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ABSTRACT
Dynamic treatment regimes are treatment allocations tailored to heterogeneous individuals (e.g., via pre-
vious outcomes and covariates). The optimal dynamic treatment regime is a regime that maximizes coun-
terfactual welfare. We introduce a framework in which we can partially learn the optimal dynamic regime
from observational data, relaxing the sequential randomization assumption commonly employed in the
literature but instead using (binary) instrumental variables. We propose the notion of sharp partial ordering
of counterfactual welfares with respect to dynamic regimes and establish mapping from data to partial
ordering via a set of linear programs. We then characterize the identified set of the optimal regime as the
set of maximal elements associated with the partial ordering. We relate the notion of partial ordering with
a more conventional notion of partial identification using topological sorts. Practically, topological sorts
can be served as a policy benchmark for a policymaker. We apply our method to understand returns to
schooling and post-school training as a sequence of treatments by combining data from multiple sources.
The framework of this article can be used beyond the current context, for example, in establishing rankings
of multiple treatments or policies across different counterfactual scenarios. Supplementary materials for this
article are available online.
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1. Introduction

Dynamic treatment regimes are dynamically personalized
treatment allocations. Given that individuals are heterogeneous,
allocations tailored to heterogeneity can improve overall welfare.
Define a dynamic treatment regime δ(·) as a sequence of binary
rules δt(·) that map the previous outcome and treatment (and
possibly other covariates) onto current allocation decisions:
δt(yt−1, dt−1) = dt ∈ {0, 1} for t = 1, . . ., T. The motivation
for being adaptive to the previous outcome is that it may contain
information on unobserved heterogeneity that is not captured in
covariates. Then the optimal dynamic treatment regime, which
is this article’s main parameter of interest, is defined as a regime
that maximizes certain counterfactual welfare:

δ∗(·) = arg max
δ(·)

Wδ .

This article investigates the possibility of identifiability of the
optimal dynamic regime δ∗(·) from data that are generated from
randomized experiments in the presence of noncompliance or
more generally from observational studies in multi-period set-
tings.

Optimal treatment regimes have been extensively studied in
the biostatistics literature (Murphy et al. 2001; Murphy 2003;
Robins 2004, among others). These studies typically rely on
an ideal multi-stage experimental environment that satisfies
sequential randomization. Based on such experimental data,
they identify optimal regimes that maximize welfare, defined
as the average counterfactual outcome. However, noncompli-
ance is prevalent in experiments, and more generally, treatment
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endogeneity is a marked feature in observational studies. This
may be one reason the vast biostatistics literature has not yet
gained traction in other fields of social science, despite the
potentially fruitful applications of optimal dynamic regimes in
various policy evaluations.

This article proposes a nonparametric framework, in which
we can at least partially learn the ranking of counterfactual wel-
fares Wδ ’s and hence the optimal dynamic regime δ∗(·). We view
that it is important to avoid making stringent modeling assump-
tions in the analysis of personalized treatments, because the core
motivation of the analysis is individual heterogeneity, which we
want to keep intact as much as possible. Instead, we embrace
the partial identification approach. Given the observed distribu-
tion of sequences of outcomes and endogenous treatments and
using the instrumental variable (IV) method, we establish sharp
partial ordering of welfares, and characterize the identified set
of optimal regimes as a discrete subset of all possible regimes.
We define welfare as a linear functional of the joint distribution
of counterfactual outcomes across periods. Examples of welfare
include the average counterfactual terminal (i.e., distal) outcome
commonly considered in the literature and as shown above.
We assume we are equipped with some IVs that are possibly
binary. We show that it is helpful to have a sequence of IVs
generated from sequential experiments or quasi-experiments.
Examples of the former are increasingly common as forms of
random assignments or encouragements in medical trials, pub-
lic health and educational interventions, and A/B testing on
digital platforms. Examples of the latter can be some combi-
nations of traditional IVs and regression discontinuity designs.
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Our framework also accommodates a single binary IV in the
context of dynamic treatments and outcomes (e.g., Cellini et al.
2010). The identifying power in such a case is investigated in
simulation. The partial ordering and identified set proposed in
this article enable “sensitivity analyses.” That is, by comparing
a chosen regime (e.g., from a parametric approach) with these
benchmark objects, one can determine how much the former is
led by assumptions and how much is informed by data. Such a
practice also allows us to gain insight into data requirements to
achieve a certain level of informativeness.

The identification analysis is 2-fold. In the first part, we
establish mapping from data to sharp partial ordering of coun-
terfactual welfares with respect to possible regimes. The point
identification of δ∗(·) will be achieved by establishing the total
ordering of welfares, which is not generally possible in this flexi-
ble nonparametric framework with limited exogenous variation.
To establish the partial ordering, we first characterize bounds
on the difference between each pair of welfares as the set of
optima of linear programs, and we do so for all possible welfare
pairs. The bounds on welfare gaps are informative about whether
welfares are comparable or not, and when they are, how to rank
them. Then we show that although the bounds are calculated
from separate optimizations, the partial ordering is consistent
with common data-generating processes. The partial ordering
obtained in this way is shown to be sharp in the sense that
will become clear later. Note that each welfare gap measures
the dynamic treatment effect. The partial ordering concisely
(and tightly) summarizes the identified signs of these treatment
effects, and thus can be a parameter of independent interest.

In the second part of the analysis, given the sharp partial
ordering, we show that the identified set can be characterized as
the set of maximal elements associated with the partial ordering,
that is, the set of regimes that are not inferior. Given the partial
ordering, we also calculate topological sorts, which are total
orderings that do not violate the underlying partial ordering.
Theoretically, topological sorts can be viewed as observation-
ally equivalent total orderings, which insight relates the partial
ordering we consider with a more conventional notion of partial
identification. Practically, topological sorts can be served as a
policy benchmark that a policymaker can be equipped with. If
desired, linear programming can be solved to calculate bounds
on a small number of sorted welfares (e.g., top-tier welfares).

