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A B S T R A C T

For counterfactual policy evaluation, it is important to ensure that treatment parameters are
relevant to policies in question. This is especially challenging under unobserved heterogeneity,
as is well featured in the definition of the local average treatment effect (LATE). Being
intrinsically local, the LATE is known to lack external validity in counterfactual environments.
This paper investigates the possibility of extrapolating local treatment effects to different
counterfactual settings when instrumental variables can be only binary. We propose a novel
framework to systematically calculate sharp nonparametric bounds on various policy-relevant
treatment parameters that are defined as weighted averages of the marginal treatment effect
(MTE). Our framework is flexible enough to fully incorporate statistical independence (rather
than mean independence) of instruments and a large menu of identifying assumptions beyond
the shape restrictions on the MTE that have been considered in prior studies. We apply our
method to understand the effects of medical insurance policies on the use of medical services.

1. Introduction

For counterfactual policy evaluation, it is important to ensure that treatment parameters are relevant to the policies in question.
This is especially challenging in the presence of unobserved heterogeneity. This challenge is well featured in the definition of the local
average treatment effect (LATE). The LATE has been one of the most popular treatment parameters used by empirical researchers
since it was introduced by Imbens and Angrist (1994). It induces a straightforward linear estimation method that requires only a
binary instrumental variable (IV), and yet, allows for unrestricted treatment heterogeneity. The unfortunate feature of the LATE is
that, as the name suggests, the parameter is intrinsically local, recovering the average treatment effect (ATE) for a specific subgroup
of population called compliers. This feature leads to two major challenges in making the LATE a reliable parameter for counterfactual
policy evaluation. First, the subpopulation for which the effect is measured (e.g., via randomized experiments) may not be the
population of policy interest. Second, the definition of the subpopulation depends on the IV chosen, rendering the parameter even
more difficult to extrapolate to targeted environments.

Dealing with the lack of external validity of the LATE has been an important theme in the literature. One approach in theoretical
work (Angrist and Fernandez-Val, 2010; Bertanha and Imbens, 2019) and empirical research (Dehejia et al., 2019; Muralidharan
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et al., 2019) has been to show the similarity between complier and non-complier groups based on observables. This approach,
however, cannot attend to possible unobservable discrepancies between these groups. Heckman and Vytlacil (2005) unify well-
known treatment parameters by expressing them as weighted averages of what they define as the marginal treatment effect (MTE).
This MTE framework has a great potential for extrapolation because a class of treatment parameters that are policy-relevant can also
be generated as weighted averages of the MTE.1 The only obstacle is that the MTE is identified via a method called local IV (Heckman
and Vytlacil, 1999), which requires the continuous variation of the IV that is sometime large depending on the target parameter.
This in turn reflects the intrinsic difficulty of extrapolation when available exogenous variation is only discrete. Acknowledging
this nature of the challenge, previous studies in the literature have proposed imposing shape restrictions on the MTE, which is a
function of the treatment-selection unobservable, while allowing for binary instruments in the framework of Heckman and Vytlacil
(2005). Brinch et al. (2017) introduce shape restrictions (e.g., linearity) on the MTE functions in an attempt to identify the LATE
extrapolated to different subpopulations or to test for its external validity. In interesting recent work, Mogstad et al. (2018) propose
a general partial identification framework where bounds on various policy-relevant treatment parameters can be obtained from a set
of ‘‘IV-like estimands’’ that are directly identified from the data and routinely obtained in empirical work. Kowalski (2021) applies
an approach similar to these studies to extrapolate the results from one health insurance experiment to an external setting.

This paper continues this pursuit and investigates the possibility of extrapolating local treatment parameters to different policy
settings in the MTE framework when IVs only have limited variation (e.g., binary IV). We propose a computational approach to
calculate sharp nonparametric bounds on various extrapolated treatment parameters for discrete and continuous outcomes. We use
IVs that satisfy the statistical independence assumption conditional on covariates. The parameters are defined as weighted averages
of the MTE. Examples include the ATE, the treatment effect on the treated, the LATE for subgroups induced by new policies, and the
policy-relevant treatment effect (PRTE). We also show how to place in this procedure restrictions from a large menu of identifying
assumptions beyond the shape restrictions considered in earlier work.

In this paper, we make four main contributions. First, we propose a novel framework for systematically calculating bounds on
policy-relevant treatment parameters. We introduce the distribution of the latent state of the outcome-generating process conditional
on the treatment-selection unobservable. This latent conditional distribution is the key ingredient for our analysis, as both the
target parameter and the distribution of the observables can be written as linear functionals of it. Because the latent distribution
is a fundamental quantity in the data-generating process, it is convenient to impose identifying assumptions. Having the latent
distribution as a decision variable, we can formulate infinite-dimensional linear programming (LP) that produces bounds on a
targeted treatment parameter. Our approach is reminiscent of Balke and Pearl (1997) and can be viewed as its generalization to
the MTE framework. Balke and Pearl (1997) characterize bounds on the ATE using a binary outcome, treatment and instrument by
introducing a LP approach with the latent response vector as the decision variable. The main distinction of our approach is that the
latent distribution is conditioned on the selection unobservable, which makes the program infinite-dimensional, but is important
for our extrapolation purpose. We also allow for both discrete and continuous 𝑌 . To make it feasible to solve the resulting infinite-
dimensional program, we use a sieve-like approximation of the program and produce a finite-dimensional LP. We also develop a
method to rescale the LP to resolve computational issues that arise with a large sieve dimension.

The use of approximation to construct an LP is similar to Mogstad et al. (2018)’s approach. However, the approach we take differs
from theirs in the following way. While they use the MTE function (more precisely, each term in the MTE) as the main ingredient to
relate IV-like estimands to target parameters, we use the latent distribution as our main building block to relate the full distribution
of the data to target parameters. The main consequence of this difference is that we can exhaust the identifying power of statistical
independence of IVs, while their approach can exploit mean independence. The two approaches are complementary. For example,
when IVs are generated from randomized experiments, one can comfortably assume full independence, in which case our approach
can be applied to enjoy the tighter bounds than those under mean independence. This can be useful when the external validity of
experimental results is in question, making the extrapolation of the LATE desirable.

Second, we introduce identifying assumptions that have not been used in the context of the MTE framework or the LATE
extrapolation. They include assumptions that there exist exogenous variables other than IVs. One of the main messages we hope to
deliver in this paper is that, given the challenge of extrapolation, additional exogenous variation can be useful to conduct informative
policy evaluation. We propose two types of exogenous variables that have been used in the literature in the context of identifying the
ATE: Shaikh and Vytlacil (2011), Mourifié (2015), Han and Vytlacil (2017), Vuong and Xu (2017), and Han and Lee (2019) use the
first type (entering the outcome and selection equations), and Vytlacil and Yildiz (2007), Liu et al. (2020), and Balat and Han (2023)
use the second type (only entering the outcome equation). For example, the existence of the second type can be plausible when the
agent has imperfect foresight when making the treatment selection decision. We utilize these variables in the context of the MTE
framework. Moreover, while the existing papers on the ATE make use of these variables in combination with rank similarity, rank
invariance, or additive separability, we show that they independently have identifying power for treatment parameters, including
the ATE. In general, it may not be always easy to find such exogenous variables. But when the researcher does find it, it can be a
more reliable source of identification than assumptions on counterfactual quantities, as the identifying power comes from the data
rather than the researcher’s prior.

We also propose identifying assumptions that restrict treatment effect heterogeneity. In particular, we propose a range of
uniformity assumptions that relate to rank similarity or rank invariance (Chernozhukov and Hansen, 2005) and monotone treatment
response in Manski and Pepper (2000), including a novel identifying assumption, called rank dominance. The direction of endogeneity

1 See Heckman (2010) for elaboration of this point.
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can also be incorporated in this MTE framework. This assumption is sometimes imposed in empirical work to characterize selection
bias and has been shown to have identifying power for the ATE (Manski and Pepper, 2000).

Third, we show that our approach yields straightforward proof of the sharpness of the resulting bounds, no matter whether the
utcome is discrete or continuous and whether additional identifying assumptions are imposed or not. This feature stems from the
se of the latent conditional distribution in the linear programming and the convexity of the feasible set in the program. When the
TE itself is the target parameter, we distinguish between the notions of pointwise and uniform sharpness and argue why uniform

harpness is often difficult to achieve.
Fourth, as an application, we study the effects of insurance on medical service utilization by considering various counterfactual

olicies related to insurance coverage. The LATE for compliers and the bounds on the LATE for always-takers and never-takers reveal
hat, in the best- and worst-case scenarios, possessing private insurance may have the largest effect on medical visits for never-takers,
.e., those who face higher insurance cost. This provides a policy implication that lowering the cost of private insurance is important,
ecause the high cost might hinder people with most need from receiving adequate medical services.

The linear programming approach to partial identification of treatment effects was pioneered by Balke and Pearl (1997) and
ecently gained attention in the literature; see, e.g., Chiburis (2010), Mogstad et al. (2018), Machado et al. (2019), Kamat (2019),
unsilius (2019), Han (2023), Russell (2021) and Han and Xu (2023).2 As these papers suggest, there are many settings, including

ours, where analytical derivation of bounds is cumbersome or nearly impossible due to the complexity of the problems. Also, the
computational approach can streamline the sensitivity analysis of a researcher without needing to analytically derive bounds and
prove their sharpness whenever changing the set of identifying assumptions.

As concurrent work to ours, Marx (2020) also considers partial identification of policy-relevant treatment parameters in the
MTE framework. In his paper, sharp analytical bounds are derived for treatment parameters for the subset of compliers, and the
identifying power of rank similarity and covariates is explored for general treatment parameters. The current paper is similar to his
in that we also fully exhaust statistical independence (rather than mean independence) and produce sharp bounds. However, our
approach differs in a few important ways. First, we provide a computational framework that enables the systematic calculation of
bounds. Second, with the computational approach, we produce bounds for a range of treatment parameters under various identifying
assumptions that have not been previously explored in this context. Also, the computational approach makes it convenient to conduct
sensitivity analyses with different sets of assumptions. Finally, while Marx (2020) assumes the joint independence of IVs across
treatment status, we only assume marginal independence for each status.

This paper proceeds as follows. The next section introduces the main observables, maintained assumptions, and parameters of
interest. Section 3 defines the latent conditional probability and formulates the infinite-dimensional LP, and Section 4 introduces
sieve approximation to the program. Section 5 establishes the connection between this paper and Mogstad et al. (2018). Section 6
introduces additional identifying assumptions and shows how they can easily be incorporated in the LP. So far, the analysis is given
with discrete 𝑌 , which is extended to the case with continuous 𝑌 in Section 7. Section 8 provides numerical illustrations, and
Section 9 contains an empirical application. In the Appendix A lists other examples of target parameters. Appendix B discusses (i)
rescaling of the LP, (ii) the pointwise and uniform sharpness for the MTE bounds, (iii) the extension with continuous covariates, and
(iv) estimation and inference. All proofs are contained in Appendix C. Additional numerical results can be found in Appendix D.

2. Assumptions and target parameters

Assume that we observe a discrete or continuous outcome 𝑌 ∈  ⊆ R, binary treatment 𝐷 ∈ {0, 1}, and possibly discrete
instrument 𝑍 ∈  ⊆ R. The leading case is binary 𝑍, which is common especially in randomized experiments. We may additionally
observe a discrete exogenous variable 𝑊 ∈  ⊆ R and possibly endogenous covariates 𝑋 ∈  ⊆ R𝑑𝑋 .

Let 𝑌 (𝑑) be the counterfactual outcome given 𝑑 and 𝑌 (𝑑,𝑤) be the extended counterfactual outcome given (𝑑,𝑤), which are
consistent with the observed outcome: 𝑌 =

∑

𝑑∈{0,1} 1{𝐷 = 𝑑}𝑌 (𝑑) =
∑

𝑑∈{0,1},𝑤∈ 1{𝐷 = 𝑑,𝑊 = 𝑤}𝑌 (𝑑,𝑤). It is implicit in the
notation of 𝑌 (𝑑) and 𝑌 (𝑑,𝑤) that 𝑍 satisfies the exclusion restriction. Also let 𝐷(𝑧) be the counterfactual treatment given 𝑧 ∈ .

ssumption EX. For given (𝑑,𝑤) ∈ {0, 1} × , (𝑌 (𝑑,𝑤), 𝐷(𝑧)) ⟂ (𝑍,𝑊 )|𝑋.

When there is no 𝑊 this assumption and all below are understood as 𝑊 being degenerate. Assumption EX imposes the exclusion
estriction and conditional statistical independence for 𝑍 (and 𝑊 ). One of the contributions of this paper is to propose a framework
hat can make use of full independence instead of mean independence (Mogstad et al., 2018) and show the identifying power of the
ormer relative to the latter. This feature arises regardless of the existence of 𝑊 . We formally discuss the identifying power of full
ndependence relative to mean independence in Section 5. Also, note that Assumption EX imposes marginal independence rather
han joint independence of (𝑌 (1, 𝑤), 𝑌 (0, 𝑤), 𝐷(𝑧)) ⟂ (𝑍,𝑊 )|𝑋 (e.g., Marx, 2020).

We consider two different scenarios related to 𝑊 : (a) 𝑊 directly affects 𝑌 but not 𝐷 and (b) 𝑊 directly affects both 𝑌 and 𝐷.
ccordingly, we maintain the following assumptions.

ssumption SEL. (a) 𝐷 = 1{𝑈 ≤ 𝑃 (𝑍,𝑋)} where 𝑃 (𝑍,𝑋) ≡ Pr[𝐷 = 1|𝑍,𝑋];
b) 𝐷 = 1{𝑈 ≤ 𝑃 (𝑍,𝑋,𝑊 )} where 𝑃 (𝑍,𝑋,𝑊 ) ≡ Pr[𝐷 = 1|𝑍,𝑋,𝑊 ].

2 There are also studies that use linear programming for partial identification of parameters that are not necessarily treatment effects; see e.g., Honoré and
3

amer (2006), Honoré and Lleras-Muney (2006), Freyberger and Horowitz (2015), Torgovitsky (2019b), and Gu and Russell (2022).
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We introduce 𝑊 as an additional exogenous variable researchers may be equipped with in addition to the instrument 𝑍. Given
he challenge of extrapolation with minimal variation in 𝑍, it would be important to search for additional exogenous variables.
n the case of (a), such variables can be motivated by exogenous shocks that agents cannot fully anticipate at the time of making
reatment choices. For example, let 𝑌 be the earning and 𝐷 be the college attendance. In this example, 𝑊 can be a randomized
ob training program that directly affects 𝑌 but whose lottery outcome cannot be foreseen when making the college decision. As
nother example, when 𝑌 is the health outcome and 𝐷 is getting an insurance, 𝑊 can be random health or policy shocks that
annot be fully anticipated when making the insurance decision. In the context of generalized Roy models, (a) is consistent with
gents’ limited information when comparing the potential outcomes of the two treatment states. We show the identifying power of

even with its minimal variation. To the best of our knowledge, this is the first paper that formally uses this type of variable for
dentification in the MTE framework.3 Note that the requirement of reverse exclusion of 𝑊 in (a) can be tested from the data by
nspecting whether Pr[𝐷 = 1|𝑍,𝑋,𝑊 ] = Pr[𝐷 = 1|𝑍,𝑋].

Assumption SEL imposes a selection model for 𝐷, which is important in motivating and interpreting marginal treatment effects
ater. This assumption is also equivalent to Imbens and Angrist (1994)’s monotonicity assumption (Vytlacil, 2002). We introduce
he standard normalization that 𝑈 ∼ 𝑈𝑛𝑖𝑓 [0, 1] conditional on 𝑋 = 𝑥.4

In Assumption SEL, Case (a) is where 𝑊 is a reversely excluded exogenous variable, which we call reverse IV. This type of
exogenous variables was considered by Vytlacil and Yildiz (2007), Balat and Han (2023), and Liu et al. (2020). In Case (b), we show
that a reverse IV is not necessary, and 𝑊 can be present in the selection equation. This type of exogenous variables was considered
by Shaikh and Vytlacil (2011), Mourifié (2015), Han and Vytlacil (2017), Vuong and Xu (2017), and Han and Lee (2019). In both
scenarios, however, we show that we can use 𝑊 for identification without necessarily invoking rank similarity, rank invariance, or
additive separability in contrast to the above studies. We show this is possible due to the computational approach we take. Below,
we combine the existence of 𝑊 with assumptions that are related to rank similarity. Another distinct feature of our approach in
comparison to the prior studies is that we consider a broad class of the generalized LATEs as our target parameter, including the
ATE considered in those studies. For notational simplicity, we focus on Case (a) henceforth; it is straightforward to draw analogous
results for Case (b).

