt(d
t), Dt(z

t) ⊥ Zt|(Y t−1(dt−1),Dt−1(zt−1),Zt−1, X),

which in turn implies the following conditional independence:

Yt(d
t), Dt(z

t) ⊥ Zt|(Y t−1,Dt−1,Zt−1, X). (D.3)

Conditional on (Y t−1,Dt−1,Zt−1, X), (3.9) and (D.3) correspond to Assumption S-1 in Vyt-

lacil (2002). Assumption R(i) and (D.3) correspond to Assumption L-1, and Assumption M1

corresponds to Assumption L-2 in Vytlacil (2002). Therefore, the desired result follows by

Theorem 1 of Vytlacil (2002). �

D.2 Proof of Lemma D.2

We are remained to prove that, conditional on (Y t−1,Dt−1, X), (3.10) is equivalent to the

second part of Assumption M2. But this proof is analogous to the proof of Lemma D.1 by

replacing the roles of Dt and Zt with those of Yt and Dt, respectively. Therefore, we have

the desired result. �
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E Numerical Studies

We conduct numerical exercises to illustrate (i) the theoretical results developed in Sec-

tions 3.1–3.4, (ii) the role of the assumptions introduced in Section 3.5, and (iii) the overall

computational scale of the problem. For T = 2, we consider the following data-generating

process:

Di1 = 1{π1Zi1 + αi + vi1 ≥ 0}, (E.1)

Yi1 = 1{µ1Di1 + αi + ei1 ≥ 0}, (E.2)

Di2 = 1{π21Yi1 + π22Di1 + π23Zi2 + αi + vi2 ≥ 0}, (E.3)

Yi2 = 1{µ21Yi1 + µ22Di2 + αi + ei2 ≥ 0}, (E.4)

where (v1, e1, v2, e2, α) are mutually independent and jointly normally distributed, the endo-

geneity of Di1 and Di2 as well as the serial correlation of the unobservables are captured by

the individual effect αi, and (Z1, Z2) are Bernoulli, independent of (v1, e1, v2, e2, α). Notice

that the process is intended to satisfy Assumptions SX, K, M1, and M2. We consider a

data-generating process where all the coefficients in (E.1)–(E.4) take positive values. In this

exercise, we consider the welfare Wk = E[Y2(δk(·))].

We consider eight possible regimes shown in Table 1 (i.e., |D| = |K| = 8). We calculate the

lower and upper bounds (Lk,k′ , Uk,k′) on the welfare gap Wk−Wk′ for all pairs k, k′ ∈ {1, ..., 8}

(k < k′). This is to illustrate the role of assumptions in improving the bounds. We conduct

the bubble sort, which makes

 8

2

= 28 pair-wise comparisons, resulting in 28 × 2 linear

programs to run.2 As the researcher, we maintain Assumption K. Then, for each linear

program, the dimension of q is |Q|+ 1 = |S| = |S1| × |S2| = 22× 22× 28× 24 = 65, 536. Note

that the dimension is reduced with additional identifying assumptions. The number of main

constraints is dim(p) = 23×2 − 22 = 60. There are 1 + 65, 536 additional constraints that

2There are more efficient algorithms than the bubble sort, such as the quick sort, although they must be
modified to incorporate the distinct feature of our problem: the possible incomparability that stems from
partial identification. Note that for comparable pairs, transitivity can be applied and thus the total number
of comparisons can be smaller.
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Figure 1: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red)
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Figure 2: Sharp Directed Acyclic Graph under M2

define the simplex, i.e.,
∑

s qs = 1 and qs ≥ 0 for all s ∈ S. Each linear program takes less

than a second to calculate Lk,k′ or Uk,k′ with a computer with a 2.2 GHz single-core processor

and 16 GB memory and with a modern solver such as CPLEX, MOSEK, and GUROBI.