Given the minimal structure we impose in the data-
generating process, the size of the identified set may be large
in some cases. Such an identified set may still be useful in
eliminating suboptimal regimes or warning about the lack of
informativeness of the data. Often, however, researchers are
willing to impose additional assumptions to gain identifying
power. We propose identifying assumptions, such as uniformity
assumptions that generalize the monotonicity assumption in
Imbens and Angrist (1994) and Angrist et al. (1996), Markovian
structure, and stationarity. These assumptions tighten the
identified set by reducing the dimension of the simplex in the
linear programming, thus, producing a denser partial ordering.
We show that these assumptions are easy to impose in our
framework.

This article makes several contributions. To our best knowl-
edge, this article is first in the literature that considers the

identifiability of optimal dynamically adaptive regimes under
treatment endogeneity. Murphy (2003) and subsequent works
consider point identification of optimal dynamic regimes, but
under the sequential randomization assumption. This article
brings that literature to observational contexts. Recently, Han
(2021b), Han (2021a), Cui and Tchetgen Tchetgen (2021), and
Qiu et al. (2021) relax sequential randomization and estab-
lish identification of dynamic average treatment effects and/or
optimal regimes using IVs. They consider a regime that is a
mapping only from covariates, but not previous outcomes and
treatments, to an allocation. They focus on point identification
by imposing assumptions such as the existence of additional
exogenous variables in a multi-period setup (Han (2021b)),
or the zero correlation between unmeasured confounders and
compliance types (Cui and Tchetgen Tchetgen 2021; Qiu et al.
2021) or uniformity (Han 2021a) in a single-period setup. The
dynamic effects of treatment timing (i.e., irreversible treatments)
have been considered in Heckman and Navarro (2007) and
Heckman et al. (2016) who use exclusion restrictions and infi-
nite support assumptions. A related staggered adoption design
was recently studied in multi-period difference-in-differences
settings under treatment heterogeneity by Athey and Imbens
(2022), Callaway and Sant’Anna (2021), and Sun and Abraham
(2021). de Chaisemartin and d’Haultfoeuille (2020) consider
a similar problem but without necessarily assuming staggered
adoption. This article complements these papers by considering
treatment scenarios of multiple dimensions with adaptivity as
the key ingredient.

Second, this article contributes to the literature on partial
identification of treatment effects that uses linear programming
approach, which has early examples as Balke and Pearl (1997)
and Manski (2007), and appears recently in Mogstad et al.
(2018), Torgovitsky (2019), Machado et al. (2019), Kamat
(2019), and Han and Yang (2023) to name a few. The advantages
of this approach is that (i) bounds can be automatically obtained
even when analytical derivation is not possible, (ii) the proof of
sharpness is straightforward and not case-by-case, and (iii) it can
streamline the analysis of different identifying assumptions. The
dynamic framework of this article complicates the identification
analysis and thus fully benefits from these advantages. However,
a distinct feature of the present article is that the linear
programming approach is used in establishing a sharp partial
ordering across counterfactual objects—a novel concept in the
literature—and in such a way that separate optimizations yield a
common object, namely the partial ordering. The framework of
this article can also be useful in other settings where the goal is
to compare welfares across multiple treatments and regimes—
for example, personalized treatment rules—or more generally,
to establish rankings of policies across different counterfactual
scenarios and find the best ones.

Third, we apply our method to conduct a policy analysis with
schooling and post-school training as a sequence of treatments,
which is to our knowledge a novel attempt in the literature.
We consider dynamic treatment regimes of allocating a high
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school diploma and, given pre-program earnings, a job training
program for economically disadvantaged population. By com-
bining data from the Job Training Partnership Act (JTPA), the
US Census, and the National Center for Education Statistics
(NCES), we construct a dataset with a sequence of IVs that is
used to estimate the partial ordering of expected earnings and
the identified set of the optimal regime. Even though only partial
orderings are recovered, we can conclude with certainty that
allocating the job training program only to the low earning type
is welfare optimal. We also find that more costly regimes are not
necessarily welfare-improving.

The dynamic treatment regime considered in this article is
broadly related to the literature on statistical treatment rules,
for example, Manski (2004), Hirano and Porter (2009), Bhat-
tacharya and Dupas (2012), Stoye (2012), Kitagawa and Tetenov
(2018), Kasy (2016), and Athey and Wager (2021). However, our
setting, assumptions, and goals are different from those in these
papers. In a single-period setting, they consider allocation rules
that map covariates to decisions. They impose assumptions that
ensure point identification, such as (conditional) unconfound-
edness or homogeneity, and focus on establishing the asymptotic
optimality of the treatment rules, with Kasy (2016) the excep-
tion. Kasy (2016) focuses on establishing partial ranking by com-
paring a pair of treatment-allocating probabilities as policies.
The notion of partial identification of ranking relates to ours,
but we introduce the notion of sharpness of a partially ordered
set with discrete policies and a linear programming approach to
achieve that. Another distinction is that we consider a dynamic
setup. In the sense of constructing a set of optimal dynamic
treatment regimes, the current article also relates to the approach
in biostatistics, most notably in Ertefaie et al. (2016) and Chao
et al. (2022). However, the fundamental difference is that, in
the latter approach, the set consists of regimes that cannot be
differentiated from the best regime due to sampling uncertainty
(i.e., the set is a confidence set) while, in our approach, it results
from model uncertainty (i.e., the set is an identified set). Finally,
in order to focus on the challenge with endogeneity, we consider
a simple setup where the exploration and exploitation stages are
separated, unlike in the literature on bandit problems (Athey and
Imbens 2019; Kasy and Sautmann 2021; Kock et al. 2021). We
believe the current setup is a good starting point.

In the next section, we introduce the dynamic regimes and
related counterfactual outcomes, which define the welfare and
the optimal regime. Section 3 conducts the main identification
analysis by constructing the partial ordering and characterizing
the identified set. Section 4 presents the empirical application on
returns to schooling and job training. In the online supplemental
appendix, the analysis with binary outcomes and discrete covari-
ates is extended to continuous outcomes and covariates, and
stochastic regimes are discussed. The supplemental appendix
also presents numerical studies and discusses topological sorts,
cardinality reduction for the set of regimes, and inference. Most
proofs are collected in the supplemental appendix.