We aim to establish sharp bounds on various treatment parameters. Following Heckman and Vytlacil (2005), we express
treatment parameters as integral equations of the MTE. The MTE is defined in our setting as

𝐸[𝑌 (1) − 𝑌 (0)|𝑈 = 𝑢,𝑋 = 𝑥],

where 𝑌 (𝑑) = 𝑌 (𝑑,𝑊 ). Similar to Mogstad et al. (2018), it is convenient to introduce the marginal treatment response (MTR)
function

𝑚𝑑 (𝑢,𝑤, 𝑥) ≡ 𝐸[𝑌 (𝑑,𝑤)|𝑈 = 𝑢,𝑋 = 𝑥]

where 𝑊 does not appear as a conditioning variable due to Assumption EX. Now, we define the target parameter 𝜏 to be the
difference of the weighted averages of the MTRs:

𝜏 = 𝐸[𝜏1(𝑍,𝑊 ,𝑋) − 𝜏0(𝑍,𝑊 ,𝑋)], (2.1)

where

𝜏𝑑 (𝑧,𝑤, 𝑥) = ∫ 𝑚𝑑 (𝑢,𝑤, 𝑥)𝜔𝑑 (𝑢, 𝑧, 𝑥)𝑑𝑢 (2.2)

by using 𝐹𝑈 |𝑋 (𝑢|𝑥) = 𝑢, and 𝜔𝑑 (𝑢, 𝑧, 𝑥) is a known weight specific to the parameter of interest. This definition agrees with the insight
of Heckman and Vytlacil (2005). The target parameter includes a wide range of policy-relevant treatment parameters. We list a few
examples of the target parameter here; other examples can be found in Table 5 in Appendix.

Example 1. With a Dirac delta function for a given value 𝑢 as the weight, the MTE itself can be a target parameter.

𝜏𝑀𝑇𝐸 = 𝐸[𝑚1(𝑢,𝑊 ,𝑋) − 𝑚0(𝑢,𝑊 ,𝑋)]

Example 2. The ATE can be a target parameter with 𝜔𝑑 (𝑢, 𝑧, 𝑥) = 1 for any (𝑢, 𝑧, 𝑥).

𝜏𝐴𝑇𝐸 = 𝐸

[

∫

1

0
𝑚1(𝑢,𝑊 ,𝑋)𝑑𝑢 − ∫

1

0
𝑚0(𝑢,𝑊 ,𝑋)𝑑𝑢

]

3 Relatedly, Eisenhauer et al. (2015) allows variables of type (a) in the context of generalized Roy models. However, they consider these variables only as a
eature of agent’s limited information but not as a source of identification. Specifically, their identification of the MTE and cost parameters only relies on the
xogenous variables that are known to the agent at the time of selection into treatment (i.e., using their notation, they rely on 𝑍 to identify the MTE and 𝑋𝐼
o identify the cost parameters); see pp. 430–431 of their paper.

4 Note that for any index function 𝑔(𝑧, 𝑥) and an unobservable 𝜀|𝑋 with any distribution that is continuous and strictly increasing, the selection model satisfies
= 1{𝜀 ≤ 𝑔(𝑍,𝑋)} = 1{𝐹𝜀|𝑋 (𝜀|𝑋) ≤ 𝐹𝜀|𝑋 (𝑔(𝑍,𝑋)|𝑋)} = 1{𝑈 ≤ 𝑃 (𝑍,𝑋)}, since 𝑃 (𝑧, 𝑥) = Pr[𝜀 ≤ 𝑔(𝑧, 𝑥)|𝑋 = 𝑥] = Pr[𝑈 ≤ 𝐹𝜀|𝑋 (𝑔(𝑧, 𝑥)|𝑥)|𝑋 = 𝑥] = 𝐹𝜀|𝑋 (𝑔(𝑧, 𝑥)|𝑥) and
4

𝜀|𝑋 (𝜀|𝑋) = 𝑈 is uniformly distributed conditional on 𝑋.
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Example 3. The generalized LATE is also a target parameter. Suppose we are interested in the LATE for individuals lying in [𝑢, 𝑢]. We
assign the weight 𝜔𝑑 (𝑢, 𝑧, 𝑥) =

1(𝑢∈[𝑢,𝑢])
𝑢−𝑢 for any (𝑢, 𝑧, 𝑥), where the numerator excludes people outside this range and the denominator

gives a weight to people within [𝑢, 𝑢] according to their fraction in the whole population. The generalized LATE is expressed as:

𝜏𝐺𝐿𝐴𝑇𝐸 = 𝐸

[

∫

1

0
𝑚1(𝑢,𝑊 ,𝑋)

1(𝑢 ∈ [𝑢, 𝑢])
𝑢 − 𝑢

𝑑𝑢 − ∫

1

0
𝑚0(𝑢,𝑊 ,𝑋)

1(𝑢 ∈ [𝑢, 𝑢])
𝑢 − 𝑢

𝑑𝑢

]

Example 4. The policy relevant treatment effect (PRTE) is a target parameter that is particularly useful for policy evaluation. It is
defined as the welfare difference between two different policies. Let 𝑍 and 𝑍′ be two instrument variables under two policies and
𝑃 (𝑍,𝑋) and 𝑃 ′(𝑍′, 𝑋) be propensity scores under the two policies.

𝜏𝑃𝑅𝑇𝐸 = 𝐸

[

∫

1

0
𝑚1(𝑢,𝑊 ,𝑋)

Pr
[

𝑢 ≤ 𝑃 ′(𝑍′, 𝑋)
]

− Pr [𝑢 ≤ 𝑃 (𝑍,𝑋)]
𝐸 [𝑃 ′(𝑍′, 𝑋)] − 𝐸 [𝑃 (𝑍,𝑋)]

𝑑𝑢

− ∫

1

0
𝑚0(𝑢,𝑊 ,𝑋)

Pr
[

𝑢 ≤ 𝑃 ′(𝑍′, 𝑋)
]

− Pr [𝑢 ≤ 𝑃 (𝑍,𝑋)]
𝐸 [𝑃 ′(𝑍′, 𝑋)] − 𝐸 [𝑃 (𝑍,𝑋)]

𝑑𝑢

]

To define a broader class of parameters beyond these examples, the weights 𝜔0 and 𝜔1 can be set asymmetrically. All the
parameters we consider in this paper can be defined conditional on 𝑋 and 𝑊 , although we omit them for succinctness.

Typically, a binary instrument is not sufficient in producing informative bounds on the target parameters. This is because a
binary instrument has no extrapolative power for general non-compliers, e.g., always-takers and never-takers, but only identifies
the effect for compliers. Prior studies have tried to overcome this challenge by imposing shape restrictions on the MTE (Cornelissen
et al., 2016; Brinch et al., 2017; Mogstad et al., 2018; Kowalski, 2021), although these restrictions are not always empirically
justified. Evidently, it would be useful to provide empirical researchers with a larger variety of assumptions so that it is easier to
find justifiable assumptions that suit their specific examples.

The existence of additional exogenous variables embodied in Assumptions SEL and EX may be appealing as it can be warranted
by data with less arbitrariness. We accompany Assumptions SEL and EX with an assumption that 𝑊 and 𝑍 are relevant variables,
which make the role of these variables more explicit.

Assumption R. For given 𝑥 ∈  , (i) Pr[𝑌 (𝑑,𝑤) ≠ 𝑌 (𝑑,𝑤′)|𝑋 = 𝑥] > 0 for some 𝑑 and 𝑤 ≠ 𝑤′; (ii) either (a) 𝑃 (𝑧, 𝑥) ≠ 𝑃 (𝑧′, 𝑥) for
𝑧 ≠ 𝑧′ and 0 < 𝑃 (𝑧, 𝑥) < 1 for all 𝑧 or (b) 𝑃 (𝑧, 𝑥,𝑤) ≠ 𝑃 (𝑧′, 𝑥, 𝑤) for 𝑧 ≠ 𝑧′ and 0 < 𝑃 (𝑧, 𝑥,𝑤) < 1 for all (𝑧,𝑤).

Assumption R(i) is a relevance condition for 𝑊 in determining 𝑌 . R(ii) is the standard relevance assumption for the instrument
nd the positivity assumption. We later show that under Assumptions SEL, EX and R, the variation of 𝑊 (in addition to 𝑍) is a
seful source for extrapolation and narrowing the bounds on target parameters.

. Distribution of latent state and infinite-dimensional linear program

Our goal is to provide a systematic framework to calculate bounds on the target parameters, which is easy to incorporate various
dentifying assumptions. To this end and as a crucial first step of our analysis, we define a state variable that determines a specific
apping of

(𝑑,𝑤) ↦ 𝑦 (3.1)

or discrete 𝑦 ∈  = {𝑦1,… , 𝑦𝐿}. We discuss the extension with continuously distributed 𝑌 in Section 7. Given that 𝑑 is binary
nd assuming 𝑤 is also binary, there are 𝐿4 possible states or maps from (𝑑,𝑤) onto 𝑦. Using the extended counterfactual outcome
(𝑑,𝑤), define a latent vector 𝜖 as

𝜖 ≡ (𝑌 (0, 0), 𝑌 (0, 1), 𝑌 (1, 0), 𝑌 (1, 1))

nd its realized value as 𝑒 ≡ (𝑦(0, 0), 𝑦(0, 1), 𝑦(1, 0), 𝑦(1, 1)) ∈  = 4. Then, each value of 𝑒 represents each possible state. Table 1 lists
ll 16 maps in a leading case of binary 𝑦 with  = {0, 1}.

Now, as a key component of our LP, we define the probability mass function of 𝜖 conditional on (𝑈,𝑋): for 𝑒 ∈  ,

𝑞(𝑒|𝑢, 𝑥) ≡ Pr[𝜖 = 𝑒|𝑈 = 𝑢,𝑋 = 𝑥] (3.2)

ith ∑

𝑒∈ 𝑞(𝑒|𝑢, 𝑥) = 1 for any (𝑢, 𝑥). The quantity 𝑞(𝑒|𝑢, 𝑥) captures the joint distribution of (𝜖, 𝑈 ) and thus reflects endogenous
reatment selection. It is shown below that this latent conditional probability is a building block for various treatment parameters and
hus serves as the decision variable in the LP. The introduction of 𝑞(𝑒|𝑢, 𝑥) distinguishes our approach from those in Balke and Pearl
1997) and Mogstad et al. (2018). Since the probability is conditional on continuously distributed 𝑈 , the simple finite-dimensional
inear programming approach of Balke and Pearl (1997) is no longer applicable. Instead, we use an approximation method similar
o Mogstad et al. (2018). However, Mogstad et al. (2018) uses the MTR function as a building block for treatment parameters and
ntroduces the ‘‘IV-like’’ estimands as a means of funneling the information from the data. Unlike in Mogstad et al. (2018), 𝑞(𝑒|𝑢, 𝑥)
an be directly related to the distribution of data. This allows us to (i) fully exhaust the full independence assumption, (ii) facilitate
5

roving sharpness and (iii) incorporating a large menu of additional identifying assumptions.
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Table 1
All possible maps from (𝑑,𝑤) to 𝑦 ∈ {0, 1}.

# 𝑑 𝑤 𝑌 (𝑑,𝑤) # 𝑑 𝑤 𝑌 (𝑑,𝑤) # 𝑑 𝑤 𝑌 (𝑑,𝑤) # 𝑑 𝑤 𝑌 (𝑑,𝑤)

1

0 0 0

5

0 0 0

9

0 0 0

13

0 0 0
0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 1 1 1 1

2

0 0 1

6

0 0 1

10

0 0 1

14

0 0 1
0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 1 1 1 1

3

0 0 0

7

0 0 0

11

0 0 0

15

0 0 0
0 1 1 0 1 1 0 1 1 0 1 1
1 0 0 1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 1 1 1 1

4

0 0 1

8

0 0 1

12

0 0 1

16

0 0 1
0 1 1 0 1 1 0 1 1 0 1 1
1 0 0 1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 1 1 1 1

In the remaining section and the next section, we focus on binary 𝑌 for simplicity; the extension to general discrete 𝑌 is
traightforward and is discussed in Section 5; continuous 𝑌 is considered in Section 7. Also, we will mostly focus on binary 𝑊 and
iscrete 𝑋 for expositional simplicity. Appendix B.3 in the Appendix extends the framework to incorporate continuously distributed
; it is also straightforward to extend to allow for general discrete variable 𝑊 . By (3.2), note that

Pr[𝑌 (𝑑,𝑤) = 1|𝑈 = 𝑢,𝑋 = 𝑥] = Pr[𝜖 ∈ {𝑒 ∈  ∶ 𝑦(𝑑,𝑤) = 1}|𝑈 = 𝑢,𝑋 = 𝑥]

=
∑

𝑒∈∶𝑦(𝑑,𝑤)=1
𝑞(𝑒|𝑢, 𝑥).

herefore, the MTR can be expressed as

𝑚𝑑 (𝑢,𝑤, 𝑥) =
∑

𝑒∶𝑦(𝑑,𝑤)=1
𝑞(𝑒|𝑢, 𝑥). (3.3)

ombining (2.2) and (3.3), we have 𝜏𝑑 (𝑧,𝑤, 𝑥) =
∑

𝑒∶𝑦(𝑑,𝑤)=1 ∫ 𝑞(𝑒|𝑢, 𝑥)𝜔𝑑 (𝑢, 𝑧, 𝑥)𝑑𝑢, and thus the target parameter 𝜏 = 𝐸[𝜏1(𝑍,𝑊 ,𝑋)]−
[𝜏0(𝑍,𝑊 ,𝑋)] in (2.1) can be written as

𝜏 = 𝐸

[

∑

𝑒∶𝑦(1,𝑊 )=1
∫ 𝑞(𝑒|𝑢,𝑋)𝜔1(𝑢,𝑍,𝑋)𝑑𝑢 −

∑

𝑒∶𝑦(0,𝑊 )=1
∫ 𝑞(𝑒|𝑢,𝑋)𝜔0(𝑢,𝑍,𝑋)𝑑𝑢

]

(3.4)

or some 𝑞 that satisfies the properties of probability.
The goal of this paper is to (at least partially) infer the target parameter 𝜏 based on the data, i.e., the distribution of

𝑌 ,𝐷,𝑍,𝑊 ,𝑋). The key insight is that there are observationally equivalent 𝑞(𝑒|𝑢, 𝑥)’s that are consistent with the data, which in
urn produces observationally equivalent 𝜏’s that constitute the identified set.

Let 𝑝(𝑦, 𝑑|𝑧,𝑤, 𝑥) ≡ Pr[𝑌 = 𝑦,𝐷 = 𝑑|𝑍 = 𝑧,𝑊 = 𝑤,𝑋 = 𝑥] be the observed conditional probability. This data distribution imposes
estrictions on 𝑞(𝑒|𝑢, 𝑥). For instance, for 𝐷 = 1,

𝑝(𝑦, 1|𝑧,𝑤, 𝑥) = Pr[𝑌 (1, 𝑤) = 𝑦, 𝑈 ≤ 𝑃 (𝑧, 𝑥)|𝑍 = 𝑧,𝑊 = 𝑤,𝑋 = 𝑥]

= Pr[𝑌 (1, 𝑤) = 𝑦, 𝑈 ≤ 𝑃 (𝑧, 𝑥)|𝑋 = 𝑥]

y Assumption EX, but

Pr[𝑌 (1, 𝑤) = 𝑦, 𝑈 ≤ 𝑃 (𝑧, 𝑥)|𝑋 = 𝑥] = ∫

𝑃 (𝑧,𝑥)

0
Pr[𝑌 (1, 𝑤) = 𝑦|𝑈 = 𝑢,𝑋 = 𝑥]𝑑𝑢

=
∑

𝑒∶𝑦(1,𝑤)=𝑦
∫

𝑃 (𝑧,𝑥)

0
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢, (3.5)

here the second equality is by Pr[𝑌 (𝑑,𝑤) = 𝑦|𝑈 = 𝑢,𝑋 = 𝑥] =
∑

𝑒∶𝑦(𝑑,𝑤)=𝑦 𝑞(𝑒|𝑢, 𝑥).
To define the identified set for 𝜏, we introduce some simplifying notation. Let 𝑞(𝑢) ≡ {𝑞(𝑒|𝑢, 𝑥)}𝑒∈ ,𝑥∈ and

 ≡ {𝑞(⋅) ∶
∑

𝑒∈
𝑞(𝑒|𝑢, 𝑥) = 1 and 𝑞(𝑒|𝑢, 𝑥) ≥ 0 ∀(𝑒, 𝑢, 𝑥)}

be the class of 𝑞(𝑢), and let
6

𝑝 ≡ {𝑝(1, 𝑑|𝑧,𝑤, 𝑥)}(𝑑,𝑧,𝑤,𝑥)∈{0,1}××× .
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∑

Also, let 𝑅𝜔 ∶  → R and 𝑅0 ∶  → R𝑑𝑝 (with 𝑑𝑝 being the dimension of 𝑝) denote the linear operators of 𝑞(⋅) that satisfy

𝑅𝜔𝑞 ≡ 𝐸

[

∑

𝑒∶𝑦(1,𝑊 )=1
∫ 𝑞(𝑒|𝑢,𝑋)𝜔1(𝑢,𝑍,𝑋)𝑑𝑢 −

∑

𝑒∶𝑦(0,𝑊 )=1
∫ 𝑞(𝑒|𝑢,𝑋)𝜔0(𝑢,𝑍,𝑋)𝑑𝑢

]

,

𝑅0𝑞 ≡

{

∑

𝑒∶𝑦(𝑑,𝑤)=1
∫ 𝑑

𝑧,𝑥

𝑞(𝑒|𝑢, 𝑥)𝑑𝑢

}

(𝑑,𝑧,𝑤,𝑥)∈{0,1}×××

,

here  𝑑
𝑧,𝑥 denotes the intervals  1

𝑧,𝑥 ≡ [0, 𝑃 (𝑧, 𝑥)] and  0
𝑧,𝑥 ≡ (𝑃 (𝑧, 𝑥), 1]. Then, we can characterize the baseline identified set for

where we only impose modeling primitives. Later, we show how to characterize the identified set with additional assumptions
ntroduced in Section 6.

efinition 3.1. Suppose Assumptions EX and SEL(a) hold. The identified set of 𝜏 is defined as

 ∗ ≡ {𝜏 ∈ R ∶ 𝜏 = 𝑅𝜔𝑞 for some 𝑞 ∈  such that 𝑅0𝑞 = 𝑝}.