Figure 1 reports the bounds (Lk,k′ , Uk,k′) on Wk − Wk′ for all (k, k′) ∈ {1, ..., 8} under

Assumption M1 (in black) and Assumption M2 (in red). In the figure, we can determine the

sign of the welfare gap for those bounds that exclude zero. The difference between the black

and red bounds illustrates the role of Assumption M2 relative to M1. That is, there are more

bounds that avoid the zero vertical line with M2, which is consistent with the theory. It is

important to note that, because M2 does not assume the direction of monotonicity, the sign

of the welfare gap is not imposed by the assumption but recovered from the data.3 Each set

of bounds generates an associated DAGs (produced as an 8 × 8 adjacency matrix). Given

the solutions of the linear programs, the adjacency matrix and thus the graph is simple

to produce automatically using a standard software such as MATLAB. We proceed with

Assumption M2 for brevity.

Figure 2 depicts the sharp DAG generated from (Lk,k′ , Uk,k′)’s under Assumption M2,

3The direction of the monotonicity in M2 can be estimated directly from the data by using the fact
that sign(E[Yt|Zt = 1,Y t−1,Dt−1] − E[Yt|Zt = 1,Y t−1,Dt−1]) = sign(E[Yt(D

t−1, 1)|Y t−1,Dt−1] −
E[Yt(D

t−1, 0)|,Y t−1,Dt−1]) almost surely. This result is an extension of Shaikh and Vytlacil (2011) to
our multi-period setting.
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Figure 3: Sharp Directed Acyclic Graph under M2 (with only Z1)

based on Theorem 3.1(i). Then, by Theorem 3.1(ii), the identified set of δ∗(·) is

D∗p = {δ7(·), δ8(·)}.

The common feature of the elements in D∗p is that it is optimal to allocate δ2 = 1 for all

y1 ∈ {0, 1}. Finally, the following is one of the topological sorts produced from the DAG:

(δ8(·), δ4(·), δ7(·), δ3(·), δ5(·), δ1(·), δ6(·), δ2(·)).

We also conducted a parallel analysis but with a slightly different data-generating process,

where (a) all the coefficients in (E.1)–(E.4) are positive except µ22 < 0 and (b) Z2 does not

exist. In Case (a), we obtain D∗p = {δ2(·)} as a singleton, i.e., we point identify δ∗(·) = δ2(·).

The DAG for Case (b) is shown in Figure 3. We still obtain an informative DAG even with

a single instrument. In this case, we obtain D∗p = {δ6(·), δ7(·), δ8(·)}.

Finally, we present further simulation results to investigate how the strength of in-

struments affect the partial ordering. We maintain the same simulation design and data-

generating process as above. The original case of Figures 1 and 2 uses (1, 0.8) for the values

of the coefficients (π1, π23) on (Z1, Z2). Figure 4 shows the bounds and the DAG when

(π1, π23) = (0.5, 0.4), that is, the instruments (Z1, Z2) have 50% of strength compared to the
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Figure 4: Left: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red); Right: Sharp
DAG under M2 (IV strength: 50% of Figures 1 and 2)

original case. Figure 5 shows the results when (π1, π23) = (0.25, 0.2), that is, the instruments

(Z1, Z2) have only 25% of strength compared to the original case. In both figures, we obtain

informative DAGs under M2. However, note that when we do not assume M2, the weaker in-

struments produce completely uninformative partial orderings as suggested from the bounds

on the welfare gaps depicted in black. This exercise suggests the usefulness of M2 when

instruments are weak. Finally, Figure 6 presents the results when (π1, π23) = (1.5, 1.2), that

is, the instruments (Z1, Z2) have 150% of strength compared to the original case. Although

the DAG under M2 is identical to that in the original case, the informative bounds under

M1 implies that the DAG under M1 will be very informative.

F Discussions

In Sections F.1–F.4, we propose some ways to report results of this paper including the partial

ordering. These approaches can be useful especially when the obtained partial ordering is
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Figure 5: Left: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red); Right: Sharp
DAG under M2 (IV strength: 25% of Figures 1 and 2)

Figure 6: Left: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red); Right: Sharp
DAG under M2 (IV strength: 150% of Figures 1 and 2)
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complicated (e.g., with a longer horizon). We also discuss the cases where the set of possible

regimes can be reduced. Section F.5 briefly discusses inference.