2. Dynamic Regimes and Counterfactual Welfares

2.1. Dynamic Regimes

Let t be the index for a period or stage. For each t = 2, . . ., T
with fixed T, define an adaptive treatment rule δt : {0, 1}t−1 ×

Table 1. Dynamic regimes δ(·) when T = 2 and δ1(x) = δ1.

Regime # δ1 δ2(1, δ1) δ2(0, δ1)

1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

{0, 1}t−1 → {0, 1} that maps the lags of the realized binary
outcomes and treatments yt−1 ≡ (y1, . . ., yt−1) and dt−1 ≡
(d1, . . ., dt−1) onto a deterministic treatment allocation dt ∈
{0, 1}:

δt(yt−1, dt−1) = dt . (2.1)

This adaptive rule also appears in, for example, Murphy (2003).
When t = 1, the adaptive rule δ1 : X → {0, 1} maps discrete
pre-treatment covariate vector x onto an allocation d1 ∈ {0, 1}:

δ1(x) = d1. (2.2)

The treatment rules above are dynamic in the sense that it is a
function of previous outcomes, treatments and covariates. Spe-
cial cases of (2.1)–(2.2) are a dynamic rule that is only a function
of covariates but not (yt−1, dt−1) (Han 2021b; Cui and Tchet-
gen Tchetgen 2021) and a static rule where δt(·) is a constant
function. Binary outcomes and treatments are prevalent, and
they are helpful in analyzing, interpreting, and implementing
dynamic regimes (Zhang et al. 2015). Later, we extend the frame-
work to allow for continuous outcome variables and covariates
and time-varying covariates; see Appendices A.1 and A.2. We
only consider deterministic rules δt(·) ∈ {0, 1}. In Appendix
A.3, we extend this to stochastic rules and show why it is enough
to consider deterministic rules in some cases. Then, a dynamic
regime up to period t is defined as a vector of all treatment rules:

δt(·) ≡ (δ1(·), δ2(·), . . ., δt(·)) .

Let δ(·) ≡ δT(·) ∈ D where D is the set of all possible regimes.
We can allow D to be a strict subset of the set of all possible
regimes due to institutional or practical purposes; see Appendix
F.4 for relevant discussions. Throughout the article, we will
mostly focus on the leading case with T = 2 for simplicity. Also,
this case already captures the essence of the dynamic features,
such as adaptivity and complementarity. Table 1 lists all possible
dynamic regimes δ(·) ≡ (δ1, δ2(·)) (with constant function
δ1(x) = δ1) as contingency plans, and there are eight of them.
When δ1(x) is a function of binary x ∈ {0, 1}, it is easy to see that
there will be 16 regimes in total.

2.2. Counterfactual Welfares and Optimal Regimes

To define welfare with respect to (w.r.t.) this dynamic regime,
we first introduce a counterfactual outcome as a function of a
dynamic regime. Because of the adaptivity intrinsic in dynamic
regimes, expressing counterfactual outcomes is more involved
than that with static regimes dt , that is, Yt(dt) with dt ≡
(d1, . . ., dt). Let Y t(dt) ≡ (Y1(d1), Y2(d2), . . ., Yt(dt)). In terms
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of notation throughout the article, for an arbitrary r.v. Rt , we let
Rt ≡ (R1, . . ., Rt) denote a vector that collects Rt across time
up to t, and let rt be its realization. Most of the time, we write
R ≡ RT for convenience. We express a counterfactual outcome
with adaptive regime δt(·) and covariate values x as follows:

Yt(δ
t(·)) ≡ Yt(dt), (2.3)

where the “bridge variables” dt ≡ (d1, . . ., dt) satisfy

d1 = δ1(x),
d2 = δ2(Y1(d1), d1),
d3 = δ3(Y2(d2), d2), (2.4)

...
dt = δt(Y t−1(dt−1), dt−1).

Suppose T = 2. Then, the two counterfactual outcomes
are defined as Y1(δ1(·)) = Y1(δ1(x)) and Y2(δ

2(·)) =
Y2(δ1, δ2(Y1(δ1), δ1)). As the notation suggests, we implicitly
assume the “no anticipation” condition.

Let qδ(y) ≡ Pr[Y(δ(·)) = y] be the joint distribution
of counterfactual outcome vector Y(δ(·)) ≡ (Y1(δ1(·)),
Y2(δ

2(·)), . . ., YT(δ(·))). We define counterfactual welfare as
a linear functional of qδ(y):

Wδ ≡ f (qδ). (2.5)

Examples of the functional include the average counterfactual
terminal outcome E[YT(δ(·))] = Pr[YT(δ(·)) = 1], our leading
case and which is common in the literature, and the weighted
average of counterfactuals

∑T
t=1 ωtE[Yt(δ

t(·))]. Then, the opti-
mal dynamic regime is a regime that maximizes the welfare:

δ∗(·) = arg max
δ(·)∈D

Wδ . (2.6)

We assume that the optimal dynamic regime is unique by simply
ruling out a knife-edge case in which two regimes deliver the
same welfare. In the case of Wδ = E[YT(δ(·))], the solution
δ∗(·) can be justified by backward induction in finite-horizon
dynamic programming. Moreover in this case, the regime with
deterministic rules δt(·) ∈ {0, 1} achieves the same optimal
regime and optimized welfare as the regime with stochastic rules
δt(·) ∈ [0, 1]; see Theorem A.1 in Appendix A.3.

The identification analysis of the optimal regime is closely
related to the identification of welfare for each regime and
welfare gaps, which also contain information for policy. Some
interesting special cases are the following: (i) the optimal welfare,
Wδ∗ , which in turn yields (ii) the regret from following individ-
ual decisions, Wδ∗ − WD, where WD is simply f (Pr[Y(D) =
·]) = f (Pr[Y = ·]), and (iii) the gain from adaptivity, Wδ∗−Wd∗ ,
where Wd∗ = maxd Wd is the optimum of the welfare with a
static rule, Wd = f (Pr[Y(d) = ·]). If the cost of treatments is
not considered, the gain in (iii) is nonnegative as the set of all d
is a subset of D.

