
1 Description of Files

1.1 Main Simulation Files

LP main: This file includes the codes to replicate Table 2, Fig 2-5 in the paper.

LP CompareWithMogstadEtAl: this file includes the codes to replicate Fig 1 in the

paper.

LP MTE diffK: this file includes the codes for the left subfigure in Fig 6.

LP CompareWithManski: this file includes the codes for the right subfigure in Fig 6.

LP Continuous: this file includes the codes for Fig 9.

LP CompareWithM DiffWidth: this file includes the codes for Fig 10.

LP CommonW: this file includes the codes for Fig 11.

LP DiffK Misspecification: this file includes the codes for Fig 11 - Fig 12.

1.2 Main Function Files

bern: this function generates basis functions for Bernstein polynomials.

bern3: this function creates multivariate Bernstein polynomial basis functions with three

components, primarily used in simulations involving continuous Y .

ChooseRS: this function determines the direction for Assumption U without W , and gen-

erates corresponding target and restriction coefficient matrices.

ChooseRSW new: this function determines the direction for Assumption U with W , and

generates corresponding target and restriction coefficient matrices.

ChooseU0: this function determines the direction for Assumption U0 withW , and generates

corresponding coefficient matrices for additional inequality constraints.

ChooseRSW: this function determines the direction for Assumption U∗ with W , and gen-

erates corresponding target and restriction coefficient matrices.
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2 Details of Each File

2.1 LP main

This file contains the codes to replicate Table 2 and Fig 2-5 from the paper. It creates

partially identified bounds on ATE and LATEs under various assumptions.

• The DGP used here is consistent with that introduces in Section 8.1 of the paper.

• We applied Bernstein polynomials of order up to K = 50 for sieve approximation. This

choice is related to the sensitivity of MTE bound to K, as discussed under Fig 6.

• When Assumption U0, U, or U∗ is assumed, the direction is determined via a data-

driven approach using the functions ChooseU0, ChooseRSW new (or ChooseRS ) and

ChooseRSW .

– Results under Assumption U with W are not presented in the graph as they are

identical to those under Assumption U0. However, code and results for Assump-

tion U are included in the file for comparison purpose.

– We allowed the directions to vary across covariate X

• A represents the target coefficient matrix for ATE.

• LATE is the coefficient matrix for LATEs, where

– LATE(·, ·, 1) represents the coefficients in front of θ for the always taker LATE.

– LATE(·, ·, 2) represents the coefficients for the complier LATE.

– LATE(·, ·, 3) represents the coefficients for the never taker LATE.

• B is the coefficient matrix in the data restriction as shown in (LP3).

• one is the coefficient matrix for probability restriction such that the sum of probabilities

of different types equals to 1.

• M, C represent coefficient matrices for the shape restrictions (Assumption M and As-

sumption C respectively);

• G M is the coefficient matrix for additional inequality restriction under Assumption

U0.
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2.2 LP CompareWithMogstadEtAl

This file compares the current approach with Mogstad et al. (2018) and generates Fig 1 in

the paper.

• For a fair comparison, we implement a DGP without W . The DGP includes binary

D and discrete Z, Y . We vary support for Z and Y to create different scenarios. Specifi-

cally, Y takes values in {0, 1}, {0, 0.5, 1}, {0, 0.25, 0.5, 0.75, 1}, {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
and Z takes values in {0, 1}, {0, 0.5, 1}, {0, 0.25, 0.5, 0.75, 1}.

• For Mogstad et al. (2018), we use the IV-like estimand for the sharp bound, as described

in Section 2.5 in their paper. Specifically, we applied the following set:

S = {1(d = i, z = j), i ∈ {1, 2}, j ∈ Z} .

2.3 LP MTE diffK

This file presents the convergence of partial identification bounds as the polynomial order K

increases.

• We consider a DGP without W , and compare the bounds on MTE under Assumption U

and shape restrictions. The bounds under other assumptions present a similar pattern.

• Names for coefficient matrices are consistent with the ones in LP main.

2.4 LP CompareWithManski

This file generates bounds on ATE for various K and compares them with the closed-form

bound by Manski (1990).

• To ensure a fair comparison, we create the MTR functions following a inverse normal

distribution function, rather than directly using Bernstein polynomials.

• We compare the bounds with K varying from 10-50

• Manski’s bounds are calculated as:
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LB = sup
z∈Z

{
P (z)E [Y1|D = 1, Z = z] + (1− P (z)) ylz,1

}
− sup

z∈Z

{
(1− P (z))E [Y0|D = 0, Z = z] + P (z)yuz,0

}
UB = inf

z∈Z

{
P (z)E [Y1|D = 1, Z = z] + (1− P (z)) yuz,1

}
− sup

z∈Z

{
(1− P (z))E [Y0|D = 0, Z = z] + P (z)ylz,0

}
,

where P (z) denotes the propensity score Pr[D = 1|Z = z], ylz,d and yuz,d represent the

minimum and maximum values Y can take given Z = z and D = d.

• Names for coefficient matrices are consistent with the ones in LP main.

2.5 LP Continuous

This file calculates bounds on the ATE with continuous Y and compares these results with

Mogstad et al. (2018) for varying Z. It generates Fig 9 in the paper.

• Support Z is controlled by the parameter width same: if width same=1, Z takes values

from the sets {0, 1}, {0, 0.5, 1}, {0, 0.25, 0.5, 0.75, 1}; if width same=0, Z takes values

from {0, 1}, {0, 1, 2}, {0, 1, 2, 3, 4}.

• The counterfactual outcomes Y0 and Y1 are generated to be correlated directly with the

latent variable U using the multivariate uniform variable function.

• Different from the discrete case, the polynomial orders are set to be 5 to reduce com-

putational burden.

2.6 LP CompareWithM DiffWidth

This file continues the comparison between the current approach and Mogstad et al. (2018),

similar to the file LP CompareWithMogstadEtAl, but with different variations on Z. It creates

Fig 10 in the paper.

• The DGP models for D and Y remain consistent with the previous file. However, the

values that Z can take are modified to include {0, 1}, {0, 1, 2}, {0, 1, 2, 3, 4} instead.

2.7 LP CommonW

This file illustrates the results with common W and reverse IV W , highlighting that the

identification power from W is due to its exogeneity rather than the reversibility.
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• common W indicates the type of W . common W=1 indicates that W is the common

exogenous variable, and common W=0 indicates that W is the reverse IV.

• Names for coefficient matrices are consistent with the ones in LP main.

2.8 LP DiffK Misspecification

This file presents the results when bernstein polynomials do not accurately fit the DGP, and

quantifies the level of misspecification using the approximate Hausdorff distance to measure

deviation between the partially identified bound and the true parameter.

• We applied a DGP with binary Z,D, Y . The MTR functions are generated with abso-

lute Sine functions, which are well known to be challenging to approximate.

• If the true m(u) is outside the identified bound, we consider the result as misspcification

and calculate the distance between the true value and the bound. The distance between

the true value of m(u) and the closest point within the bounds is calculated across

100 grid points. The maximum deviation found across these points is used as the

approximate Hausdorff distance, quantifying the misspecification.
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