In what follows, we formulate the infinite-dimensional LP (∞-LP) that characterizes  ∗. This program conceptualizes sharp
ounds on 𝜏 from the data and the maintained assumptions (Assumptions SEL and EX). The upper and lower bounds on 𝜏 are
efined as

𝜏 = sup
𝑞∈

𝑅𝜔𝑞, (∞-LP1)

𝜏 = inf
𝑞∈

𝑅𝜔𝑞, (∞-LP2)

subject to

𝑅0𝑞 = 𝑝. (∞-LP3)

Observe that the set of constraints (∞-LP3) does not include
∑

𝑒∶𝑦(𝑑,𝑤)=0
∫ 𝑑

𝑧,𝑥

𝑞(𝑒|𝑢, 𝑥)𝑑𝑢 = 𝑝(0, 𝑑|𝑧,𝑤, 𝑥) ∀(𝑑, 𝑧,𝑤, 𝑥). (3.6)

This is because we know a priori that they are redundant in the sense that they do not further restrict the feasible set, namely, the
set of 𝑞(𝑒|𝑢, 𝑥)’s that satisfy all the constraints (𝑞 ∈  and (∞-LP3)).

emma 3.1. In the linear program (∞-LP1)–(∞-LP3), the feasible set defined by 𝑞 ∈  and (∞-LP3) is identical to the feasible set defined
by 𝑞 ∈ , (∞-LP3), and (3.6).

Theorem 3.1. Under Assumptions SEL and EX, suppose  ∗ is non-empty. Then, the bounds [𝜏, 𝜏] in (∞-LP1)–(∞-LP3) are sharp for the
arget parameter 𝜏, that is, 𝑐𝑙( ∗) = [𝜏, 𝜏], where 𝑐𝑙(⋅) is the closure of a set.

The result of this theorem is immediate due to the convexity of the feasible set {𝑞 ∶ 𝑞 ∈ } ∩ {𝑞 ∶ 𝑅0𝑞 = 𝑝} in the LP and the
linearity of 𝑅𝜔𝑞 in 𝑞, which implies that [𝜏, 𝜏] is convex.

4. Sieve approximation and finite-dimensional linear programming

Although conceptually useful, the LP (∞-LP1)–(∞-LP3) is not feasible in practice because  is an infinite-dimensional space. In
this section, we approximate (∞-LP1)–(∞-LP3) with a finite-dimensional LP via a sieve approximation of the conditional probability
𝑞(𝑒|𝑢, 𝑥). We use Bernstein polynomials as the sieve basis. Bernstein polynomials are useful in imposing restrictions on the original
function (Joy, 2000; Chen et al., 2011, 2017) and therefore have been introduced in the context of linear programming (Mogstad
et al., 2018, 2021; Masten and Poirier, 2021). Bernstein approximation based on those polynomials possesses the property of being
‘‘shape-preserving’’, which effectively prevent undesired distortions from the original function’s shape properties (Goodman, 1989;
Carnicer and Pena, 1993; Goodman et al., 1999).

Consider the following sieve approximation of 𝑞(𝑒|𝑢, 𝑥) using Bernstein polynomials of order 𝐾

𝑞(𝑒|𝑢, 𝑥) ≈
𝐾
∑

𝑘=1
𝜃𝑒,𝑥𝑘 𝑏𝑘(𝑢),

where 𝑏𝑘(𝑢) ≡ 𝑏𝑘,𝐾 (𝑢) ≡
(𝐾
𝑘

)

𝑢𝑘(1 − 𝑢)𝐾−𝑘 is a univariate Bernstein basis, 𝜃𝑒,𝑥𝑘 ≡ 𝜃𝑒,𝑥𝑘,𝐾 ≡ 𝑞(𝑒|𝑘∕𝐾, 𝑥) is its coefficient, and 𝐾 is finite.
By using this approximation, we implicitly impose smoothness in 𝑞(𝑒|⋅, 𝑥). Note that discrete 𝑥 can index 𝜃, because 𝑞(𝑒|𝑢, 𝑥) is a
saturated function of 𝑥. By the definition of the Bernstein coefficient, for any (𝑒, 𝑥), it satisfies 𝑞(𝑒|𝑢, 𝑥) ≥ 0 for all 𝑢 if and only if
𝜃𝑒,𝑥𝑘 ≥ 0 for all 𝑘. Also, ∑𝑒∈ 𝑞(𝑒|𝑢, 𝑥) = 1 for all (𝑢, 𝑥) is approximately equivalent to ∑

𝑒∈ 𝜃
𝑒,𝑥
𝑘 = 1 for all (𝑘, 𝑥). To see this, first,

𝑒∈ 𝑞(𝑒|𝑢, 𝑥) = 1 for all (𝑢, 𝑥) implies ∑

𝑒∈ 𝜃
𝑒,𝑥
𝑘 =

∑

𝑒∈ 𝑞(𝑒|𝑘∕𝐾, 𝑥) = 1 for all (𝑘, 𝑥). Conversely, when ∑

𝑒∈ 𝜃
𝑒,𝑥
𝑘 = 1 for all (𝑘, 𝑥),

∑

𝑞(𝑒|𝑢, 𝑥) ≈
∑

𝐾
∑

𝜃𝑒,𝑥𝑘 𝑏𝑘(𝑢) =
𝐾
∑

𝑏𝑘(𝑢) = 1
7

𝑒∈ 𝑒∈ 𝑘=1 𝑘=1
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by the binomial theorem (Coolidge, 1949). Motivated by this approximation, we formally define the following sieve space for :

𝐾 ≡

{

{

𝐾
∑

𝑘=1
𝜃𝑒,𝑥𝑘 𝑏𝑘(𝑢)

}

𝑒∈
∶
∑

𝑒∈
𝜃𝑒,𝑥𝑘 = 1 and 𝜃𝑒,𝑥𝑘 ≥ 0 ∀(𝑒, 𝑘, 𝑥)

}

⊆ . (4.1)

et  ≡ {1,… , 𝐾} and 𝑝(𝑧,𝑤, 𝑥) ≡ Pr[𝑍 = 𝑧,𝑊 = 𝑤,𝑋 = 𝑥]. For 𝑞 ∈ 𝐾 , by (3.4) and (4.1), the target parameter
= 𝐸[𝜏1(𝑍,𝑊 ,𝑋)] − 𝐸[𝜏0(𝑍,𝑊 ,𝑋)] can be expressed with

𝐸[𝜏𝑑 (𝑍,𝑊 ,𝑋)] =
∑

(𝑤,𝑥)∈×

∑

𝑒∶𝑦(𝑑,𝑤)=1

∑

𝑘∈
𝜃𝑒,𝑥𝑘 𝛾𝑑𝑘 (𝑤, 𝑥), (4.2)

here 𝛾𝑑𝑘 (𝑤, 𝑥) ≡
∑

𝑧∈{0,1} 𝑝(𝑧,𝑤, 𝑥) ∫ 𝑏𝑘(𝑢)𝜔𝑑 (𝑢, 𝑧, 𝑥)𝑑𝑢. Also, for 𝑞 ∈ 𝐾 and 𝐷 = 1, by (3.5), we have

𝑝(𝑦, 1|𝑧,𝑤, 𝑥) =
∑

𝑒∶𝑦(1,𝑤)=𝑦

∑

𝑘∈
𝜃𝑒,𝑥𝑘 𝛿1𝑘(𝑧, 𝑥), (4.3)

where 𝛿𝑑𝑘 (𝑧, 𝑥) ≡ ∫ 𝑑
𝑧,𝑥
𝑏𝑘(𝑢)𝑑𝑢.

From (4.2) and (4.3), we can expect that a finite-dimensional LP can be obtained with respect to 𝜃𝑒,𝑥𝑘 . Let 𝜃 ≡ {𝜃𝑒,𝑥𝑘 }(𝑒,𝑘,𝑥)∈××
and let

𝛩𝐾 ≡

{

𝜃 ∶
∑

𝑒∈
𝜃𝑒,𝑥𝑘 = 1 and 𝜃𝑒,𝑥𝑘 ≥ 0 ∀(𝑒, 𝑘, 𝑥) ∈  × × 

}

.

Then, we can formulate the following finite-dimensional LP that corresponds to the ∞-LP in (∞-LP1)–(∞-LP3):

𝜏𝐾 = max
𝜃∈𝛩𝐾

∑

(𝑘,𝑤,𝑥)∈××

{

∑

𝑒∶𝑦(1,𝑤)=1
𝜃𝑒,𝑥𝑘 𝛾1𝑘 (𝑤, 𝑥) −

∑

𝑒∶𝑦(0,𝑤)=1
𝜃𝑒,𝑥𝑘 𝛾0𝑘 (𝑤, 𝑥)

}

(LP1)

𝜏𝐾 = min
𝜃∈𝛩𝐾

∑

(𝑘,𝑤,𝑥)∈××

{

∑

𝑒∶𝑦(1,𝑤)=1
𝜃𝑒,𝑥𝑘 𝛾1𝑘 (𝑤, 𝑥) −

∑

𝑒∶𝑦(0,𝑤)=1
𝜃𝑒,𝑥𝑘 𝛾0𝑘 (𝑤, 𝑥)

}

(LP2)

subject to
∑

𝑒∶𝑦(𝑑,𝑤)=1

∑

𝑘∈
𝜃𝑒,𝑥𝑘 𝛿𝑑𝑘 (𝑧, 𝑥) = 𝑝(1, 𝑑|𝑧,𝑤, 𝑥) ∀(𝑑, 𝑧,𝑤, 𝑥) ∈ {0, 1} × × ×  . (LP3)

One of the advantages of LP is that it is computationally very easy to solve using standard algorithms, such as the simplex algorithm.
Assuming binary 𝑊 and 𝑋 and setting 𝐾 = 50, we have dim(𝜃) = 1632, and it takes less than 3 s to calculate 𝜏𝐾 and 𝜏𝐾 with moderate
computing power. The increase in the support of  (and thus the number of maps (3.1)) only linearly increases the computation
time.

The important remaining question is how to choose 𝐾 in practice. We discuss this issue in Section 8. Also, when 𝐾 is too large,
coefficients on 𝜃𝑒,𝑥𝑘 in (LP3) tend to take values with incomparable orders of magnitude, which may cause common optimization
lgorithms to arbitrarily drop small values. To address this, we propose a rescaling method in Appendix B.1. Finally, extending
roposition 4 in Mogstad et al. (2018), we may exactly calculate 𝜏 and 𝜏 (i.e., 𝜏 = 𝜏𝐾 and 𝜏 = 𝜏𝐾 ) under the assumptions that

(i) the weight function 𝜔𝑑 (𝑢, 𝑧, 𝑥) is piece-wise constant in 𝑢 and (ii) the constant spline that provides the best mean squared error
approximation of 𝑞(𝑒|𝑢, 𝑥) satisfies all the maintained assumptions (possibly including the identifying assumptions introduced later)
that 𝑞(𝑒|𝑢, 𝑥) itself satisfies; see Mogstad et al. (2018) for details.

5. The use of statistical independence

The framework proposed in this paper allows us to systematically calculate sharp bounds of treatment parameters using the
(conditional) statistical independence of 𝑍 and 𝑊 (Assumption EX). This is possible because the full distribution from the data
enters the LP. This is in contrast to the approach in Mogstad et al. (2018) who utilize the first moment information of the data
and exploit mean independence of 𝑍 in their bound analysis. The full independence assumption is common in the nonparametric
treatment effect literature and can be justified by, for example, IVs generated by randomized experiments. This section formally
show the identifying power of full independence and, more importantly, how our framework allows us to make use of it to produce
sharp bounds. To this end, we compare our approach with Mogstad et al. (2018)’s and show when the identified sets coincide and
when they do not. We first focus on a simple case where 𝑍 is the only exogenous variable. Then, we discuss how 𝑊 can add further
identifying power.

To help the reader, we restate the maintained assumption in Mogstad et al. (2018) in terms of our notation:

Assumptions I (Mogstad et al. (2018)). I.1. 𝑈 ⟂ 𝑍|𝑋; I.2. 𝐸[𝑌 (𝑑)|𝑍,𝑋,𝑈 ] = 𝐸[𝑌 (𝑑)|𝑋,𝑈 ] and 𝐸[𝑌 (𝑑)2] < ∞ for 𝑑 ∈ {0, 1}; I.3. 𝑈
s continuously distributed conditional on 𝑋.

Assumption I.2 imposes mean independence of the instrument 𝑍. On the other hand Assumption EX (after suppressing 𝑊 for
lear comparison) implies 𝑌 (𝑑) ⟂ 𝑍|𝑋,𝑈 , namely, statistical independence of 𝑍. Therefore, we can expect that the latter has stronger
dentifying power. Below, we show that the LP constructed with 𝑞 being the choice variable instead of the MTR function 𝑚𝑑 enables
s to exploit this extra identifying power.
8
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In Mogstad et al. (2018) the IV-like estimands are the channel through which the data enters to restrict the set of 𝑚𝑑 . They show
their Proposition 3) that if the IV-like estimands are carefully chosen, then the resulting set of 𝑚𝑑 is equivalent to the set of 𝑚𝑑
hat are consistent with

𝐸[𝑌 |𝐷 = 0, 𝑍,𝑋] = 𝐸[𝑌0|𝑈 > 𝑝(𝑍,𝑋), 𝑍,𝑋] = 1
1 − 𝑃 (𝑍,𝑋) ∫

1

𝑃 (𝑍,𝑋)
𝑚0(𝑢,𝑋)𝑑𝑢, (5.1)

𝐸[𝑌 |𝐷 = 1, 𝑍,𝑋] = 𝐸[𝑌1|𝑈 ≤ 𝑝(𝑍,𝑋), 𝑍,𝑋] = 1
𝑃 (𝑍,𝑋) ∫

𝑃 (𝑍,𝑋)

0
𝑚1(𝑢,𝑋)𝑑𝑢. (5.2)

herefore, assuming such IV-like estimands are chosen, we can define their identified set as

𝑖𝑑 =
{

𝑚 = (𝑚0, 𝑚1), 𝑚0, 𝑚1 ∈ 𝐿2 ∶ 𝑚0, 𝑚1 satisfies Eqs. (5.1) and (5.2) a.s.
}

.

ote that this set is the result of funneling the information from data via the conditional means.
When 𝑌 is binary, the mean and full independence assumptions are equivalent. Therefore we expect to find no difference in the

esulting identified sets of treatment parameters between the two methods. We show this by comparing the identified set of the
TR functions 𝑖𝑑 used in Mogstad et al. (2018) and the set of MTR functions derived from the feasible set in the LP proposed

n the current paper (denoted as 𝑓 below). More importantly, as soon as 𝑌 departs from binarity, we show that 𝑓 is a proper
ubset 𝑖𝑑 .

For comparison, define the feasible set 𝑓 of our proposed LP as

𝑓 =
{

𝑞 ∈ 𝐿2([0, 1]) ∶ 𝑞 ∈  and satisfies Eq. (∞-LP3)
}

,

here 𝑤 is suppressed from (∞-LP3). To establish the connection with 𝑖𝑑 , we construct the set of MTR functions based on 𝑓 .
or this purpose, we drop 𝑊 from the setting and redefine 𝜖 ≡ (𝑌 (0), 𝑌 (1)) and 𝑒 ≡ (𝑦(0), 𝑦(1)):

𝑓 =
{

𝑚 = (𝑚0, 𝑚1) ∶ 𝑚𝑑 (𝑢, 𝑥) =
∑

𝑦∈
𝑦

∑

𝑒∶𝑦(𝑑)=𝑦
𝑞(𝑒|𝑢, 𝑥), 𝑑 = {0, 1}, 𝑞 ∈ 𝑓

}

.

hen the following holds:

heorem 5.1. Suppose  = {0, 1}. Under Assumptions SEL and EX, 𝑓 = 𝑖𝑑 .