To illustrate the policy relevance of the optimal dynamic
regime, consider an example of the labor market returns to high
school education and post-school training for disadvantaged
individuals. First, consider a static regime, which is a sched-
ule d = (d1, d2) ∈ {0, 1}2 of first assigning a high school

diploma (d1 ∈ {0, 1}) and then a job training (d2 ∈ {0, 1}).
Define associated welfare, which is the employment rate Wd =
E[Y2(d)] where Y2 is an indicator of employment status with
value 1 if being employed. This setup is already useful in learn-
ing, for example, E[Y2(1, 0)] − E[Y2(0, 1)] or complementarity
(i.e., E[Y2(0, 1)] − E[Y2(0, 0)] versus E[Y2(1, 1)] − E[Y2(1, 0)]),
which cannot be learned from period-specific treatment effects.
However, because d1 and d2 are not simultaneously given but
d1 precedes d2, the allocation d2 can be more informed by
incorporating the knowledge about the individual’s response to
d1. An example of such a response to d1 would be employment
status y1 after high school and before the training program. This
motivates the dynamic regime, which is the schedule δ(·) =
(δ1(·), δ2(·)) ∈ D of allocation rules that first assigns a high
school diploma (δ1(x) ∈ {0, 1}) depending on individual char-
acteristics x and then assigns a job training (δ2(y1, δ1) ∈ {0, 1})
depending on δ1 and the employment status y1. Then, the opti-
mal regime with adaptivity δ∗(·) is the one that maximizes Wδ =
E[Y2(δ)]. Suppose the optimal regime δ∗(·) is such that δ∗

1 = 1,
δ∗

2 (0, δ∗
1 ) = 1, and δ∗

2 (1, δ∗
1 ) = 0; that is, it turns out optimal

to assign a high school diploma to all individuals and a training
program to unemployed individuals. One of the policy implica-
tions of such δ∗(·) is that the average job market performance
can be improved by job trainings focusing on low performance
individuals complementing with high school education. As a
static regime—where δt(·) is a constant function—is a special
case of a dynamic regime, the optimal dynamic regime provides
richer policy candidates than what can be learned from the opti-
mal static regime d∗. In this sense, the optimal dynamic regime
provides richer policy candidates than what can be learned from
dynamic complementarity (Cunha and Heckman 2007; Cellini
et al. 2010; Almond and Mazumder 2013; Johnson and Jackson
2019).

3. Partial Ordering and Partial Identification

3.1. Observables

We introduce observables based on which we want to identify
the optimal regime and counterfactual welfares. Assume that
the time length of the observables is equal to T, the length of
the optimal regime to be identified; in general, we may allow
T̃ ≥ T where T̃ is the length of the observables. For each
period or stage t = 1, . . ., T, assume that we observe the binary
instrument Zt , the binary endogenous treatment decision Dt ,
and the binary outcome Yt = ∑

dt∈{0,1}t 1{Dt = dt}Yt(dt).
Also, we observe discrete pre-treatment covariates X that are
potentially endogenous. As an example, Yt is a symptom indi-
cator for a patient, Dt is the medical treatment received, and
Zt is generated by a multi-period medical trial. Importantly,
the framework does not preclude the case in which Zt exists
only for some t but not all; see Appendix E for related dis-
cussions. In this case, Zt for the other periods is understood
to be degenerate. Let Dt(zt) be the counterfactual treatment
given zt ≡ (z1, . . ., zt) ∈ {0, 1}t . Then, Dt = ∑

zt∈Z t Dt(zt).
Let Z ≡ (Z1, . . ., ZT), Y(d) ≡ (Y1(d1), Y2(d2), . . ., YT(d)),
and D(z) ≡ (D1(z1), D2(z2), . . ., DT(z)) and let “⊥” denote
statistical independence.
Assumption SX. Z ⊥ (Y(d), D(z))|X.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 5

Assumption SX assumes the strict exogeneity and exclusion
restriction. A single IV with conditional independence trivially
satisfies this assumption. For a sequence of IVs, this assumption
is satisfied in typical sequential randomized experiments, as well
as quasi-experiments. Returning to our illustrative example, let
Di1 = 1 if student i has a high school diploma and Di1 = 0
otherwise; let Di2 = 1 if i participates in a job training program
and Di2 = 0 if not. Also, let Yi1 = 1 if i is employed before
the training program and Yi1 = 0 if not; let Yi2 = 1 if i is
employed after the program and Yi2 = 0 if not. Finally, let Xi
be i’s observable characteristics. Given the observational data,
suppose we are interested in recovering regimes that maximize
the employment rate as welfare. As D1 and D2 are endogenous,
{Di1, Yi1, Di2, Yi2} are not useful by themselves to identify Wδ ’s
and δ∗(·). Therefore, we employ the approach of using IVs,
either a single IV (e.g., in the initial period) or a sequence
of IVs. In this particular example, we can use the distance to
high schools or the number of high schools per square mile
as an instrument Z1 for D1 conditional on X. Then, a random
assignment of the job training in a field experiment can be used
as an instrument Z2 for the compliance decision D2. Assump-
tion SX requires that conditional on individual characteristics,
these instruments are jointly independent of the unobserved
confounders (e.g., ability, personality) that are present in the out-
come formation and treatment selection processes. In Section 4,
we empirically study schooling and job training as a sequence
of treatments and combine IVs from experimental and observa-
tional data. In observational settings as this example, one can use
IVs from quasi-experiments, those from RD design, or a combi-
nation of them. In experimental settings, examples of a sequence
of IVs can be found in multi-stage experiments, such as the
Fast Track Prevention Program (Conduct Problems Prevention
Research Group 1992), the Elderly Program randomized trial
for the Systolic Hypertension (The Systolic Hypertension in the
Elderly Program (SHEP) Cooperative Research Group 1988),
and Promotion of Breastfeeding Intervention Trial (Kramer et al.
2001). It is also possible to combine multiple experiments as in
Johnson and Jackson (2019).