F.1 Set of the n-th Best Policies

When the partial ordering of welfare is the parameter of interest, the identified set of δ∗(·)

can be viewed as a summary of the partial ordering. This view can be extended to introduce

a set of the n-th best regimes, which further summarizes the partial ordering. With slight

abuse of notation, we can formalize it as follows.

Recall K is the set of all regime indices. Motivated from (3.7), let K(1)
p ≡ {k′ : @k ∈

K such that Lk,k′ > 0 and k 6= k′ ∈ K} be the set of maximal elements of the partial ordering

and let D(1)
p ≡ {δk′(·) : k′ ∈ K(1)

p }. Theorem 3.1(ii) can be simply stated as D∗p = D(1)
p . To

define the set of second-best regimes, we first remove all the elements in K(1)
p from the set of

candidate. Accordingly, by defining

K(2)
p ≡ {k′ : @k ∈ K\K(1)

p such that Lk,k′ > 0 and k 6= k′ ∈ K\K(1)
p },

we can introduce the set of second-best regimes: D(2)
p ≡ {δk′(·) : k′ ∈ K(2)

p }. Iteratively, we

can define the set of n-th best regimes as D(n)
p ≡ {δk′(·) : k′ ∈ K(n)

p } where

K(n)
p =

{
k′ : @k ∈ K\

n−1⋃
j=1

K(j)
p such that Lk,k′ > 0 and k 6= k′ ∈ K\

n−1⋃
j=1

K(j)
p

}
.

The sets D(1)
p , ...,D(n)

p can be recovered from the linear programs (3.6) and are useful policy

benchmarks. For instance, the policy maker can conduct a sensitivity analysis for her chosen

regime (e.g., from a parametric model) by inspecting in which set the regime is contained.

F.2 Topological Sorts as Observational Equivalence

Another way to summarize the partial ordering is to use topological sorts. A topological sort

of a DAG is a linear ordering of its vertices that does not violate the order in the partial

24



ordering given by the DAG. That is, for every directed edge k → k′, k comes before k′ in this

linear ordering. Apparently, there can be multiple topological sorts for a DAG. Let LG be

the number of topological sorts of DAG G(K, Ep), and let kl,1 ∈ K be the initial vertex of the

l-th topological sort for 1 ≤ l ≤ LG. For example, given the DAG in Figure 1(a) (of the main

text), (δ1, δ4, δ2, δ3) is an example of a topological sort (with kl,1 = 1), but (δ1, δ2, δ4, δ3)

is not. Topological sorts are routinely reported for a given DAG, and there are well-known

algorithms that efficiently find topological sorts, such as Kahn (1962)’s algorithm.

In fact, topological sorts can be viewed as total orderings that are observationally equiv-

alent to the true total ordering of welfares. That is, each q generates the total ordering of

welfares via Wk = Akq, and q’s in {q : Bq = p}∩Q generates observationally equivalent total

orderings. This insight enables us to interpret the partial ordering we establish using the

more conventional notion of partial identification: the ordering is partially identified in the

sense that the set of all topological sorts is not a singleton. This insight yields an alternative

way of characterizing the identified set D∗p of the optimal regime.

Theorem F.1. Suppose Assumptions SX and B hold. The identified set D∗p defined in (3.5)

satisfies

D∗p = {δkl,1(·) : 1 ≤ l ≤ LG},

where kl,1 is the initial vertex of the l-th topological sort of G(K, Ep).

Suppose the DAG we recover from the data is not too sparse. By definition, a topological

sort provides a ranking of regimes that is not inconsistent with the partial welfare ordering.

Therefore, not only δkl,1(·) ∈ D∗p but also the full sequence of a topological sort

(
δkl,1(·), δkl,2(·), ...,dkl,|D|(·)

)
(F.1)

can be useful. A policymaker can be equipped with any of such sequences as a policy

benchmark.
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F.3 Bounds on Sorted Welfares

The set of n-th best regimes and topological sorts provide ordinal information about coun-

terfactual welfares. To gain more comprehensive knowledge about the welfares, they can be

accompanied by cardinal information: bounds on the sorted welfares. One might especially

be interested in the bounds on “top-tier” welfares that are associated with the identified

set or the first few elements in the topological sort. Bounds on gains from adaptivity and

regrets can also be computed. These bounds can be calculated by solving linear programs.