Theorem 5.1 demonstrates that, when 𝑌 is binary, the constraint used in our LP approach captures the same information as the
onstraint defined by the IV-like estimands that are appropriately selected. Consistent with Proposition 3 in Mogstad et al. (2018),
𝑓 and 𝑖𝑑 are sharp in this case.
When 𝑌 is non-binary and we continue to impose statistical independence, the above equivalence breaks down. That is, unlike
𝑖𝑑 , 𝑓 exploits the full data distribution and the statistical independence assumption. We formally show this with  = {𝑦1,… , 𝑦𝐿}.
e accordingly redefine 𝑝 and 𝑅0 in (∞-LP3) (i.e., 𝑅0𝑞 = 𝑝) in the definition of 𝑓 as

𝑝 ≡ {𝑝(𝑦, 𝑑|𝑧, 𝑥)}(𝑦,𝑑,𝑧,𝑥)∈×{0,1}×× ,

𝑅0𝑞 ≡

{

∑

𝑒∶𝑦(𝑑)=𝑦
∫ 𝑑

𝑧,𝑥

𝑞(𝑒|𝑢, 𝑥)𝑑𝑢

}

(𝑦,𝑑,𝑧,𝑥)∈×{0,1}××

,

ithout excluding redundant constraints and suppressing 𝑤 for simplicity. We introduce a technical assumption.

ssumption EC. (i) 𝑃 (𝑧, 𝑥) is upper semicontinuous on compact  ×  ; (ii) 𝑓 ⊂ 𝐿2([0, 1]) is equicontinuous.

Theorem 5.2. Suppose  = {𝑦1,… , 𝑦𝐿} with arbitrary 𝐿 ≥ 3. Under Assumptions SEL, EX and CT, 𝑓 ⊊𝑖𝑑 .

When 𝑌 takes more than two values, 𝑓 continues to exploit the full independence assumption and as shown in Theorem 3.1,
𝑓 is sharp. Note 𝑖𝑑 is a strict outer set of 𝑓 because the former only exploits the first moment implication of full independence.
This intuition also suggests that the case of continuous 𝑌 would deliver a similar result as in Theorem 5.2. Theorems 5.1 and 5.2
corroborate the simulation results in Section 8.2. The simulation results for continuous 𝑌 can be found in Appendix D.1.

Finally, consider the case where 𝑊 is also present and satisfies Assumptions EX and SEL. After proper modification of their
assumptions (i.e., 𝑈 ⟂ (𝑍,𝑊 )|𝑋 and 𝐸[𝑌 (𝑑)|𝑍,𝑊 ,𝑋,𝑈 ] = 𝐸[𝑌 (𝑑)|𝑋,𝑈 ]), Mogstad et al. (2018)’s framework may be able to use
he exogenous variation of 𝑊 . This can be done by using the moments 𝐸[𝑌 |𝐷 = 𝑑,𝑍,𝑊 ,𝑋] (𝑑 = 0, 1) as inputs in (5.1) and (5.2).5
owever, by the same argument as the one above for 𝑍, the full independence assumption with respect to 𝑊 will have a stronger

dentifying power than mean independence. When 𝑌 is beyond binary, our framework can exploit this. The two frameworks also
iffer in how other additional identifying assumptions can be incorporated in the procedures. This point appears as Remark 6.1 in
he next section.

5 Alternatively, the variation of 𝑊 can be reflected via IV-like estimands as inputs. In this case, the identification of 𝜏𝐿𝐴𝑇𝐸 (𝑤,𝑤′) is useful. We show its
9

identifiability in Lemma 6.1 below.
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6. Incorporating additional identifying assumptions

6.1. Additional identifying assumptions

In addition to Assumptions SEL, EX and R, researchers may be willing to restrict the degree of treatment heterogeneity, the
irection of endogeneity, or the shape of the MTR functions. Although not necessary, such restrictions play significant roles in
ielding informative bounds, especially given the challenge of extrapolating the LATE with minimal variation of the exogenous
ariables. Among the proposed assumptions, researchers want to use those that they deem plausible in given applications. Also, we
rovide only a few examples of assumptions here; we believe our proposed framework may open a venue for other assumptions we
ave not explored.

.1.1. Restrictions on treatment heterogeneity
We present a range of restrictions on treatment heterogeneity in the order of stringency starting from the strongest.

ssumption U∗. For every 𝑤,𝑤′ ∈  and 𝑥 ∈  , either Pr[𝑌 (1, 𝑤) ≥ 𝑌 (0, 𝑤′)|𝑋 = 𝑥] = 1 or Pr[𝑌 (1, 𝑤) ≤ 𝑌 (0, 𝑤′)|𝑋 = 𝑥] = 1.

The following assumption is weaker than Assumption U∗.

Assumption U. For every 𝑤 ∈  and 𝑥 ∈  , either Pr[𝑌 (1, 𝑤) ≥ 𝑌 (0, 𝑤)|𝑋 = 𝑥] = 1 or Pr[𝑌 (1, 𝑤) ≤ 𝑌 (0, 𝑤)|𝑋 = 𝑥] = 1.

When 𝑊 is not available at all, this assumption can be understood with  being degenerate. In Assumption U∗, 𝑤 and 𝑤′ may
be the same or different, i.e., the uniformity is for all combinations of (𝑤,𝑤′) ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}. Therefore, Assumption
U∗ implies Assumption U. Assumptions U and U∗ posit that individuals present uniformity in the sense that the treatment either
weakly increases the outcome for all individuals or decreases it for all individuals. Intuitively, Assumption U∗ is stronger because
the uniformity remains to hold even under an outcome shift via 𝑤 ≠ 𝑤′; this may hold when the treatment effect is strong
across individuals. Assumptions U and U∗ share insights with the monotone treatment response assumption that is introduced
to bound the ATE in Manski (1997) and Manski and Pepper (2000). Assumptions U and U∗ are also related to rank invariance
considered in the literature (e.g., Chernozhukov and Hansen, 2005; Marx, 2020). To see this, consider binary 𝑌 and a structural
model 𝑌 = 1[𝑠(𝐷,𝑊 ) ≥ 𝑉𝐷] with 𝑉𝐷 ≡ 𝐷𝑉1 + (1 − 𝐷)𝑉0 (suppressing 𝑋). When rank invariance (𝑉1 = 𝑉0 ≡ 𝑉 ) holds, Assumption
U∗ holds (and thus Assumption U) because either 𝑃 [𝑠(1, 𝑤) < 𝑉 , 𝑠(0, 𝑤′) ≥ 𝑉 ] = 0 or 𝑃 [𝑠(1, 𝑤) ≥ 𝑉 , 𝑠(0, 𝑤′) < 𝑉 ] = 0. On the other
hand, Assumption U∗ can still hold even if 𝑉1 ≠ 𝑉0 when, for example, the distribution of (𝑉1, 𝑉0) is concentrated around 45◦ line.
Therefore the converse is not true.6 It is important to note that Assumptions U and U∗ still allow treatment heterogeneity in terms
of 𝑋 (and similarly of 𝑊 ). For instance, Assumption U allows that 𝑌 (1, 𝑤) ≥ 𝑌 (0, 𝑤) a.s. for 𝑋 = 𝑥 but 𝑌 (1, 𝑤) ≤ 𝑌 (0, 𝑤) a.s. for
𝑋 = 𝑥′.7 Assumption U is also used, for example, in Chiburis (2010) although his focus is bounds on the ATE with binary 𝑌 .

In fact, it is possible to further weaken Assumption U. To motivate this with binary 𝑌 , we state Assumption U as follows
(suppressing 𝑋): for every 𝑤, either 𝑃 [𝑌 (1, 𝑤) = 0, 𝑌 (0, 𝑤) = 1] = 0 or 𝑃 [𝑌 (1, 𝑤) = 1, 𝑌 (0, 𝑤) = 0] = 0. In other words, all individuals
respond weakly monotonically to the treatment in the sense that there is no (strictly) negative-treatment-response type or positive-
treatment-response type. By iterated expectation, Assumption U holds if and only if either 𝑃 [𝑌 (1, 𝑤) = 0, 𝑌 (0, 𝑤) = 1|𝑈 ] = 0 a.s.
or 𝑃 [𝑌 (1, 𝑤) = 1, 𝑌 (0, 𝑤) = 0|𝑈 ] = 0 a.s. Then this assumption can be relaxed by allowing for the existence of both types in the
population and instead assuming the dominance of one of the types over the other: for example, 𝑃 [𝑌 (1, 𝑤) = 1, 𝑌 (0, 𝑤) = 0|𝑈 ] >
𝑃 [𝑌 (1, 𝑤) = 0, 𝑌 (0, 𝑤) = 1|𝑈 ] a.s. For general 𝑌 , such an assumption is written as follows (ignoring a measure zero set of 𝑈):

Assumption U0. For every 𝑤 ∈  and 𝑥 ∈  , either 𝑃 [𝑌 (1, 𝑤) ≥ 𝑌 (0, 𝑤)|𝑈 = 𝑢,𝑋 = 𝑥] ≥ 𝑃 [𝑌 (1, 𝑤) ≤ 𝑌 (0, 𝑤)|𝑈 = 𝑢,𝑋 = 𝑥] for all 𝑢
or 𝑃 [𝑌 (1, 𝑤) ≥ 𝑌 (0, 𝑤)|𝑈 = 𝑢,𝑋 = 𝑥] ≤ 𝑃 [𝑌 (1, 𝑤) ≤ 𝑌 (0, 𝑤)|𝑈 = 𝑢,𝑋 = 𝑥] for all 𝑢.

Assumption U0 is weaker than Assumption U, because when 𝑃 [𝑌 (1, 𝑤) ≤ 𝑌 (0, 𝑤)|𝑋 = 𝑥] = 0, Assumption U0 trivially holds.8
Compared to Assumption U, Assumption U0 allows further treatment heterogeneity in that positive- and negative-treatment-response
types can both present in the population, but we impose a uniform order on the probabilities of effect sign across individuals.
Researchers may be more comfortable with this assumption than complete uniformity. This paper is the first to propose to use this
restriction in the identification of treatment effects. We call assumptions of this type rank dominance.

We show that the directions in Assumptions U∗–U0 may be learned from the data. Suppress 𝑋 for simplicity and let 𝑍 ∈ {0, 1}.
Let 𝜏𝐿𝐴𝑇𝐸 (𝑤,𝑤′) ≡ 𝐸[𝑌 (1, 𝑤) − 𝑌 (0, 𝑤′)|𝑃 (0) ≤ 𝑈 ≤ 𝑃 (1)] be the LATE defined using the extended counterfactual outcome 𝑌 (𝑑,𝑤)
assuming Assumption SEL(a) and 𝑃 (1) > 𝑃 (0); the definition of 𝜏𝐿𝐴𝑇𝐸 (𝑤,𝑤′) under Assumption SEL(b) is analogous.

Lemma 6.1. Suppose Assumptions SEL and EX hold and 𝑍 ∈ {0, 1}. Then, (i) 𝜏𝐿𝐴𝑇𝐸 (𝑤,𝑤′) is identified for any 𝑤,𝑤′ ∈  . Based on this,
(ii) the directions in Assumptions U∗ and U are identified; (iii) additionally, when 𝑌 ∈ {0, 1}, the direction in Assumption U0 is identified.

6 On the other hand, Assumption U∗ and rank similarity (𝐹𝑉1 |𝑈 = 𝐹𝑉0 |𝑈 ) are not nested.
7 A related idea of conditional rank preservation appears in Han (2021) and also used in Marx (2020).
8 One can come up with assumptions which strength is between Assumption U0 and Assumption U. For example with binary 𝑌 , one can assume that, in addition

o Assumption U0, 𝑃 [𝑌 (1, 𝑤) = 1, 𝑌 (0, 𝑤) = 1|𝑋 = 𝑥] ≥ 𝑃 [𝑌 (1, 𝑤) = 0, 𝑌 (0, 𝑤) = 1|𝑋 = 𝑥] and 𝑃 [𝑌 (1, 𝑤) = 0, 𝑌 (0, 𝑤) = 0|𝑋 = 𝑥] ≥ 𝑃 [𝑌 (1, 𝑤) = 0, 𝑌 (0, 𝑤) = 1|𝑋 = 𝑥]
10

old. We do not explore these assumptions for succinctness.
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The practical implication of this lemma is that the direction of each assumption will be detected by the feasibility of relevant LP

pon imposing it; the next subsection has more details. The identification of 𝜏𝐿𝐴𝑇𝐸 (𝑤,𝑤′) extends the result in Imbens and Angrist
(1994). In particular,

𝜏𝐿𝐴𝑇𝐸 (𝑤,𝑤′) = 1
𝑃 (1) − 𝑃 (0)

{(𝐸[𝑌 |𝑍 = 1,𝑊 = 𝑤] − 𝐸[𝑌 |𝑍 = 0,𝑊 = 𝑤]

+ (1 − 𝑃 (0))(𝐸[𝑌 |𝐷 = 0, 𝑍 = 0,𝑊 = 𝑤] − 𝐸[𝑌 |𝐷 = 0, 𝑍 = 0,𝑊 = 𝑤′])
− (1 − 𝑃 (1))(𝐸[𝑌 |𝐷 = 0, 𝑍 = 1,𝑊 = 𝑤] − 𝐸[𝑌 |𝐷 = 0, 𝑍 = 1,𝑊 = 𝑤′])

}

The intuition behind (ii) and (iii) is as follows. The directions of monotonicity in Assumptions U∗ and U can be identified by the
signs of relevant LATEs. On the other hand, the direction of inequality in Assumption U0 can only be identified with binary 𝑌 ,
because otherwise the proportions of positive and negative treatment effects can be offset by the magnitude of the effects. This
limited testability reflects the weak identifying power of Assumption U0. The detail of the intuition can be found in the formal
proof of Lemma 6.1 in Appendix. Previous work has discussed the role of the rank similarity assumption on determining the sign
of the ATE (Bhattacharya et al., 2008; Shaikh and Vytlacil, 2011; Han, 2023), and the result above shows that Assumptions U∗–U0

play a similar role in the LP approach.

6.1.2. Direction of endogeneity
In some applications, researchers are relatively confident about the direction of treatment endogeneity. The idea of imposing

the direction of the selection bias as an identifying assumption appears in Manski and Pepper (2000), who introduce monotone
treatment selection (MTS), in addition to the monotone treatment response assumption mentioned above.

Assumption MTS. For every 𝑤 ∈  and 𝑥 ∈  , 𝐸[𝑌 (𝑑,𝑤)|𝐷 = 1, 𝑋 = 𝑥] ≥ 𝐸[𝑌 (𝑑,𝑤)|𝐷 = 0, 𝑋 = 𝑥] for 𝑑 ∈ {0, 1}.

6.1.3. Shape restrictions
Monotonicity and concavity are common shape restrictions used in the context of MTR and MTE framework.

Assumption M. For (𝑤, 𝑥) ∈  ×  , 𝑚𝑑 (𝑢,𝑤, 𝑥) is weakly increasing in 𝑢 ∈ [0, 1].

Assumption C. For (𝑤, 𝑥) ∈  ×  , 𝑚𝑑 (𝑢,𝑤, 𝑥) is weakly concave in 𝑢 ∈ [0, 1].
Assumption M assumes monotonicity and appears in Brinch et al. (2017) and Mogstad et al. (2018); while Assumption C

assumes concavity and appears in Mogstad et al. (2018). Another shape restriction introduced in the literature is separability:
𝑚𝑑 (𝑢,𝑤, 𝑥) = 𝑚1𝑑 (𝑤, 𝑥) + 𝑚2𝑑 (𝑤, 𝑢) is weakly concave in 𝑢 ∈ [0, 1].

6.2. Incorporating additional assumptions in the LP

In this section, we show how identifying assumptions introduced in Section 6.1 can be easily translated into assumptions on the
mapping defined in (3.1). This allows us to incorporate the additional assumptions in the formulation of the LP, so that one does
not need to manually derive analytical bounds every time she imposes a new assumption (and prove their sharpness).

Before proceeding, we revisit Assumptions SEL, EX, and R in the context of the LP. First, we formally show that the existence
and relevance of 𝑊 (as well as 𝑍) embodied in Assumptions SEL, EX, and R can be a useful source in narrowing the bounds.

Theorem 6.1. Under Assumptions SEL, EX, and R, the variation of 𝑍 and 𝑊 respectively poses non-redundant constraints on 𝜃 ∈ 𝛩𝐾 in
(LP1)–(LP3) in that the rows of the constraint matrix in (LP3) are linearly independent.

Heuristically, the improvement occurs because, with R(i), the constraint matrix (i.e., the matrix multiplied to the vector 𝜃 in
(LP3)) has greater rank with the variation of 𝑊 than without. See the proof of the theorem for a formal argument. Note that
non-redundant constraints on 𝜃 do not always guarantee an improvement of the bounds in (LP1)–(LP3), because these constraints
may still be non-binding. Nevertheless, non-redundancy is a necessary condition for the improvement.