Let (Y , D, Z, X) be the vector of observables (Yt , Dt , Zt)
for the entire T periods and X, and let p be its distribution.
We assume that (Y i, Di, Zi, Xi) is independent and identically
distributed and {(Y i, Di, Zi) : i = 1, . . ., N} is a small T large
N panel. We mostly suppress the individual unit i throughout
the article. For empirical applications, the data structure can be
more general than a panel and the kinds of Yt , Dt , and Zt are
allowed to be different across time; recall the above illustrative
example. For the population from which the data are drawn,
we are interested in learning the optimal regime and related
welfares.

3.2. Partial Ordering of Welfares

Given the distribution p of the data (Y , D, Z, X) and under
Assumption SX, we show how the optimal dynamic regime and
welfares can be partially recovered. The identified set of δ∗(·)
will be characterized as a subset of the discrete set D. As the
first step, we establish partial ordering of Wδ w.r.t. δ(·) ∈ D
as a function of p. The partial ordering can be represented

by a directed acyclic graph (DAG).1 The DAG summarizes the
identified signs of the dynamic treatment effects, as will become
clear later. Moreover, the DAG representation is fruitful for
introducing the notion of the sharpness of partial ordering and
later to translate it into the identified set of δ∗(·).

To facilitate this analysis, we enumerate all |D| = 22T−2 ×
2|X | possible regimes. For index k ∈ K ≡ {k : 1 ≤ k ≤ |D|}
(and thus |K| = |D|), let δk(·) denote the kth regime in D. For
T = 2 and δ1(x) = δ1, Table 1 indexes all possible dynamic
regimes δ(·) ≡ (δ1, δ2(·)). Let Wk ≡ Wδk be the corresponding
welfare. Figure 1 illustrates examples of the partially ordered set
of welfares as DAGs where each edge “Wk → Wk′” indicates the
relation “Wk > Wk′ .”

In general, the point identification of δ∗(·) is achieved by
establishing the total ordering of Wk. Without strong additional
assumptions, this is only possible if instruments has infinite sup-
port. Since we allow for instruments with minimal variation (i.e.,
binary instruments), we may only recover a partial ordering. We
want the partial ordering to be sharp in the sense that it cannot
be improved given the data and maintained assumptions. To
formally state this, let G(K, E) be a DAG where K is the set of
welfare (or regime) indices and E is the set of edges. For example,
in Figure 1(a), we have E = {(W1, W2), (W2, W3), (W4, W2)}.

Definition 3.1. Given the data distribution p, a partial ordering
G(K, Ep) is sharp under the maintained assumptions if there
exists no partial ordering G(K, E ′

p) such that E ′
p � Ep without

imposing additional assumptions.

Establishing sharp partial ordering amounts to determining
whether we can tightly identify the sign of a counterfactual
welfare gap Wk − Wk′ (i.e., the dynamic treatment effects) for
k, k′ ∈ K, and if we can, what the sign is. The sharp identification
of the sign is possible when we can construct sharp bounds
on the counterfactual welfare gap. This motivates the following
analysis.

3.3. Data-Generating Framework

We introduce a simple data-generating framework and formally
define the identified set. First, we introduce latent state variables
that generate (Y , D). A latent state of the world will determine
specific maps dt 
→ yt and zt 
→ dt for t = 1, . . ., T under
the exclusion restriction in Assumption SX. A more primitive
state of the world would determine maps (yt−1, dt) 
→ yt and
(yt−1, dt−1, zt) 
→ dt for t = 1, . . ., T, but we do not consider
them as they not relevant to our objective as shown below. We
introduce the latent state variable S̃t whose realization repre-
sents a latent state. We define S̃t as follows. For given (dt , zt),
recall Yt(dt) and Dt(zt) denote the counterfactual outcomes and
treatments, respectively. Let {Yt(dt)}dt and {Dt(zt)}zt denote
their sequences w.r.t. dt and zt . Then, by concatenating the two
sequences, define S̃t ≡ ({Yt(dt)}, {Dt(zt)}) ∈ {0, 1}2t × {0, 1}2t .
For example, S̃1 = (Y1(0), Y1(1), D1(0), D1(1)) ∈ {0, 1}2 ×
{0, 1}2, whose realization specifies particular maps d1 
→ y1 and
z1 
→ d1. It is convenient to transform S̃ ≡ (S̃1, . . ., S̃T) into

1The way directed graphs are used in this article is completely unrelated to
causal graphical models in the literature.
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Figure 1. Partially ordered sets of welfares.

a scalar (discrete) latent variable in N as S ≡ β(S̃) ∈ S ⊂
N, where β(·) is a one-to-one map that transforms a binary
sequence into a decimal value. Define

qs(x) ≡ Pr[S = s|X = x],
and define the vector q(x) ≡ {qs(x)}s∈S , which represents the
distribution of S conditional on X = x, namely the true data-
generating process. Then the vector q ≡ {q(x)}x∈X resides in
Q ≡ {q :

∑
s qs(x) = 1 ∀x and qs(x) ≥ 0 ∀s, x} of dimension

dq − |X | where dq ≡ dim(q). A useful fact is that the joint
distributions of counterfactuals (conditional on X = x) can be
written as linear functionals of q(x):

Pr[Y(d) = y, D(z) = d|X = x] = Pr[S ∈ S : Y(d) = y, D(z)
= d|X = x]
= Pr[S ∈ S : Yt(dt)=yt , Dt(zt)

= dt ∀t|X = x]
=

∑

s∈Sy,d|z
qs(x), (3.1)

where Sy,d and Sy,d|z are constructed by using the definition of
S; their expressions can be found in Appendix B.