For instance, the sharp lower and upper bounds on welfare Wk can be calculated via

Uk = maxq∈QAkq,

Lk = minq∈QAkq,
s.t. Bq = p. (F.2)

F.4 Cardinality Reduction

The typical time horizons we consider in this paper are short. For example, a multi-stage ex-

periment called the Fast Track Prevention Program (Conduct Problems Prevention Research

Group (1992)) considers T = 4. When T is not small, the cardinality of D may be too large,

and we may want to reduce it for computational, institutional, and practical purposes.

One way to reduce the cardinality is to reduce the dimension of the adaptivity. Define

a simpler adaptive treatment rule δt : {0, 1} × {0, 1} → {0, 1} that maps only the lagged

outcome and treatment onto a treatment allocation dt ∈ {0, 1}:

δt(yt−1, dt−1) = dt

for t = 2, ..., T and δ1(x) = d1 ∈ {0, 1}. In this case, we have |D| = 22(T−1) × 2|X | instead of

22T−2 × 2|X |. An even simpler rule, δt(yt−1), appears in Murphy et al. (2001).

Another possibility is to be motivated by institutional or budget constraints. For example,

it may be the case that adaptive allocation is available every second period or only later in

the horizon due to cost considerations. For example, suppose that the policymaker decides
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to introduce the adaptive rule at t = T while maintaining static rules for t ≤ T − 1. Finally,

D can be restricted by budget or policy constraints that, e.g., the treatment is allocated to

each individual at most once.

F.5 Inference

Although we do not fully investigate inference in the current paper, we briefly discuss it. For

simplicity, we focus on the setting where p(x) is known and thus ∆k,k′ is known. To conduct

inference on the optimal regime δ∗(·), we can construct a confidence set (CS) for D∗p with

the following procedure. We consider a sequence of hypothesis tests, in which we eliminate

regimes that are (statistically) significantly inferior to others. This is a statistical analog of

the elimination procedure encoded in (3.7) or (3.8). For each test given K̃ ⊂ K, we construct

a null hypothesis that Wk and Wk′ are not comparable for all k, k′ ∈ K̃. Given (3.6), the

incomparability of Wk and Wk′ is equivalent to Lk,k′ ≤ 0 ≤ Uk,k′ . In constructing this null

hypothesis, it is helpful to invoke strong duality for the primal programs (3.6) and write the

following dual programs:

Uk,k′ = min
λ
p̃′λ, s.t. B̃′λ ≥ ∆′k,k′ (F.3)

Lk,k′ = max
λ
−p̃′λ, s.t. B̃′λ ≥ −∆′k,k′ (F.4)

where B̃ ≡

 B

1′

 is a (dp+1)×dq matrix with 1 being a dq×1 vector of ones and p̃ ≡

 p

1


is a (dp + 1)× 1 vector. Let ΛU

k,k′ ≡ {λ : B̃′λ ≥ ∆′k,k′} and ΛL
k,k′ ≡ {λ : B̃′λ ≥ −∆′k,k′}. Then,

we have Uk,k′ = minλ∈ΛU
k,k′

p̃′λ and Lk,k′ = maxλ∈ΛL
k,k′
−p̃′λ. Therefore, the null hypothesis

that Lk,k′ ≤ 0 ≤ Uk,k′ for k, k′ ∈ K̃ can be written as

H0,K̃ : p̃′λ ≥ 0 for all λ ∈ ΛK̃. (F.5)

where ΛK̃ ≡
⋃
k,k′∈K̃ Λk,k′ with Λk,k′ ≡ ΛU

k,k′ ∪ ΛL
k,k′ .
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Then, the procedure of constructing the CS, denoted as D̂CS, is as follows: Step 0. Initially

set K̃ = K. Step 1. Test H0,K̃ at level α with test function φK̃ ∈ {0, 1}. Step 2. If H0,K̃ is

not rejected, define D̂CS = {δk(·) : k ∈ K̃}; otherwise eliminate vertex kK̃ from K̃ and repeat

from Step 1. In Step 1, TK̃ ≡ mink,k′∈K̃ tk,k′ can be used as the test statistic for H0,K̃ where

tk,k′ ≡ minλ∈Λk,k′
tλ and tλ is a standard t-statistic. The distribution of TK̃ can be estimated

using bootstrap. In Step 2, a candidate for kK̃ is kK̃ ≡ arg mink∈K̃mink′∈K̃ tk,k′ .