We now show how to incorporate Assumptions U∗, U, U0, MTS, M, and C as additional equality and inequality restrictions in
the LP: Given the LP (∞-LP1)–(∞-LP3), identifying assumptions can be imposed by appending

𝑅1𝑞 = 𝑎1, (∞-LP4)

𝑅2𝑞 ≤ 𝑎2, (∞-LP5)

where 𝑅1 and 𝑅2 are linear operators on  that correspond to equality and inequality constraints, respectively, and 𝑎1 and 𝑎2 are
some vectors in Euclidean space. Then, analogous constraints on 𝜃 can be added to the finite-dimensional LP (LP1)–(LP3). When an
assumption violates the true data-generating process, then the identified set will be empty. This corresponds to the situation where
the LP does not have a feasible solution. When we reflect sampling errors, this corresponds to the case where the confidence set is
empty.9

9 In order to verify whether the identified set is empty, we need to check whether the feasible set of 𝜃 is empty. An efficient way to do this is to identify
vertices of the feasible polytope, if any. This process is no simpler than the simplex algorithm that we use to solve the LP. Therefore, we recommend that one
11

first solves the LP and check if infeasibility is reported.
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Assumptions U and U∗ are imposed in the LP by ‘‘deactivating’’ relevant maps. Motivating by Lemma 6.1, suppose the researcher
nows that 𝑌 (1, 𝑤) ≥ 𝑌 (0, 𝑤) almost surely for all 𝑤 ∈ {0, 1} under Assumption U. This assumption can be imposed as equality

constraints (∞-LP4), namely, in the form of 𝑅1𝑞 = 𝑎1: Suppressing 𝑥 for simplicity and recalling 𝜖 ≡ (𝑌 (0, 0), 𝑌 (0, 1), 𝑌 (1, 0), 𝑌 (1, 1)),

𝑞(0, 1, 0, 0|𝑢) = 𝑞(1, 1, 0, 0|𝑢) = 𝑞(0, 1, 1, 0|𝑢) = 𝑞(1, 1, 1, 0|𝑢) = 0, (6.1)

𝑞(1, 0, 0, 0|𝑢) = 𝑞(1, 1, 0, 0|𝑢) = 𝑞(1, 0, 0, 1|𝑢) = 𝑞(1, 1, 0, 1|𝑢) = 0, (6.2)

respectively, corresponding for 𝑤 = 1 and 𝑤 = 0 in 𝑌 (1, 𝑤) ≥ 𝑌 (0, 𝑤). Therefore, the corresponding 𝜃𝑒𝑘 = 0. Then, the effective
imension of 𝜃 will be reduced in (LP1)–(LP3) and thus yields narrower bounds. As another example, suppose the researcher knows
hat the following holds almost surely under Assumption U∗: 𝑌 (1, 1) ≥ 𝑌 (0, 0), 𝑌 (1, 0) ≥ 𝑌 (0, 1), 𝑌 (1, 1) ≥ 𝑌 (0, 1), and 𝑌 (1, 0) ≥ 𝑌 (0, 0).
hese inequalities respectively imply

𝑞(1, 0, 0, 0|𝑢) = 𝑞(1, 1, 0, 0|𝑢) = 𝑞(1, 0, 1, 0|𝑢) = 𝑞(1, 1, 1, 0|𝑢) = 0, (6.3)

𝑞(0, 0, 1, 0|𝑢) = 𝑞(1, 0, 1, 0|𝑢) = 𝑞(0, 0, 1, 1|𝑢) = 𝑞(1, 0, 1, 1|𝑢) = 0, (6.4)

nd (6.1)–(6.2). Recall the discussion that, in Assumption U (Assumption U∗), the direction of monotonicity is allowed to be
ifferent for different 𝑤 ((𝑤,𝑤′) pairs). This direction will be identified from the data (Lemma 6.1). Specifically, the direction
an be automatically determined from the LP by inspecting whether the LP has a feasible solution; when wrong maps are removed,
here is no feasible solution. This result holds regardless of the existence of 𝑊 . A similar argument applies to Assumption U0 with
inary 𝑌 . Finally, suppose Pr[𝑌 (1, 𝑤) ≥ 𝑌 (0, 𝑤)|𝑈 = 𝑢] ≥ Pr[𝑌 (1, 𝑤) ≤ 𝑌 (0, 𝑤)|𝑈 = 𝑢] for all 𝑤 ∈ {0, 1} and 𝑢 under Assumption U0.
hen, we can generate the following inequality restrictions:

𝑞(0, 0, 1, 0|𝑢) + 𝑞(0, 1, 1, 0|𝑢) + 𝑞(0, 0, 1, 1|𝑢) + 𝑞(0, 1, 1, 1|𝑢)
≥ 𝑞(1, 0, 0, 0|𝑢) + 𝑞(1, 1, 0, 0|𝑢) + 𝑞(1, 0, 0, 1|𝑢) + 𝑞(1, 1, 0, 1|𝑢),
𝑞(0, 0, 0, 1|𝑢) + 𝑞(1, 0, 0, 1|𝑢) + 𝑞(0, 0, 1, 1|𝑢) + 𝑞(1, 0, 1, 1|𝑢)
≥ 𝑞(0, 1, 0, 0|𝑢) + 𝑞(1, 1, 0, 0|𝑢) + 𝑞(0, 1, 1, 0|𝑢) + 𝑞(1, 1, 1, 0|𝑢).

Next, consider Assumption MTS. This assumption can be imposed in the form of 𝑅2𝑞 ≤ 𝑎2. To see this, Assumption MTS is
quivalent to

∑

𝑒∶𝑦(𝑑,𝑤)=1
∫

1

0
𝑞(𝑒|𝑢, 𝑥) (Pr [𝑃 (𝑍, 𝑥) ≥ 𝑢|𝐷 = 1, 𝑋 = 𝑥] − Pr [𝑃 (𝑍, 𝑥) < 𝑢|𝐷 = 0, 𝑋 = 𝑥]) 𝑑𝑢 ≥ 0

or all 𝑥. As is clear from this expression, Assumption MTS imposes restrictions on the joint distribution of (𝜖, 𝑈 ).
Finally, consider Assumptions M and C. It is straightforward to incorporate the shape restrictions on the MTR or MTE function.

hey can be imposed via inequality constraints (∞-LP4), namely, in the form of 𝑅2𝑞 ≤ 𝑎2. For implications on the finite-dimensional
P (LP1)–(LP3), recall that for 𝑞 ∈ 𝐾 , the MTR satisfies

𝑚𝑑 (𝑢,𝑤, 𝑥) =
∑

𝑒∶𝑦(𝑑,𝑤)=1
𝑞(𝑒|𝑢, 𝑥) =

∑

𝑘∈

∑

𝑒∶𝑦(𝑑,𝑤)=1
𝜃𝑒,𝑥𝑘 𝑏𝑘(𝑢).

ccording to the property of the Bernstein polynomial, Assumption M implies that ∑𝑒∶𝑦(𝑑,𝑤)=1 𝜃
𝑒,𝑥
𝑘 is weakly increasing in 𝑘, i.e.,

∑

𝑒∶𝑦(𝑑,𝑤)=1
𝜃𝑒,𝑥1 ≤

∑

𝑒∶𝑦(𝑑,𝑤)=1
𝜃𝑒,𝑥2 ≤ ⋯ ≤

∑

𝑒∶𝑦(𝑑,𝑤)=1
𝜃𝑒,𝑥𝐾 .

ssumption C implies that
∑

𝑒∶𝑦(𝑑,𝑤)=1
𝜃𝑒,𝑥𝑘 −

∑

𝑒∶𝑦(𝑑,𝑤)=1
2𝜃𝑒,𝑥𝑘+1 +

∑

𝑒∶𝑦(𝑑,𝑤)=1
𝜃𝑒,𝑥𝑘+2 ≤ 0 for 𝑘 = 0,… , 𝐾 − 2.

ne can obtain analogous assumptions and their implications in the presence of 𝑊 .

emark 6.1. In terms of incorporating additional identifying assumptions, some implications of Assumptions U∗–U0 (but not these
ssumptions directly) may be imposed via the MTR function of Mogstad et al. (2018)’s framework. Nevertheless, Assumptions U and
0 cannot play distinctive roles in their framework. To see this, consider 𝑃 [𝑌 (1) ≥ 𝑌 (0)] = 1, which is consistent with Assumption U

suppressing (𝑊 ,𝑋)). This implies that 𝑚1(𝑢) ≥ 𝑚0(𝑢), which then can be imposed as a restriction in Mogstad et al. (2018). However,
[𝑌 (1) ≥ 𝑌 (0)|𝑈 = 𝑢] ≥ 𝑃 [𝑌 (1) ≤ 𝑌 (0)|𝑈 = 𝑢] ∀𝑢, which is consistent with Assumption U0, also implies 𝑚1(𝑢) ≥ 𝑚0(𝑢).

. Extension: Continuous 𝒀

.1. Identified set and infinite-dimensional linear programming

The analogous approach of LP can be applied to the case of continuous outcome variable. We consider the continuous outcome
ith support  = [0, 1] without loss of generality.10 As a key component of our LP, we define the following conditional distribution:

𝑞(𝑒|𝑢, 𝑥) ≡ Pr [𝜖 ≤ 𝑒|𝑈 = 𝑢,𝑋 = 𝑥] ,

10 Note that  = R is homeomorphic to the open interval (0, 1). We use the closure of the latter as  for notational convenience later.
12
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where 𝜖 ≡ (𝑌 (0, 0), 𝑌 (0, 1), 𝑌 (1, 0), 𝑌 (1, 1)) and 𝑒 ≡ (𝑦(0, 0), 𝑦(0, 1), 𝑦(1, 0), 𝑦(1, 1)) as before, and ‘‘𝜖 ≤ 𝑒’’ is understood as an element-wise
inequality. First, we show how the data distribution imposes restrictions on 𝑞(𝑒|𝑢, 𝑥). From the data, we observe

𝜋(𝑦, 𝑑|𝑧,𝑤, 𝑥) ≡ Pr [𝑌 ≤ 𝑦,𝐷 = 𝑑|𝑍 = 𝑧,𝑊 = 𝑤,𝑋 = 𝑥]

for all (𝑦, 𝑑, 𝑧, 𝑤, 𝑥). Then, for example, consider the case with 𝑑 = 1. The conditional distribution can be written as

𝜋(𝑦, 1|𝑧,𝑤, 𝑥) ≡ Pr [𝑌 ≤ 𝑦,𝐷 = 1|𝑍 = 𝑧,𝑊 = 𝑤,𝑋 = 𝑥]

= Pr [𝑌 (1, 𝑤) ≤ 𝑦, 𝑈 ≤ 𝑃 (𝑧, 𝑥)|𝑋 = 𝑥]

= ∫

𝑃 (𝑧,𝑥)

0
Pr [𝑌 (1, 𝑤) ≤ 𝑦|𝑈 = 𝑢,𝑋 = 𝑥] 𝑑𝑢

= ∫

𝑃 (𝑧,𝑥)

0 ∫{𝑒∶𝑦(1,𝑤)≤𝑦}
𝑞(𝑒|𝑢, 𝑥)𝑑𝑒𝑑𝑢,

where the second equality follows by Assumption EX and the inner integral is the shorthand for a multiple integral with respect to
the vector 𝑒.11

Similarly for the target parameters, the MTR function can be expressed as follows. For example, for 𝐷 = 0,

𝑚0(𝑢,𝑤, 𝑥) = 𝐸 [𝑌 (0, 𝑤)|𝑈 = 𝑢,𝑋 = 𝑥]

= ∫

1

0
(1 − Pr [𝑌 (0, 𝑤) ≤ 𝑦|𝑈 = 𝑢,𝑋 = 𝑥])𝑑𝑦

≡ 1 − ∫

1

0 ∫{𝑒∶𝑦(0,𝑤)≤𝑦}
𝑞(𝑒|𝑢, 𝑥)𝑑𝑒𝑑𝑦.

We now define the identified set of the target parameters. Let 𝑞(𝑢) ≡ {𝑞(𝑒|𝑢, 𝑥)}𝑒∈ ,𝑥∈ be the vector of 𝑞(𝑒|𝑢, 𝑥)’s. We introduce the
class of 𝑞(⋅) to be12

̃ ≡ {𝑞(⋅) ∶ 0 ≤ 𝑞(⋅|𝑢, 𝑥) ≤ 1, 𝑞(⋅|𝑢, 𝑥) is 4-increasing,
𝑞(1, 1, 1, 1|𝑢, 𝑥) = 1, 𝑞(𝑒|𝑢, 𝑥) = 0 for 𝑒 that contains zero ∀(𝑢, 𝑥)} .

Define the vector of CDFs

𝜋(𝑦) ≡ {𝜋(𝑦, 𝑑|𝑧,𝑤, 𝑥)}(𝑑,𝑧,𝑤,𝑥)∈{0,1}×××

≡
{

(𝜋(𝑦, 0|𝑧,𝑤, 𝑥), 𝜋(𝑦, 1|𝑧,𝑤, 𝑥))′
}

(𝑧,𝑤,𝑥)∈××

and the linear operators �̃�𝜔 ∶ ̃ → R and �̃�0 ∶ ̃ → R𝑑𝜋 (with 𝑑𝜋 being the dimension of 𝜋) of 𝑞(⋅) that satisfy:

�̃�𝜔𝑞 ≡ 𝐸

[

∫

(

1 − ∫

1

0 ∫{𝑒∶𝑦(0,𝑊 )≤𝑦}
𝑞(𝑒|𝑢, 𝑥)𝑑𝑒𝑑𝑦

)

𝜔1(𝑢,𝑍,𝑋)𝑑𝑢

−∫

(

1 − ∫

1

0 ∫{𝑒∶𝑦(1,𝑊 )≤𝑦}
𝑞(𝑒|𝑢, 𝑥)𝑑𝑒𝑑𝑦

)

𝜔0(𝑢,𝑍,𝑋)𝑑𝑢

]

,

(�̃�0𝑞)(𝑦) ≡

{(

∫ 0
𝑧,𝑥

∫{𝑒∶𝑦(0,𝑤)≤𝑦} 𝑞(𝑒|𝑢, 𝑥)𝑑𝑒𝑑𝑢
∫ 1

𝑧,𝑥
∫{𝑒∶𝑦(1,𝑤)≤𝑦} 𝑞(𝑒|𝑢, 𝑥)𝑑𝑒𝑑𝑢

)}

(𝑧,𝑤,𝑥)∈××

,

where the expectation is taken over (𝑊 ,𝑍,𝑋) and  1
𝑧,𝑥 = [0, 𝑃 (𝑧, 𝑥)] and  0

𝑧,𝑥 = (𝑃 (𝑧, 𝑥), 1].

Definition 7.1. The identified set of 𝜏 is defined as

 ∗ ≡ {𝜏 ∈ R ∶ 𝜏 = �̃�𝜔𝑞 for some 𝑞 ∈ ̃ such that (�̃�0𝑞)(𝑦) = 𝜋(𝑦) for all 𝑦 ∈ }.

Then the ∞-LP is formulated as:

𝜏 = sup
𝑞∈̃

�̃�𝜔𝑞 (7.1)

𝜏 = inf
𝑞∈̃

�̃�𝜔𝑞 (7.2)

11 It is worth noting that even though we use the joint distribution of 𝜖 ≡ (𝑌 (0, 0), 𝑌 (0, 1), 𝑌 (1, 0), 𝑌 (1, 1)) as the building block, we do not require joint
independence between 𝜖 and (𝑍,𝑊 ) for the derivation. This is because the observed data distribution is a marginal distribution in 𝑌 , and thus the marginal
independence is enough. The same explanation applies to the analogous derivation (3.5) in Section 3.

12 A function 𝑞 ∶ [0, 1]4 → [0, 1] is 4-increasing if, for any 4-box [𝑎1 , 𝑏1] ×⋯ × [𝑎4 , 𝑏4] ⊆ [0, 1]4, it satisfies

𝛥𝑏4𝑎4𝛥
𝑏3
𝑎3𝛥

𝑏2
𝑎2
𝛥𝑏1𝑎1 𝑞(𝑒) ≥ 0,

where 𝛥𝑏1 𝑞(𝑒) ≡ 𝑞(𝑏 , 𝑒 , 𝑒 , 𝑒 ) − 𝑞(𝑎 , 𝑒 , 𝑒 , 𝑒 ), 𝛥𝑏2 𝑞(𝑒) ≡ 𝑞(𝑒 , 𝑏 , 𝑒 , 𝑒 ) − 𝑞(𝑒 , 𝑎 , 𝑒 , 𝑒 ), and so on.
13
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subject to

(�̃�0𝑞)(𝑦) = 𝜋(𝑦) for all 𝑦 ∈  . (7.3)

ote that the LP is infinite dimensional not only because of 𝑞 but also (7.3), which consists of a continuum of constraints.