Based on (3.1), the counterfactual welfare can be written as a
linear combination of qs(x)’s. That is, there exists 1 × dq vector
Ak of 1’s and 0’s such that

Wk = Akq. (3.2)

The formal derivation of Ak can be found in Appendix B, but
the intuition is as follows. Recall Wk ≡ f (qδk) where qδ(y) ≡
Pr[Y(δ(·)) = y]. The key observation in deriving the result (3.2)
is that Pr[Y(δ(·)) = y] can be written as a linear functional of
the joint distributions of counterfactual outcomes with a static
regime, that is, Pr[Y(d) = y|X = x]’s, which in turn is a linear
functional of q(x). To illustrate this when T = 2 and welfare
Wδ = E[Y2(δ(·))] with δ1(x) = δ1, we have

Pr[Y2(δ(·)) = 1|X = x] =
∑

y1∈{0,1}
Pr[Y2(δ1, δ2(Y1(δ1), δ1))

= 1|Y1(δ1) = y1, X = x] Pr[Y1(δ1) = y1|X = x]
by the law of iterated expectation. Then, for instance, Regime 4
in Table 1 yields

Pr[Y2(δ4(·)) = 1|X = x] = P[Y(1, 1)

= (1, 1)|X = x] + P[Y(1, 0) = (0, 1)|X = x],
(3.3)

where each Pr[Y(d1, d2) = (y1, y2)|X = x] is the counterfac-
tual distribution with a static regime, which in turn is a linear
combination of qs(x)’s as in (3.1). Finally, Pr[Y2(δ(·)) = 1] =∑

x∈X p(x) Pr[Y2(δ(·)) = 1|X = x] where p(x) ≡ Pr[X = x],
and therefore the welfare is a linear function of q.

The data impose restrictions on q ∈ Q. Define

py,d|z,x ≡ p(y, d|z, x) ≡ Pr[Y = y, D = d|Z = z, X = x],
and p as the vector of py,d|z,x’s except redundant elements. Let
dp ≡ dim(p). Since Pr[Y = y, D = d|Z = z, X = x] =
Pr[Y(d) = y, D(z) = d|X = x] by Assumption SX, we can
readily show by (3.1) that there exists dp × dq matrix B such that

Bq = p, (3.4)

where B is a matrix of 1’s and 0’s; the formal derivation of B can be
found in Appendix B. It is worth noting that the linearity in (3.2)
and (3.4) is not a restriction but given by the discrete nature of
the setting. We assume rank(B) = dp without loss of generality,
because redundant constraints do not play a role in restricting
Q. We focus on the nontrivial case of dp < dq. If dp ≥ dq,
which rarely holds, we can solve for q = (BB)−1Bp, and can
trivially point identify Wk = Akq and thus δ∗(·). Otherwise, we
have a set of observationally equivalent q’s, which is the source
of partial identification and motivates the following definition
of the identified set. For simplicity, we use the same notation for
the true q and its observational equivalence.

For a given q, let δ∗(·; q) ≡ arg maxδk(·)∈D Wk = Akq be
the optimal regime, explicitly written as a function of the data-
generating process.

Definition 3.2. Under Assumption SX, the identified set of δ∗(·)
given the data distribution p is

D∗
p ≡ {δ∗(·; q) : Bq = p and q ∈ Q} ⊂ D, (3.5)

which is assumed to be empty when Bq �= p.

3.4. Characterizing Partial Ordering and the Identified Set

Given p, we establish the partial ordering of Wk’s, that is, gener-
ate the DAG, by determining whether Wk > Wk′ , Wk < Wk′ ,
or Wk and Wk′ are not comparable, denoted as Wk ∼ Wk′ , for
k, k′ ∈ K. As described in the next theorem, this procedure can
be accomplished by determining the signs of the bounds on the
welfare gap Wk − Wk′ for k, k′ ∈ K and k > k′. Note that
directly comparing sharp bounds on welfares themselves will
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not deliver sharp partial ordering. Then the identified set can
be characterized based on the resulting partial ordering.

The nature of the data generation induces the linear system
(3.2) and (3.4). This enables us to characterize the bounds on
Wk − Wk′ = (Ak − Ak′)q as the optima in linear programming.
Let Uk,k′ and Lk,k′ be the upper and lower bounds. Also let
�k,k′ ≡ Ak − Ak′ for simplicity, and thus the welfare gap is
expressed as Wk − Wk′ = �k,k′q. Then, for k, k′ ∈ K, we have
the main linear programs:

Uk,k′ = maxq∈Q �k,k′q,
Lk,k′ = minq∈Q �k,k′q, s.t. Bq = p. (3.6)

Assumption B. {q : Bq = p} ∩ Q �= ∅.

Assumption B imposes that the model is correctly specified.
In particular, this means Assumption SX is correctly speci-
fied because the relationship Bq = p is derived under this
assumption. Under misspecification, the identified set is empty
by definition. The next theorem constructs the sharp DAG and
characterize the identified set using Uk,k′ and Lk,k′ for k, k′ ∈ K
and k > k′, or equivalently, Lk,k′ for k, k′ ∈ K and k �= k′ since
Uk,k′ = −Lk′,k.

Theorem 3.1. Suppose Assumptions SX and B hold. Then, (i)
G(K, Ep) with Ep ≡ {(k, k′) ∈ K : Lk,k′ > 0 and k �= k′} is
sharp; (ii) D∗

p defined in (3.5) satisfies

D∗
p = {δk′(·) : �k ∈ K such that Lk,k′ > 0 and k �= k′} (3.7)

= {δk′(·) : Lk,k′ ≤ 0 for all k ∈ K and k �= k′}, (3.8)

and therefore the sets on the right-hand side are sharp.

The proof of Theorem 3.1 is shown in Appendix C. The key
insight of the proof is that even though the bounds on the wel-
fare gaps are calculated from separate optimizations, the partial
ordering is governed by common q’s (each of which generates all
the welfares) that are observationally equivalent; see Appendix
F.2 for related discussions.

Theorem 3.1(i) prescribes how to calculate the sharp DAG as
a function of data. The DAG can be conveniently represented in
terms of a |K| × |K| adjacency matrix � such that its element
�k,k′ = 1 if Wk ≥ Wk′ and �k,k′ = 0 otherwise. According
to (3.7) in (ii), D∗

p is characterized as the collection of δk(·)
where k is in the set of maximal elements of the partially ordered
set G(K, Ep), that is, the set of regimes that are not inferior. In
Figure 1, it is easy to see that the set of maximals is D∗

p =
{δ1(·), δ4(·)} in panel (a) and D∗

p = {δ1(·)} in panel (b).
The identified set D∗

p characterizes the information content
of the model. Given the minimal structure we impose in the
model, D∗

p may be large in some cases. However, we argue that
an uninformative D∗

p still has implications for policy: (i) such
set may recommend the policymaker eliminate sub-optimal
regimes from her options; (ii) in turn, it warns the policymaker
about her lack of information (e.g., even if she has access to
the experimental data); when D∗

p = D as one extreme, “no
recommendation” can be given as a nontrivial policy suggestion
of the need for better data. As shown in the numerical exercise,
the size of D∗

p is related to the strength of Zt (i.e., the size of the
complier group at t) and the strength of the dynamic treatment

effects. This is reminiscent of the findings in Machado et al.
(2019) for the average treatment effect in a static model.