The eliminated vertices (i.e., regimes) are statistically suboptimal regimes, which are al-

ready policy-relevant outputs of the procedure. Note that the null hypothesis (F.5) consists of

multiple inequalities. This incurs the issue of uniformity in that the null distribution depends

on binding inequalities, whose identities are unknown. Such a problem has been studied in

the literature, as in Hansen (2005), Andrews and Soares (2010), and Chen and Szroeter

(2014). Hansen et al. (2011)’s bootstrap approach for constructing the model confidence set

builds on Hansen (2005). We apply a similar inference method as in Hansen et al. (2011),

but in this novel context and by being conscious about the computational challenge of our

problem. In particular, the dual problem (F.3)–(F.4) and the vertex enumeration algorithm

are introduced to ease the computational burden in simulating the distribution of TK̃. That

is, the calculation of ΛK̃, the computationally intensive step, occurs only once, and then for

each bootstrap sample, it suffices to calculate p̂ instead of solving the linear programs (3.6)

for all k, k′ ∈ K̃.

Analogous to Hansen et al. (2011), we can show that the resulting CS has desirable

properties. Let HA,K̃ be the alternative hypothesis.

Assumption CS. For any K̃, (i) lim supn→∞ Pr[φK̃ = 1|H0,K̃] ≤ α, (ii) limn→∞ Pr[φK̃ =

1|HA,K̃] = 1, and (iii) limn→∞ Pr[δkK̃(·) ∈ D∗p|HA,K̃] = 0.

Proposition F.1. Under Assumption CS, it satisfies that lim infn→∞ Pr[D∗p ⊂ D̂CS] ≥ 1−α

and limn→∞ Pr[δ(·) ∈ D̂CS] = 0 for all δ(·) /∈ D∗p.

The procedure of constructing the CS does not suffer from the problem of multiple test-

ings. This is because the procedure stops as soon as the first hypothesis is not rejected,
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and asymptotically, maximal elements will not be questioned before all sub-optimal regimes

are eliminated. The resulting CS can also be used to conduct a specification test for a less

palatable assumption, such as Assumption M2. We can refute the assumption when the CS

under that assumption is empty.

To implement the procedure in practice, we need to compute ΛU
k,k′ and ΛL

k,k′ for all

k, k′ ∈ K. Note that Uk,k′ = minλ∈ΛU
k,k′

p̃′λ = minλ∈Λ̃U
k,k′

p̃′λ and Lk,k′ = minλ∈ΛL
k,k′

p̃′λ =

minλ∈Λ̃L
k,k′

p̃′λ where Λ̃U
k,k′ and Λ̃L

k,k′ are sets of vertices in ΛU
k,k′ and ΛL

k,k′ , respectively. There-

fore, implementing the procedure reduces down to enumerating vertices of the polyhedra

ΛU
k,k′ and ΛL

k,k′ or relevant subsets of them. This can be done by using a version of vertex

enumeration algorithm (e.g., Avis and Fukuda (1992)). However, we note that the enumer-

ation may be computationally extremely challenging especially when the dimension of q is

large (which happens when we do not impose any additional identifying assumptions). There

may be strategies that avoid the full enumeration, but this question is beyond the scope of

the paper.

Inference on the welfare bounds in (F.2) may be conducted by using recent results as in

Deb et al. (2017), who develop uniformly valid inference for bounds obtained via linear pro-

gramming. Inference on optimized welfare Wδ∗ or maxδ(·)∈D̂CS
Wδ can also be an interesting

problem. Andrews et al. (2019) consider inference on optimized welfare (evaluated at the

estimated policy) in the context of Kitagawa and Tetenov (2018), but with point-identified

welfare under the unconfoundedness assumption. Extending the framework to the current

setting with partially identified welfare and dynamic regimes under treatment endogeneity

would also be interesting future work; e.g., see Han and McCloskey (2022).
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