.2. Finite-dimensional linear programming

Analogous to Section 4, we approximate the unknown function 𝑞(⋅) using multivariate Bernstein polynomials:

𝑞(𝑒|𝑢, 𝑥) ≈
𝐾
∑

𝒌=1
𝜃𝑥𝒌𝑏𝒌(𝑒, 𝑢),

here 𝑏𝒌(𝑒, 𝑢) ≡ 𝑏𝒌,𝐾 (𝑒, 𝑢) is a 5-variate Bernstein polynomials with 𝒌 ≡ (𝒌𝑒, 𝑘𝑢) and 𝒌𝑒 ≡ (𝑘00, 𝑘01, 𝑘10, 𝑘11) and its coefficient
𝑥
𝒌 ≡ 𝜃𝑥𝒌,𝐾 ≡ 𝑞(𝒌𝑒∕𝐾|𝑘𝑢∕𝐾, 𝑥). Note that ‘‘∑𝐾

𝒌=1’’ stands for ‘‘∑𝐾
𝑘00 ,𝑘01 ,𝑘10 ,𝑘11 ,𝑘𝑢=1

’’. Then the constraint can be written as a linear
ombination of the unknown parameters

{

𝜃𝑥𝒌
}

(𝒌,𝑥)∈5× . For example,

𝜋(𝑦, 1|𝑧,𝑤, 𝑥) = ∫

𝑃 (𝑧,𝑥)

0 ∫{𝑒∶𝑦(1,𝑤)≤𝑦}
𝑞(𝑒|𝑢, 𝑥)𝑑𝑒𝑑𝑢

=
𝐾
∑

𝒌=1
𝜃𝑥𝒌 ∫

𝑃 (𝑧,𝑥)

0 ∫{𝑒∶𝑦(1,𝑤)≤𝑦}
𝑏𝒌(𝑒, 𝑢)𝑑𝑒𝑑𝑢

≡
𝐾
∑

𝒌=1
𝜃𝑥𝒌𝜎

1
𝒌(𝑦, 𝑧, 𝑥), (7.4)

here 𝜎𝑑𝒌 (𝑦, 𝑧, 𝑥) ≡ ∫ 𝑑
𝑧,𝑥

∫{𝑒∶𝑦(1,𝑤)≤𝑦} 𝑏𝒌(𝑒, 𝑢)𝑑𝑒𝑑𝑢. Similarly, the target parameter can be written as, for example,

𝐸
[

𝜏0(𝑍,𝑊 ,𝑋)
]

=
∑

(𝑧,𝑤,𝑥)∈{0,1}××
𝑝(𝑧,𝑤, 𝑥)∫

(

1 − ∫

1

0 ∫{𝑒∶𝑦(0,𝑤)≤𝑦}
𝑞(𝑒|𝑢, 𝑥)𝑑𝑒𝑑𝑦

)

𝜔0(𝑢, 𝑧, 𝑥)𝑑𝑢

=
∑

𝑧,𝑤,𝑥
𝑝(𝑧,𝑤, 𝑥)∫ 𝜔0(𝑢, 𝑧, 𝑥)𝑑𝑢

−
∑

𝑤,𝑥

𝐾
∑

𝒌=1
𝜃𝑥𝒌

∑

𝑧∈{0,1}
𝑝(𝑧,𝑤, 𝑥)∫

(

∫

1

0 ∫{𝑒∶𝑦(0,𝑤)≤𝑦}
𝑏𝒌(𝑒, 𝑢)𝑑𝑒𝑑𝑦

)

𝜔0(𝑢, 𝑧, 𝑥)𝑑𝑢

≡ 𝑐0 −
∑

𝑤,𝑥

𝐾
∑

𝒌=1
𝜃𝑥𝒌𝜁

0
𝒌 (𝑤, 𝑥), (7.5)

here 𝜁𝑑𝒌 (𝑤, 𝑥) ≡
∑

𝑧∈{0,1} 𝑝(𝑧,𝑤, 𝑥) ∫
(

∫ 1
0 ∫{𝑒∶𝑦(𝑑,𝑤)≤𝑦} 𝑏𝒌(𝑒, 𝑢)𝑑𝑒𝑑𝑦

)

𝜔𝑑 (𝑢, 𝑧, 𝑥)𝑑𝑢.

To address the challenge that the constraint (7.4) is indexed by continuous 𝑦, we proceed as follows. Note that, for any measurable
unction ℎ ∶  → R, 𝐸|ℎ(𝑌 )| = 0 if and only if ℎ(𝑦) = 0 almost everywhere in  (Beresteanu et al., 2011). Therefore, the constraint
with general 𝑑) can be replaced by:

𝐸
|

|

|

|

|

|

𝐾
∑

𝒌=1
𝜃𝑥𝒌𝜎

𝑑
𝒌 (𝑌 , 𝑧, 𝑥) − 𝜋(𝑌 , 𝑑|𝑧,𝑤, 𝑥)

|

|

|

|

|

|

= 0,

hich is now a single constraint given (𝑑, 𝑧,𝑤, 𝑥). In estimation, the population mean can be replaced with the sample mean; see
ppendix B.4. Now, redefine 𝜃 ≡ {𝜃𝑥𝒌}(𝑥,𝒌)∈×5 and

𝛩𝐾 ≡
{

𝜃 ∶ 0 ≤ 𝜃𝑥𝒌 ≤ 1 ∀(𝑥,𝒌), 𝜃𝑥𝒌𝑒 ,𝑘𝑢 is 4-increasing in 𝒌𝑒,

𝜃𝑥𝑲𝑒 ,𝑘𝑢
= 1, 𝜃𝑥𝒌𝑒 ,𝑘𝑢 = 0 for any 𝒌𝑒 that contains 1 ∀(𝑥, 𝑘𝑢)

}

,

here 𝑲𝑒 ≡ (𝐾,𝐾,𝐾,𝐾). Then, the LP can be formulated as

𝜏𝐾 = min
𝜃∈𝛩𝐾

∑

(𝑤,𝑥)∈×

𝐾
∑

𝒌=1
𝜃𝑥𝒌

{

−𝜁1𝒌 (𝑤, 𝑥) + 𝜁
0
𝒌 (𝑤, 𝑥)

}

(7.6)

𝜏𝐾 = max
𝜃∈𝛩𝐾

∑

(𝑤,𝑥)∈×

𝐾
∑

𝒌=1
𝜃𝑥𝒌

{

−𝜁1𝒌 (𝑤, 𝑥) + 𝜁
0
𝒌 (𝑤, 𝑥)

}

(7.7)

ubject to

𝐸
|

|

|

|

𝐾
∑

𝜃𝑥𝒌𝜎
𝑑
𝒌 (𝑌 , 𝑧, 𝑥) − 𝜋(𝑌 , 𝑑|𝑧,𝑤, 𝑥)

|

|

|

|

= 0 ∀(𝑑, 𝑧,𝑤, 𝑥) ∈ {0, 1} × × ×  . (7.8)
14
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8. Simulation

This section provides numerical results to illustrate our theoretical framework and to show the role of different identifying
ssumptions in improving bounds on the target parameters. For target parameters, we consider the ATE and the LATEs for always-
akers (LATE-AT), never-takers (LATE-NT), and compliers (LATE-C). We calculate the bounds on them based only on the information
rom the data and then show how additional assumptions (e.g., the existence of additional exogenous variables, uniformity, and
hape restrictions) tighten the bounds.

One important question we want to answer in the exercise is how the current LP approach compares to that in Mogstad et al.
2018). This question is theoretically explored in Section 5, where we showed that our LP approach can capture full independence’s
tronger identifying power than mean independence. We show that the simulation results are consistent with the theoretical finding.

.1. Data-generating process

We generate the observables (𝑌 ,𝐷,𝑍,𝑋,𝑊 ) from the following data-generating process (DGP). We assume that 𝑊 is a reverse
IV, i.e., we maintain Assumptions EX and SEL(a). We allow covariate 𝑋 to be endogenous. All the variables are set to be binary with
Pr [𝑍 = 1] = 0.5, Pr [𝑋 = 1] = 0.6 and Pr [𝑊 = 1] = 0.4. The treatment 𝐷 is determined by 𝑍 and 𝑋 through the threshold crossing
model specified in Assumption SEL(a), where the propensity scores 𝑃 (𝑧, 𝑥) are specified as follows: 𝑃 (0, 0) = 0.1, 𝑃 (1, 0) = 0.4,
𝑃 (0, 1) = 0.4, and 𝑃 (1, 1) = 0.7. The outcome 𝑌 is generated from (𝐷,𝑋,𝑊 ) through 𝑌 = 𝐷𝑌1 + (1 −𝐷)𝑌0. For the case of binary 𝑌 ,
we generate 𝑌𝑑 from

𝑌𝑑 = 1
[

𝑚𝑑 (𝑈,𝑋,𝑊 ) ≥ 𝑣
]

(8.1)

with the MTR functions are defined as

𝑚0(𝑢, 0, 0) = 0.01𝑏40(𝑢) + 0.02𝑏41(𝑢) + 0.02𝑏42(𝑢) + 0.02𝑏43(𝑢) + 0.02𝑏44(𝑢),

𝑚1(𝑢, 0, 0) = 0.03𝑏40(𝑢) + 0.06𝑏41(𝑢) + 0.09𝑏42(𝑢) + 0.12𝑏43(𝑢) + 0.12𝑏44(𝑢),

𝑚0(𝑢, 0, 1) = 0.05𝑏40(𝑢) + 0.54𝑏41(𝑢) + 0.73𝑏42(𝑢) + 0.84𝑏43(𝑢) + 0.86𝑏44(𝑢),

𝑚1(𝑢, 0, 1) = 0.94𝑏40(𝑢) + 0.95𝑏41(𝑢) + 0.96𝑏42(𝑢) + 0.96𝑏43(𝑢) + 0.96𝑏44(𝑢),

𝑚0(𝑢, 1, 0) = 0.01𝑏40(𝑢) + 0.02𝑏41(𝑢) + 0.03𝑏42(𝑢) + 0.04𝑏43(𝑢) + 0.04𝑏44(𝑢),

𝑚1(𝑢, 1, 0) = 0.01𝑏40(𝑢) + 0.05𝑏41(𝑢) + 0.09𝑏42(𝑢) + 0.13𝑏43(𝑢) + 0.13𝑏44(𝑢),

𝑚0(𝑢, 1, 1) = 0.26𝑏40(𝑢) + 0.61𝑏41(𝑢) + 0.84𝑏42(𝑢) + 0.93𝑏43(𝑢) + 0.94𝑏44(𝑢),

𝑚1(𝑢, 1, 1) = 0.95𝑏40(𝑢) + 0.96𝑏41(𝑢) + 0.97𝑏42(𝑢) + 0.98𝑏43(𝑢) + 0.99𝑏44(𝑢),

where 𝑏𝐾𝑘 stands for the 𝑘th basis function in the Bernstein approximation of degree 𝐾. These MTR functions are consistent with
Assumptions M and C, i.e., to be weakly monotone and concave in 𝑢 for all (𝑑, 𝑥,𝑤) ∈ {0, 1}3. Also, the DGP in (8.1) satisfies
Assumption U∗ because 𝜖 does not depend on 𝑑 = 0, 1 and the MTR functions satisfy 𝑚1(𝑢, 𝑥,𝑤) > 𝑚0(𝑢, 𝑥,𝑤) for all (𝑑, 𝑥,𝑤) ∈ {0, 1}3.
Therefore, the DGP also satisfies Assumptions U and U0. Following the second example in Section 6.1.1, the DGP satisfies the
following uniform order for the counterfactual outcomes 𝑌 (𝑑,𝑤): 𝑌 (1, 1) ≥ 𝑌 (0, 1) ≥ 𝑌 (1, 0) ≥ 𝑌 (0, 0) a.s. The case with non-binary
𝑌 has DGPs with similar structure, which we omit for succinctness. We generate a sample containing 1,000,000 observations and
choose 𝐾 = 50. We choose the large sample size to mimic the population. Our choice of 𝐾 is discussed below. The number of
unknown parameters 𝜃 in the linear programming is equal to dim(𝜃) = || × || × (𝐾 + 1).

8.2. Comparison to Mogstad et al. (2018)

To illustrate the usefulness the current approach in incorporating full independence of the IV, we make comparisons with Mogstad
et al. (2018). Motivated by the theoretical results in Section 5, we consider a range of cases for the support  of 𝑌 . Specifically, 𝑌
takes values in {0, 1}, {0, 0.5, 1}, {0, 0.25, 0.5, 0.75, 1}, and {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. We additionally consider different
supports  of 𝑍 and allow 𝑍 taking values from {0, 1}, {0, 0.5, 1} and {0, 0.25, 0.5, 0.75, 1}. Note that we intentionally fix the endpoints
of  and  to remove the effect of increased variation of the variables. According to Section 5, it is conceivable that 𝑌 departing
from binary will deliver narrower bounds in our approach than Mogstad et al. (2018)’s. The gain from 𝑍 departing from binary can
be more subtle as the endpoints are fixed. For different combinations of  and , we derive the bounds on the ATE.

Fig. 1 compares bounds that are calculated by using the current approach with those that are replicated by using Mogstad et al.
(2018)’s approach. The first subfigure on the top-left shows that the bounds are identical between the two methods, because 𝑌
is binary and thus full independence between 𝑌 (𝑑) and 𝑍 is equivalent to mean independence. This equivalence is maintained no
matter how many values 𝑍 takes. In the next three subfigures, our bounds are tighter than Mogstad et al. (2018)’s as we expect. They
show a pattern that, as  contains more values, the improvement from the current approach is more substantial. This is because, as
𝑌 takes more values, with greater degree, full independence contains richer structure than mean independence. Again, this pattern
remains to hold regardless of the choice of . Nonetheless, we can conjecture that when  converges to a continuous support, the
two bounds will become closer as the MTE bounds collapse to a point. It would also be interesting to investigate (i) the case with
15

continuous 𝑌 and (ii) the impact of  when we move its endpoints further apart. They are explored in Appendix D.1 of Appendix.
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Fig. 1. Full vs. mean independence: Bounds on ATE with discrete 𝑍 and 𝑌 .

8.3. Bounds under different assumptions

8.3.1. ATE
Focusing on binary 𝑌 , Table 2 contains the bounds on the ATE under different assumptions, and these bounds are illustrated in

Figs. 2 and 3. The true ATE value is 0.15, depicted as the solid red line in the figure. From 2, the worst-case bounds on the ATE
with no additional assumptions (and without using variation from 𝑊 ) are [−0.25, 0.45]. Since the mappings do not involve 𝑊 , we
have || = 4, and the linear programming is solved with dim(𝜃) = || × || × (𝐾 + 1) = 4 × 2 × 51 = 408.

For comparison, we calculate the bounds that incorporate the existence of 𝑊 . We express the target parameters with mappings
involving 𝑊 and use data distribution conditional on 𝑊 = 0 and 𝑊 = 1 as the constraints. With binary 𝑊 , we have || = 16,
which gives dim(𝜃) = || × || × (𝐾 + 1) = 16 × 2 × 51 = 1, 632. The resulting bounds are depicted in the dotted greenish-blue line.
When the variation from 𝑊 is used, the bounds on the ATE are [−0.21, 0.42], which is narrower than without using 𝑊 . This result
is consistent with our theoretical finding presented in Theorem 6.1 that 𝑊 can help tighten the bounds as long as it is a relevant
variable. Nonetheless, these worst-case bounds are not that informative, e.g., they do not determine the sign of the ATE.

Next, we impose Assumption U0 without 𝑊 and with 𝑊 .13 Under Assumption U0, the bounds on the ATE are tightened as we
incorporate extra inequality constraints according to the direction of monotonicity. As mentioned in Section 6.1.1, the direction
of monotonicity in Assumption U0 is determined by the LPs. We solve the LPs with different directions imposed, then choose
the one with a feasible solution. This means that the corresponding direction of monotonicity is consistent with the DGP. Under
Assumption U0, we obtain a bound [0.05, 0.45], which is narrower comparing with the worst-case bound. With 𝑊 , under Assumption
U0, the bounds become [0.05, 0.42]. In Fig. 2, these bounds under Assumptions U0 without and with 𝑊 are depicted as violet and
green dashed lines, respectively. Both sets of bounds identify the sign of the ATE, consistent with the theoretical discussion. The
improvement is mainly on the lower bounds and the upper bounds coincide with the corresponding worst-case upper bound without
and with 𝑊 . These improvements come from the ability to identify the sign under the uniformity assumptions.

Next, we impose the shape restrictions (Assumptions M and C). As discussed in Section 6.1.3, these assumptions can be easily
incorporated in the linear programming by directly imposing inequality constraints on 𝜃. Under these assumptions (and the existence
of 𝑊 ), the bounds on the ATE shrink to [0.12, 0.19], which is displayed with the pink line in Fig. 2. We find that shape restrictions
are powerful assumptions and yield narrower bounds compared to those with uniformity assumptions. They function differently in
the linear programming: unlike the uniformity assumption, which maintains the ranking of individuals across counterfactual groups,
shape restrictions directly control the MTR functions.