3.5. Additional Assumptions

Often, researchers are willing to impose more assumptions
based on priors about the data-generating process, for example,
agent’s behaviors. Examples are uniformity, Markovian struc-
ture, and stationarity. These assumptions are easy to incorporate
within the linear programming (3.6); see Appendix D for details.
These assumptions tighten the identified set D∗

p by reducing the
dimension of simplex Q, and thus producing a denser DAG.
The list of identifying assumptions here is far from complete,
and there may be other assumptions on how (Y , D, Z, X) are
generated.

The first assumption is a sequential version of the uniformity
assumption (i.e., the monotonicity assumption) in Imbens and
Angrist (1994) and Angrist et al. (1996). Let “w.p.1” stand for
“with probability one.”

Assumption M1. For each t, either Dt(Zt−1, 1) ≥ Dt(Zt−1, 0)

w.p.1 or Dt(Zt−1, 1) ≤ Dt(Zt−1, 0) w.p.1. conditional on
(Y t−1, Dt−1, Zt−1, X).

Assumption M1 postulates that there is no defying (or com-
plying) behavior in decision Dt conditional on (Y t−1, Dt−1, Zt−1, X).
In our illustrative example, M1 assumes that (conditional on the
history) there are no individuals with perversive behavior who
would participate in the job training when not eligible but would
not participate when eligible. We exclude the same perversive
behavior in attending high school. Without being conditional
on (Y t−1, Dt−1, Zt−1, X), however, there can be a general non-
monotonic pattern in the way that Zt influences Dt . For example,
we can have Dt(Zt−1, 1) ≥ Dt(Zt−1, 0) for Dt−1 = 1 while
Dt(Zt−1, 1) < Dt(Zt−1, 0) for Dt−1 = 0. By extending the idea
of Vytlacil (2002), we can show that M1 is the equivalent of
imposing a threshold-crossing model for Dt :

Dt = 1{πt(Y t−1, Dt−1, Zt , X) ≥ νt}, (3.9)

where πt(·) is an unknown, measurable, and nontrivial function
of Zt . The equivalence is formally established in Appendix D.
The dynamic selection model (3.9) should not be confused with
the dynamic regime (2.1). Compared to the dynamic regime
dt = δt(yt−1, dt−1), which is a hypothetical quantity, (3.9)
models each individual’s observed treatment decision, in that it
is not only a function of (Y t−1, Dt−1) but also νt , the individual’s
unobserved characteristics. We assume that the policymaker has
no access to ν ≡ (ν1, . . ., νT). The functional dependence of Dt
on (Y t−1, Dt−1,Zt−1) reflects the agent’s learning. Sometimes,
we want to further impose uniformity in the formation of Yt on
top of Assumption M1:

Assumption M2. Assumption M1 holds, and for each t, either
Yt(Dt−1, 1) ≥ Yt(Dt−1, 0) w.p.1 or Yt(Dt−1, 1) ≤ Yt(Dt−1, 0)

w.p.1 conditional on (Y t−1, Dt−1, X).

This assumption postulates uniformity in a way that
restricts heterogeneity of the contemporaneous treatment
effect. However, similarly as before, without being conditional
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on (Y t−1, Dt−1, X), there can be a general non-monotonic
pattern in the way that Dt influences Y t . For example, we
can have Yt(Dt−1, 1) ≥ Yt(Dt−1, 0) for Yt−1 = 1 while
Yt(Dt−1, 1) ≤ Yt(Dt−1, 0) for Yt−1 = 0. In our illustrative
example, this implies that the job training program should have
a homogeneous influence over the labor market performance
across individuals conditional on the history, but it may have
heterogeneous influences unconditionally. It is also worth
noting that Assumption M2 (and M1) does not assume the
direction of monotonicity, but the direction may be recovered
from the data. Using a similar argument as before, Assumption
M2 is the equivalent of a dynamic version of a nonparametric
triangular model:

Yt = 1{μt(Y t−1, Dt , X) ≥ εt}, (3.10)
Dt = 1{πt(Y t−1, Dt−1, Zt , X) ≥ νt}, (3.11)

where μt(·) and πt(·) are unknown, measurable, and nontrivial
functions of Dt and Zt , respectively. Again, the equivalence
is formally established in Appendix D. The next assumption
imposes a Markov-type structure in the Yt and Dt processes.

Assumption K. Conditional on X, Yt|(Y t−1, Dt)
d= Yt|(Yt−1, Dt)

and Dt|(Y t−1, Dt−1, Zt)
d= Dt|(Yt−1, Dt−1, Zt) for each t.

In terms of the triangular model (3.10)–(3.11), Assump-
tion K implies Yt = 1{μt(Yt−1, Dt , X) ≥ εt} and Dt =
1{πt(Yt−1, Dt−1, Zt , X) ≥ νt}, which yields the familiar struc-
ture of dynamic discrete choice models found in the literature.
Lastly, when there are more than two periods, an assumption
that imposes stationarity can be helpful for identification. Such
an assumption can be found in Torgovitsky (2019).

4. Application

We apply the framework of this article to understand returns
to schooling and post-school training as a sequence of treat-
ments and to conduct a policy analysis. Schooling and post-
school training are two major interventions that affect various
labor market outcomes, such as earnings and employment sta-
tus (Ashenfelter and Card 2010). These treatments also have
influences on health outcomes, either directly or through the
labor market outcomes, and thus of interest for public health
policies (Backlund et al. 1996; McDonough et al. 1997; Case
et al. 2002). We find that the Job Training Partnership Act
(JTPA) is an appropriate setting for our analysis. The JTPA
program is one of the largest publicly funded training programs
in the United States for economically disadvantaged individuals.
Unfortunately, the JTPA only concerns post-school trainings,
which have been the main focus in the literature (Bloom et al.
1997; Abadie et al. 2002; Kitagawa and Tetenov 2018). In this
article, we combine the JTPA Title II data with those from other
sources regarding high school education to create a dataset that
allows us to study the effects of a high school (HS) diploma (or
its equivalents) and the subsidized job trainings as a sequence
of treatments. We consider high school diplomas rather than
college degrees because the former is more relevant for the
disadvantaged population of Title II of the JTPA program.