Fig. 3 presents the results under Assumption U0, versus under Assumption U∗ with existence of 𝑊 . Under Assumption U∗, the
bounds become [0.05, 0.38]. While their lower bounds coincide, Assumption U∗ yields a lower upper bound compared to Assumption
U0.

13 Assumption U and U0 give the same bounds in our exercise, therefore, we use the weaker assumption and present the results.
16



Journal of Econometrics 240 (2024) 105680S. Han and S. Yang
Table 2
Bounds on ATE under various assumptions.

Assumptions Lower bound Upper bound True value

No assumption −0.25 0.45 0.15
Incorporating 𝑊 −0.21 0.42 0.15
Assumption U0 0.05 0.45 0.15
Incorporating 𝑊 + Assumption U0 0.05 0.42 0.15
Incorporating 𝑊 + Monotonicity + Concavity 0.12 0.19 0.15
Incorporating 𝑊 + Assumption U∗ 0.05 0.38 0.15

Fig. 2. Bounds on the ATE under different assumptions.

(For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)

8.3.2. Generalized LATEs
Next, we construct bounds on the generalized LATEs. Again, we focus on binary 𝑌 . The original definition of the LATE is the ATE

for compliers (C). Researchers may also have interests in other local treatment effects. We consider two other parameters—LATEs for
always-takers (AT) and never-takers (NT). Figs. 4 and 5 display the bounds on the LATE-AT, LATE-C, and LATE-NT under different
assumptions. This analysis is analogous to that with the ATE. Since the covariate 𝑋 affects the decision of compliance, to avoid
confusion in the definition of the compliance groups, we instead establish bounds on the LATEs conditional on 𝑋. We draw the
conditional MTE functions with solid red lines in both panels as a reference.

The DGP implies constant MTE function, therefore, the LATE-AT, LATE-C and LATE-NT are all equivalent to true ATE, equaling
to 0.33, 0.23, 0.13 and 0.20, 0.11, 0.08, conditional on 𝑋 = 0 and 𝑋 = 1 respectively. The feature that there exists no defiers in the DGP
is known. When there is no defier, the LATE-C is point identified, which has an analytical expression of the two-stage least squares
estimand. Therefore, even when we add the tuning parameters14, the estimates remain very close to the true values throughout. And
when we do not need tuning parameters to adjust the numerical errors or when the tuning parameters are very small, the linear
programming yields point estimates as shown in Fig. 4.

For the LATE-AT and LATE-NT, as before, we first consider the worst-case bounds where the existence of 𝑊 is ignored versus
where 𝑊 is taken into account. Without 𝑊 , we get the bounds [−0.60, 0.40] and [−0.28, 0.73] on the LATE-AT and the LATE-NT
conditional on 𝑋 = 0, and [−0.58, 0.43] and [−0.41, 0.60] conditional on 𝑋 = 1; with 𝑊 , we get the bounds [−0.38, 0.39] and
[−0.26, 0.67] on the LATE-AT and the LATE-NT conditional on 𝑋 = 0, and [−0.51, 0.42] and [−0.34, 0.56] conditional on 𝑋 = 1.
Incorporating information from 𝑊 helps improve both the upper and lower bounds. Imposing Assumption U0 without 𝑊 helps to
identify the sign by raising up the lower bound to 0, for the LATEs; when considering the case with 𝑊 , the pattern remains the
same, but with a lower upper bound and a slightly improved lower bound above 0. We then apply M and C with 𝑊 taking into
account. The bounds on the LATE-AT and the LATE-NT turn to [0.27, 0.36] and [0.11, 0.19] conditional on 𝑋 = 0, and [0.10, 0.29] and
[0.04, 0.11] conditional on 𝑋 = 1.

14 The tuning parameters are used to prevent infeasibility in the LP due to the sampling error. The details are introduced in Appendix B.4.
17
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Fig. 3. Bounds on the ATE under different assumptions.

(For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)

Fig. 4. Bounds on the LATEs under different assumptions.

(For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)

From Fig. 5, under the Assumption U∗, the bounds shrink to [0, 0.37] and [0, 0.53] conditional on 𝑋 = 0, and [0, 0.40] and [0, 0.55]
conditional on 𝑋 = 1, comparing with the bounds under Assumption U0. The improvement is from complete order of 16 mapping
types we have in this environment and is most significant for the never-taker LATE upper bound.

8.4. The choice of 𝐾

As a tuning parameter in the LP, we need to choose the order of Bernstein polynomials, 𝐾. In general, 𝐾 should be chosen based
on the sample size and the smoothness of the function to be approximated, in our case, 𝑞(⋅). The choice of the sieve dimension or
18
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Fig. 5. Bounds on the LATEs under different assumptions.

(For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)

Fig. 6. Bounds on MTE and ATE with different 𝐾.

more generally, regularization parameters, is a difficult question (Chen, 2007) and developing data-driven procedure is a subject of
on-going research in various nonparametric contexts of point identification; see, e.g., Chen and Christensen (2018) and Han (2020).
In this partial identification setup, we propose the following heuristic and conservative approach, which is in spirit consistent with
the very motivation of partial identification.

First, we do not want to claim any prior knowledge about the smoothness of 𝑞(⋅) because it is the distribution of a latent
variable. Because 𝐾 determines the dimension of unknown parameter 𝜃 in the linear programming, the width of the bounds tends
to increase with 𝐾. At the same time, the computational burden increases with 𝐾. One interesting numerical finding is that, when
𝐾 is sufficiently large, the increase of the width slows down and the bounds become stable. This suggests that we may be able to
conservatively choose 𝐾 that acknowledges our lack of knowledge of the smoothness but, at the same time, produces a reasonable
computational task for the linear programming.

To illustrate this point, we first consider the conditional MTE as the target parameter and show how its bounds change as 𝐾
increases. We consider the MTE because it is a fundamental parameter that generates other target parameters, and hence, it is
important to understand the sensitivity of its bounds to 𝐾. The left panel of Fig. 6 shows the evolution of the bounds on the MTE
19
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Table 3
Summary statistics.

Variables Mean S.D Min Max

𝑌 Whether or not visit doctors 0.18 0.39 0 1
𝐷 Whether or not have insurance 0.66 0.47 0 1
𝑍 Firm has multiple locations 0.68 0.47 0 1

𝑋
Age above 45 0.41 0.49 0 1
Gender 0.50 0.50 0 1
Income above median 0.50 0.50 0 1

𝑊 Pay sick leave provision 0.49 0.50 0 1

Number of observations = 7555

as 𝐾 grows. We use a DGP similar to the one described earlier. When 𝐾 = 5, the bounds are narrow. Although it may be tempting
o choose this value of 𝐾, this attempt should be avoided as it may be subject to the misspecification of the true smoothness. When

increases beyond 30, the bounds start to converge and become stable. We choose 𝐾 = 50, and this is the choice we made in our
revious numerical exercises.

To compare this converging pattern with a known benchmark, in the right panel of Fig. 6, we depict the identified set for the ATE
elative to Manski’s analytical bounds (Manski, 1990). We observe the identified set approaches to Manski’s bound as 𝐾 increases
nd it almost overlaps with Manski’s bounds when 𝐾 is around 50.15

As discussed in Appendix B.2 in the Appendix, it is worth mentioning that the bounds on the MTE are pointwise sharp but not
niformly sharp. The graph for the MTE bounds are drawn by calculating the pointwise sharp bounds on MTE at each point of 𝑢
after properly discretizing it) and then connecting them. Therefore, these bounds should not be viewed as uniformly sharp bounds.
onetheless, this graph is still useful for the purpose of our illustration. Given the current DGP, we find that there are no uniformly

harp bounds for the MTE.

. Empirical application

It is widely recognized in the empirical literature that health insurance coverage can be an essential factor for the utilization
f medical services (Hurd and McGarry, 1997; Dunlop et al., 2002; Finkelstein et al., 2012; Taubman et al., 2014). Prior studies
n this topic typically make use of parametric econometric models for the analysis. In their application, Han and Lee (2019) relax
his common approach by introducing a semiparametric bivariate probit model to measure the average effect of insurance coverage
n patients’ medical visits. By applying our theoretical framework of partial identification, we further relax the parametric and
emiparametric structures used in these studies. More importantly, we try to understand how much we can learn about the effect
f insurance that is utilized through various counterfactual policies by learning the effect of different compliance groups.

We use the 2010 wave of the Medical Expenditure Panel Survey (MEPS) and focus on all the medical visits in January 2010. The
ample is restricted to contain individuals aged between 25 and 64 and exclude those who had any kind of federal or state insurance
n 2010. The outcome 𝑌 is a binary variable indicating whether or not an individual has visited a doctor’s office; the treatment 𝐷
s whether an individual has private insurance. We choose whether a firm has multiple locations as the binary instrument 𝑍. This
V reflects the size of the firm, and larger firms are more likely to provide fringe benefits, including health insurance. On the
ther hand, the number of branches of a firm does not directly affect employee decisions about medical visits. To justify the IV,
elf-employed individuals are excluded. For potentially endogenous covariates 𝑋, we include the age being 45 and older, gender,
ncome above median. Lastly, for an exogenous covariate 𝑊 , we use the percentage of workers who are provided with paid sick
eave benefits within each industry. Following Han and Lee (2019), we assume 𝑊 satisfies Assumptions SEL𝑊 (b) and EX𝑊 (b), as

is controlled. The rationale is the following: First, we assume 𝑊 is exogenous (conditional on covariates) arguably because it
s determined by the employer or is in accordance with the local legislation and thus is not correlated with individual employee’s
references. However, due to its nature, it can influence the employee’s health-related decisions, such as enrolling in an insurance
rogram (𝐷) or utilizing medical services (𝑌 ).16 We construct a categorical variable such that 𝑊 = 0 for less than median value of
he pay sick leave provision, 𝑊 = 1 for above the median (see Table 3). .

First, as a benchmark, we report that the LATE-C estimate calculated via our linear programming approach is equal to a singleton
f 0.05, which is in fact identical to the 2SLS estimate we separately calculate. In what follows, we extrapolate this LATE beyond the
omplier group to the ATE. The presence of covariates reduces the effective sample size and thus leads to larger sampling errors in
stimating the 𝑝 of the ∞-LP (∞-LP1)–(∞-LP3). This may create inconsistencies in the set of equality constraints (∞-LP3), resulting

15 Note that with large 𝐾, some LP solvers would ignore coefficients with negligible (e.g., 10−13) values that cause a large range of magnitude in the coefficient
matrix. It may be recommended to simultaneously rescale a column and a row to achieve a smaller range in the coefficients; see Appendix B.1 for details. We
found that when 𝐾 = 50, the bounds from the rescaled LP and original LP are very close to each other (e.g., for the ATE bounds without extra assumptions, the
difference is up to 0.01).

16 Since the relevance of 𝑊 to 𝐷 is slightly less plausible than to 𝑌 , we test whether the propensity score is a not a function of 𝑊 but cannot reject the
20

null. Therefore, we decided to use 𝑊 as a common exogenous variable than a reverse IV.
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Fig. 7. Bounds on the ATE of private insurance on medical visits.

in no feasible solution. This is in fact what happens in this application. To resolve this estimation problem, we introduce a slackness
parameter 𝜅 and modify (∞-LP3) so that, with some slackness, it satisfies

‖�̂�0𝑞 − �̂�‖ ≤ inf
𝑞∈

‖�̂�0𝑞 − �̂�‖ + 𝜅, (9.1)

where �̂�0 and �̂� are estimates of 𝑅0 and 𝑝. A similarly modified constraint can then be followed in the finite-dimensional LP
after approximation, as well as by combining (∞-LP4)–(∞-LP5). The appropriate value of 𝜅 should depend on the sample size,
the dimension of covariates, and the dimension of the unknown parameter 𝜃. To explain the latter, as 𝐾 increases, the dimension of
𝜃 (i.e., unknowns) increases, while the number of constraints (i.e., simultaneous equations for the unknowns) is fixed. Therefore, as
𝐾 increases, the chance that the LP does not have a feasible solution would decrease. Based on the method discussed in the previous
section, we set 𝐾 = 50 in this application.

We calculate worst-case bounds on the ATE, as well as bounds after imposing Assumptions U0 and M and after using 𝑊 .
Assumption M imposes that the MTR function is weakly increasing in 𝑈 = 𝑢. Usually, 𝑈 is interpreted as the latent cost of obtaining
treatment. Kowalski (2021) interpreted 𝑈 as eligibility in a similar setup for Medicaid insurance. The eligibility for Medicaid is
related to income level and age. In our setup, because the treatment is having the private insurance, we interpret the eligibility as
the health status, which is reflected in the premium. Interpreting 𝑈 as a latent cost (e.g., premium) of getting private insurance,
Assumption M states that the chance of making a medical visit (with or without insurance) increases for those with higher cost.
This is a reasonable assumption given that sicker individuals typically face higher insurance costs and also visit doctors more often.
Under Assumption U0, the data rules out the possibility that 𝑌 (0) > 𝑌 (1), indicating that individuals with private insurance are
more likely to visit a doctor, conditional on the latent cost 𝑈 . We choose the slackness parameter 𝜅 to be consistently 0.01 under
all assumptions for a comparable comparison.

The bounds on the ATE are shown in Fig. 7. The worst-case bound on the ATE equals [−0.42, 0.36]. The bounds become [0.02, 0.36]
under Assumption U0 and [0.07, 0.36] under Assumption M. It is interesting to note that the identifying power of the uniformity and
the shape restriction is similar in this example. When both Assumption U0 and Assumption M are imposed, the bounds are further
tightened to [0.08, 0.36], although not substantially, indicating that the two assumptions are complementary. However, we do not
see gain from incorporating 𝑊 in this case.

Next, we consider the always-taker, complier, and never-taker LATEs. We consider these generalized LATEs conditional on 𝑋 = 𝑥.
Specifically, we focus on the treatment effects for males above age 45, with income below the median. The results are shown in
21
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Fig. 8. Bounds on the generalized LATEs of private insurance on medical visits for male above 45, with income below median.

Table 4
Estimated bounds on generalized LATEs for males above 45, with income below median.

No assumption Assumption U0 M Assumption U0 + M W M + W

LATE-AT [−0.80,0.19] [0,0.19] [0,0.16] [0,0.16] [−0.77,0.18] [0.05,0.14]
LATE-C 0.05 0.05 0.05 0.05 0.05 0.05
LATE-NT [−0.18,0.86] [0,0.86] [−0.07,0.85] [0,0.85] [−0.12,0.81] [0,0.70]

Slackness 𝜅 0.01 0.01 0.01 0.01 0.01 0.01

Number of observations = 7555

Table 4 and depicted in Fig. 8. The LATE-C is analytically calculated via TSLS.17 For the LATE-AT and LATE-NT, Assumption U0

identifies the sign of the effects, and Assumption M nearly identifies it. Using the variation in 𝑊 mostly improves the bounds
compared to the ones without it.18 From the results we can conclude that, for a range of identifying assumptions, the private
insurance may have a large effect on medical visits for never-takers, that is, people who face higher insurance cost. For example, for
all the cases, the upper bound on the effect (i.e., the most optimistic scenario) is much larger for the never-takers than the always-
takers. Under Assumption W or no assumption, the lower bounds (i.e., the most pessimistic scenario) shows a similar pattern. This
suggests a policy implication that lowering the cost of private insurance may be important, because high costs may hinder those
with the most need from receiving enough medical services.

Appendix A. Examples of the target parameters

Table 5 contains the list of target parameters.

17 When the alternative constraint (9.1) is used with the slackness parameter, the LATE-C is no longer a singleton.
18 Most of the extra assumptions we impose help to determine the direction of treatment effect, i.e., to raise the lower bound if the treatment effect is positive.

Therefore, improvements on LATE-NT are smaller than LATE-AT after imposing extra assumptions, since the evidence of positive treatment effect is relatively
strong even with the worst-case bounds of LATE-NT.
22
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Table 5
Examples of the target parameters.