We are interested in the dynamic treatment regime δ(·) =
(δ1, δ2(·)), where δ1 is a HS diploma and δ2(y1) is the job training
program given pre-program earning type y1. The motivation of
having δ2 as a function of y1 comes from acknowledging the
dynamic nature of how earnings are formed under education
and training. The first-stage allocation δ1 will affect the pre-
program earning. This response may contain information about
unobserved characteristics of the individuals. Therefore, the
allocation of δ2 can be informed by being adaptive to y1. Then,
the counterfactual earning type in the terminal stage given δ(·)
can be expressed as Y2(δ(·)) = Y2(δ1, δ2(Y1(δ1))) where Y1(δ1)
is the counterfactual earning type in the first stage given δ1. We
are interested in the optimal regime δ∗ that maximizes each of
the following welfares: the average terminal earning E[Y2(δ(·))]
and the average lifetime earning E[Y1(δ1)] + E[Y2(δ(·))].

For the purpose of our analysis, we combine the JTPA data
with data from the U.S. Census and the National Center for Edu-
cation Statistics (NCES), from which we construct the following
set of variables: Y2 above or below median of 30-month earnings,
D2 the job training program, Z2 a random assignment of the
program, Y1 above or below 80th percentile of pre-program
earnings, D1 the HS diploma or GED, and Z1 the number of high
schools per square mile above or below 35.2 The instrument Z1
for the HS treatment appears in the literature (e.g., Neal 1997).
The number of individuals in the sample is 9223. We impose
Assumptions SX and M2 throughout the analysis.

The estimation of the DAG and the identified set D∗
p is

straightforward given the conditions in Theorem 3.1 and the
linear programs (3.6). The only unknown object is p, the joint
distribution of (Y , D, Z), which can be estimated as p̂, a vector
of p̂y,d|z = ∑N

i=1 1{Y i = y, Di = d, Zi = z}/∑N
i=1 1{Zi = z}.

Figure 2 reports the estimated partial ordering of welfare
Wδ = E[Y2(δ(·))] (left) and the resulting estimated set D̂
(right, highlighted in red and starred) that we estimate using
{(Y i, Di, Zi)}9,223

i=1 . Although there exist welfares that cannot be
ordered, we can conclude with certainty that allocating the pro-
gram only to the low earning type (Y2 = 0) is welfare optimal,
as it is the common implication of Regimes 5 and 6 in D̂. Also,
the second best policy is to either allocate the program to the
entire population or none, while allocating it only to the high
earning type (Y2 = 1) produces the lowest welfare. This result is
consistent with the eligibility of Title II of the JTPA, which con-
cerns individuals with “barriers to employment” where the most
common barriers are unemployment spells and high-school
dropout status (Abadie et al. 2002). Possibly due to the fact that
the first-stage instrument Z1 is not strong enough, we have the
two disconnected sub-DAGs and thus the two elements in D̂,
which are agnostic about the optimal allocation in the first stage
or the complementarity between the first- and second-stage
allocations.

Figure 3 reports the estimated partial ordering and the esti-
mated set with Wδ = E[Y1(δ1)] + E[Y2(δ(·))]. Despite the par-
tial ordering, D̂ is a singleton for this welfare and δ∗ is estimated

2For Y1, the 80th percentile cutoff is chosen as it is found to be relevant
in defining subpopulations that have contrasting effects of the program.
There are other covariates in the constructed dataset, but we omit them for
the simplicity of our analysis. These variables can be incorporated as pre-
treatment covariates so that the first-stage treatment is adaptive to them.
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Figure 2. Estimated DAG of Wδ = E[Y2(δ(·))] and estimated set for δ∗ (red and starred).

Figure 3. Estimated DAG of Wδ = E[Y1(δ1)] + E[Y2(δ(·))] and Estimated Set for δ∗ (red and starred).

to be Regime 6. According to this regime, the average lifetime
earning is maximized by allocating HS education to all indi-
viduals and the training program to individuals with low pre-
program earnings. As discussed earlier, additional policy impli-
cations can be obtained by inspecting suboptimal regimes. Inter-
estingly, Regime 8, which allocates the treatments regardless, is
inferior to Regime 6. This can be useful knowledge for policy
makers especially because Regime 8 is the most “expensive”
regime. Similarly, Regime 1, which does not allocate any treat-
ments regardless and thus is the least expensive regime, is supe-
rior to Regime 3, which allocates the program to high-earning
individuals. The estimated DAG shows how more expensive
policies do not necessarily achieve greater welfare. Moreover,
these conclusions can be compelling as they are drawn without
making arbitrary parametric restrictions nor strong identifying
assumptions.

Finally, as an alternative approach, we use {(Y i, Di, Z2i)}9,223
i=1

for estimation, that is, we drop Z1 and only use the exogenous
variation from Z2. This reflects a possible concern that Z1 may
not be as valid as Z2. Then, the estimated DAG looks identical
to the left panel of Figure 2 whether the targeted welfare is

E[Y2(δ(·))] or E[Y1(δ1)] + E[Y2(δ(·))]. Clearly, without Z1, the
procedure lacks the ability to determine the first stage’s best
treatment. Note that, even though the DAG for E[Y2(δ(·))] is
identical for the case of one versus two instruments, the infer-
ence results will reflect such difference by producing a larger
confidence set for the former case.

Supplementary Materials

In the online supplemental appendix, the analysis with binary outcomes and
discrete covariates is extended to continuous outcomes and covariates, and
stochastic regimes are discussed. The supplemental appendix also presents
numerical studies and discusses topological sorts, cardinality reduction
for the set of regimes, and inference. Most proofs are collected in the
supplemental appendix.
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