Target parameters Expressions Ranges of 𝑢 Weights
𝑤𝑑 (𝑢, 𝑧, 𝑥)

Average Treatment Effect
𝐸[𝑌 (1) − 𝑌 (0)] [0, 1] 1(ATE)

LATE for Compliers
𝐸
{

𝑌 (1) − 𝑌 (0)|𝑢 ∈
[

𝑃 (𝑧0 , 𝑥), 𝑃 (𝑧1 , 𝑥)
]}

[𝑃 (𝑧0 , 𝑥), 𝑃 (𝑧1 , 𝑥)]
1(𝑢∈[𝑃 (𝑧0 ,𝑥),𝑃 (𝑧1 ,𝑥)])

𝑃 (𝑧1 ,𝑥)−𝑃 (𝑧0 ,𝑥)(LATE-C) given 𝑥 ∈ 

LATE for Always-Takers
𝐸
{

𝑌 (1) − 𝑌 (0)|𝑢 ∈
[

0, 𝑃 (𝑧0 , 𝑥)
]}

[0, 𝑃 (𝑧0 , 𝑥)]
1(𝑢∈[0,𝑃 (𝑧0 ,𝑥)])

𝑃 (𝑧0 ,𝑥)(LATE-AT) given 𝑥 ∈ 

LATE for Never-Takers
𝐸
{

𝑌 (1) − 𝑌 (0)|𝑢 ∈
[

𝑃 (𝑧1 , 𝑥), 1
]}

[𝑃 (𝑧1 , 𝑥), 1]
1(𝑢∈[𝑃 (𝑧1 ,𝑥),1])

1−𝑃 (𝑧1 ,𝑥)(LATE-NT) given 𝑥 ∈ 

LATE for [𝑢, 𝑢] 𝐸[𝑌 (1) − 𝑌 (0)|𝑢 ∈ [𝑢, 𝑢]]
[

𝑃 (𝑧0 , 𝑥), 𝑃 (𝑧1 , 𝑥)
] 1(𝑢∈[𝑢,𝑢])

𝑢−𝑢

Marginal Treatment Effect
𝐸[𝑌 (1) − 𝑌 (0)|𝑢′] 𝑢′ 1(𝑢 = 𝑢′)(MTE)a

Policy Relevant Treatment Effect 𝐸(𝑌 ′ )−𝐸(𝑌 )
𝐸(𝐷′ )−𝐸(𝐷) [0, 1] Pr[𝑢≤𝑃 ′ (𝑧′ )]−Pr[𝑢≤𝑃 ′ (𝑧)]

𝐸[𝑃 (𝑍′ )]−𝐸[𝑃 (𝑍)](PRTE) for a new policy (𝑃 ′ , 𝑍′)

a The MTE uses the Dirac measure at 𝑢′, while the other target parameters use the Lebesgue measure on [0, 1].

Appendix B. Further discussions

B.1. Rescaling of linear programs

Let 𝐵𝜃 = 𝑝 represents the constraints (LP3) in the LP (LP1)–(LP3). In practice, the matrix 𝐵 has the number of columns that
grows with 𝐾. An important consequence is that, when 𝐾 is large, the entries of 𝐵 (i.e., constraint coefficients) take values of very
different orders of magnitude; some coefficients are too small and some are too large. In this case, many optimization algorithms do
not work properly because, to address the issue, they arbitrarily drop coefficients with small values (e.g., GUROBI drops coefficients
that are less than 10−13). This may arbitrarily change the bounds we obtain. In this section, we propose a rescaling method to
address this problem.

To better understand the rescaling strategy, we first express the original LP (LP1)–(LP3) in terms of matrices:

max
𝜃∈𝛩𝐾

𝐴𝜃

subject to

𝐵𝜃 = 𝑝.

Here, 𝜃 is defined as a vector of unknown parameters {𝜃𝑒,𝑥𝑘 }𝑘,𝑒,𝑥 and 𝛩𝐾 is redefined as

𝛩𝐾 ≡ {𝜃 ∶𝑀𝜃 = 𝟏, 𝜃 ≥ 𝟎} ,

where 𝑀 is a weight matrix corresponding to ∑

𝑒∈ 𝜃
𝑒,𝑥
𝑘 = 1 ∀(𝑘, 𝑥), 𝟏 is a column vector of ones, and 𝟎 is a zero vector.

Because the Bernstein polynomials are only used in generating the coefficients in the equality restrictions from the data, we
focus on rescaling of this constraint. Suppose the dimension of 𝐵 is 𝑚 × 𝑛 with 𝑚 < 𝑛.19 First, we show that 𝐵 has full rank of 𝑚
in our setting. To prove this, we need to understand the structure of 𝐵. The number of columns of 𝐵 is determined by the size of
 and the order of polynomials 𝐾. The number of rows of 𝐵 is determined by the dimension of 𝑝. We consider an example with
binary (𝑌 ,𝑍,𝑊 ) for illustration. Since (𝐷,𝑊 ) are binary, || = 16 and 𝐵 takes the form of the following:

𝑒 = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝑍 = 0, 𝐷 = 0,𝑊 = 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
𝑍 = 1, 𝐷 = 0,𝑊 = 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
𝑍 = 0, 𝐷 = 1,𝑊 = 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
𝑍 = 1, 𝐷 = 1,𝑊 = 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
𝑍 = 0, 𝐷 = 0,𝑊 = 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
𝑍 = 1, 𝐷 = 0,𝑊 = 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
𝑍 = 0, 𝐷 = 1,𝑊 = 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
𝑍 = 1, 𝐷 = 1,𝑊 = 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

19 𝑚 is determined by the dimension of 𝑝, which is determined by the cardinality of  ,  and  , and 𝑛 is determined by the order of polynomials, 𝐾, we
hoose in sieve approximation. Usually 𝐾 (and thus 𝑛) is set to be a large number to guarantee the accuracy of sieve approximation, and it usually is larger
23

han 𝑚. When 𝑚 = 𝑛, theoretically, we achieve a unique solution, but in practice, the numerical error may cause infeasibility.
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The square represents a vector of coefficients corresponding to 𝜃’s used in approximating the mapping types, and the blank
represents a zero vector. By construction, each entry in matrix 𝐵 is equivalent to ∫ 𝑑

𝑧,𝑥
𝑏𝑘,𝐾 (𝑢)𝑑𝑢 such that the product of 𝐵 and

𝜃 is equal to the data distribution. From the matrix form above, we can guarantee that 𝐵 has full row rank if, for given (𝑑,𝑤), the
row representing 𝑍 = 0 cannot be a constant multiplication of the row representing 𝑍 = 1.

Lemma B.1. Suppose 𝑍 ∈ {𝑧1, 𝑧2} is a binary IV. Assume that 𝑃 (𝑧1), 𝑃 (𝑧2) ∈ (0, 1) and 𝑃 (𝑧1) ≠ 𝑃 (𝑧2). For 𝑘 = 0, 1,… , 𝐾, define

(𝑘) =
∫ 𝑃 (𝑧1)0 𝑏𝑘,𝐾 (𝑢)𝑑𝑢

∫ 𝑃 (𝑧2)0 𝑏𝑘,𝐾 (𝑢)𝑑𝑢
. Then, 𝑓 (𝑘) is not a constant function, and thus 𝐵 has full row rank.

The proof of this lemma appears below. Our goal is to rescale the coefficient matrix 𝐵 into a new matrix �̃� such that its entries
have balanced orders of magnitude. The most intuitive choice of �̃� is the fully reduced form of 𝐵. Note 𝐵 usually has more rows
han columns (otherwise, we achieve point identification), therefore, the fully reduced form of 𝐵 would take the form of

�̃� = [𝐼, 𝟎] ,

here 𝐼 is the identity matrix of rank 𝑚, and 𝟎 is a zero matrix with dimension 𝑚× (𝑛−𝑚). The next step is to find a transformation
atrix 𝑋 such that 𝐵𝑋 = �̃�, so that we can rewrite the optimization problem as

max
𝜃∈�̃�𝐾

�̃�𝜃

ubject to

�̃�𝜃 = 𝑝,

here 𝜃 = 𝑋−1𝜃, �̃� = 𝐴𝑋, and �̃�𝐾 ≡
{

𝜃 ∶𝑀𝑋𝜃 = 𝟏, 𝑋𝜃 ≥ 𝟎
}

.
We propose a simple algorithm to find a full rank 𝑋. Since 𝐵 is the column-reduced form of 𝐵, 𝑋 can be viewed as the matrix

f elementary operation used to reach the reduced form. To construct 𝑋, we first use the transposed matrix 𝐵′ and apply to it
auss–Jordan elimination with partial pivoting to achieve a row-reduced form. We apply the exactly same procedure to an identity
atrix 𝐼 with dimension 𝑛 × 𝑛. Then, the transpose of the resulting matrix becomes 𝑋. Because simple row operations preserve the

ank, 𝑋 is guaranteed to have full rank. Note that there may exist multiple solutions of 𝑋, which essentially makes this procedure
omputationally easier than solving an LP.

.2. Pointwise and uniform sharp bounds on MTE

In Section 2, we provided some examples of target parameters. The building block for these parameters is the MTE, 𝑚1(𝑢)−𝑚0(𝑢)
suppressing 𝑤 and 𝑥). Heckman and Vytlacil (2005) show why this fundamental parameter can be of independent interest. Unlike
ther target parameters proposed here, we may want to recover the MTE as a function of 𝑢 (besides evaluating it at fixed 𝑢). In this
ection, we discuss the subtle issue of pointwise and uniform sharp bounds on 𝜏𝑀𝑇𝐸 (𝑢) ≡ 𝑚1(𝑢) − 𝑚0(𝑢) as a function of 𝑢.

For simplicity, suppress 𝑊 and 𝑋 and redefine 𝜖 ≡ (𝑌 (0), 𝑌 (1)) and 𝑒 ≡ (𝑦(0), 𝑦(1)). Recall 𝑞(𝑢) ≡ {𝑞(𝑒|𝑢)}𝑒∈ and  ≡ {𝑞(⋅) ∶
𝑒 𝑞(𝑒|𝑢) = 1 ∀𝑢 and 𝑞(𝑒|𝑢) ≥ 0 ∀(𝑒, 𝑢)}. Let  be the set of MTE functions, i.e.,

 ≡
{

𝑚1(⋅) − 𝑚0(⋅) ∶ 𝑚𝑑 (⋅) =
∑

𝑒∈∶𝑦(𝑑)=1
𝑞(𝑒|⋅) ∀𝑑 ∈ {0, 1} for 𝑞(⋅) ∈ 

}

.

he bounds on 𝜏𝑀𝑇𝐸 ∈  in the ∞-LP are given by using a Dirac delta function as a weight. Therefore, given evaluation point
∈ [0, 1], (∞-LP1)–(∞-LP3) can be simplified as follows, defining the upper and lower bounds 𝜏(𝑢) and 𝜏(𝑢) (that are explicit about

the evaluation point) on 𝜏𝑀𝑇𝐸 (𝑢):

𝜏(𝑢) = sup
𝑞∈

∑

𝑒∈∶𝑦(1)=1
𝑞(𝑒|𝑢) −

∑

𝑒∈∶𝑦(0)=1
𝑞(𝑒|𝑢) (B.1)

𝜏(𝑢) = inf
𝑞∈

∑

𝑒∈∶𝑦(1)=1
𝑞(𝑒|𝑢) −

∑

𝑒∈∶𝑦(0)=1
𝑞(𝑒|𝑢) (B.2)

subject to
∑

𝑒∶𝑦(𝑑)=1
∫ 𝑑

𝑧

𝑞(𝑒|�̃�)𝑑�̃� = 𝑝(1, 𝑑|𝑧) ∀(𝑑, 𝑧) ∈ {0, 1} ×. (B.3)

Then, for any fixed 𝑢 ∈ [0, 1],

𝜏(𝑢) ≤ 𝜏𝑀𝑇𝐸 (𝑢) ≤ 𝜏(𝑢).

We argue that these bounds are pointwise sharp but not necessarily uniformly sharp for 𝜏𝑀𝑇𝐸 (⋅).20

20 See Firpo and Ridder (2019) for related definitions of pointwise and uniform sharpness.
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Definition B.1 (Pointwise Sharpness).𝜏(⋅) and 𝜏(⋅) are pointwise sharp if, for any �̄� ∈ [0, 1], there exist 𝜏𝑀𝑇𝐸,�̄�, 𝜏𝑀𝑇𝐸,�̄� ∈  such that
𝜏(�̄�) = 𝜏𝑀𝑇𝐸,�̄�(�̄�) and 𝜏(�̄�) = 𝜏𝑀𝑇𝐸,�̄�(�̄�).

Theorem B.1. 𝜏(⋅) and 𝜏(⋅) are pointwise sharp bounds on 𝜏𝑀𝑇𝐸 (⋅).

The proofs of this and other theorems appear later. Note that pointwise bounds will maintain some properties of an MTE function,
but not all. For uniform sharpness, 𝜏(⋅) and 𝜏(⋅) themselves have to be MTE functions on [0, 1], i.e., 𝜏(⋅) and 𝜏(⋅) should be elements
in .

Definition B.2 (Uniform Sharpness).𝜏(⋅) and 𝜏(⋅) are uniformly sharp if 𝜏(⋅), 𝜏(⋅) ∈ .

The following theorem is almost immediate.

heorem B.2. 𝜏(⋅) is uniformly sharp if and only if there exists 𝑞∗(⋅) ∈  such that 𝑞∗(⋅) is in the feasible set and 𝜏(𝑢) = ∑

𝑒∈∶𝑦(1)=1 𝑞
∗(𝑒|𝑢)−

𝑒∈∶𝑦(0)=1 𝑞
∗(𝑒|𝑢) for all 𝑢 ∈ [0, 1]. Similarly, 𝜏(⋅) is uniformly sharp if and only if there exists 𝑞†(⋅) ∈  such that 𝑞†(⋅) is in the feasible

et and 𝜏(𝑢) = ∑

𝑒∈∶𝑦(1)=1 𝑞
†(𝑒|𝑢) −

∑

𝑒∈∶𝑦(0)=1 𝑞
†(𝑒|𝑢) for all 𝑢 ∈ [0, 1].

The following is a more useful result that relates pointwise bounds with uniform bounds. For each �̄�, let 𝑞∗�̄� (⋅) and 𝑞†�̄� (⋅) be the
pointwise maximizer and minimizer of (B.1)–(B.3), respectively.

Corollary B.1. 𝜏(⋅) is uniformly sharp if and only if there exists 𝑞∗(⋅) ∈  such that 𝑞∗(⋅) is in the feasible set and 𝑞∗�̄� (�̄�) = 𝑞∗(�̄�) for all
�̄� ∈ [0, 1]. Also, 𝜏(𝑢) is uniformly sharp if and only if there exists 𝑞†(⋅) ∈  such that 𝑞†(⋅) is in the feasible set and 𝑞†�̄� (�̄�) = 𝑞†(�̄�) for all
�̄� ∈ [0, 1].

Based on the Bernstein approximation we introduce, this corollary implies that for a uniform upper bound to exist, there should
xist a common maximizer 𝜃∗ such that 𝜃∗ is in the feasible set of the LP and 𝜏(𝑢) = ∑

𝑘∈

{

∑

𝑒∈∶𝑦(1)=1 𝜃
𝑒∗
𝑘 𝑏𝑘(𝑢)−

∑

𝑒∈∶𝑦(0)=1 𝜃
𝑒∗
𝑘 𝑏𝑘(𝑢)

}

or all 𝑢. In other words, if 𝜃∗�̄� is the maximizer of the LP for given �̄�, then there should exist 𝜃∗ in the feasible set such that 𝜃∗�̄� = 𝜃∗

or all �̄� ∈ [0, 1]. Since this condition will not generally hold, uniformly sharp bounds on the MTE may not exist. The condition can
e verified in practice by implementing the LP in a finite grid of 𝑢 in [0, 1] and checking whether 𝜃∗𝑢 is constant for all values in the
rid.

The discussion of this section extends to the case with continuous 𝑌 by analogously defining the set of MTE functions generated
y ̃. One implication of uniform sharpness is that 𝜏(⋅) and 𝜏(⋅) should be consistent with the CDF properties of 𝑞(𝑒|𝑢) embedded in

̃.

B.3. Linear programming with continuous 𝑋

Suppose 𝑋 is a vector of continuously distributed covariates and assume  = [0, 1]𝑑𝑋 without loss of generality. Let 𝑞(𝑢, 𝑥) ≡
{𝑞(𝑒|𝑢, 𝑥)}𝑒∈ and 𝑝(𝑥) ≡ {𝑝(1, 𝑑|𝑧,𝑤, 𝑥)}𝑑,𝑧,𝑤. Recall that 𝑅𝜔 ∶  → R and 𝑅 ∶  → R𝑑𝑝 are the linear operators of 𝑞(⋅) where 𝑑𝑝 is
the dimension of 𝑝. Consider the following LP:

𝜏 = sup
𝑞∈

𝑅𝜔𝑞, (B.4)

𝜏 = inf
𝑞∈

𝑅𝜔𝑞, (B.5)

𝑠.𝑡. (𝑅𝑞)(𝑥) = 𝑝(𝑥) for all 𝑥 ∈  , (B.6)

where (𝑅𝑞)(𝑥) = 𝑝(𝑥) emphasizes the dependence on 𝑥, and thus represents infinitely many constraints. Therefore, this LP is infinite
dimensional because of both the decision variable and the constraints.

Now, for the sieve space of , we consider

̄𝐾 ≡

{

{

𝐾
∑

𝑘=1
𝜃𝑒𝑘𝑏𝑘(𝑢, 𝑥)

}

𝑒∈
∶
∑

𝑒∈
𝜃𝑒𝑘 = 1 and 𝜃𝑒𝑘 ≥ 0 ∀(𝑒, 𝑘)

}

⊆ , (B.7)

where 𝑏𝑘(𝑢, 𝑥) is a bivariate Bernstein polynomial and  ≡ {1,… , 𝐾}. Then, for 𝑞 ∈ ̄𝐾

𝐸[𝜏𝑑 (𝑍,𝑊 ,𝑋)] = 𝐸

[

∑

𝑒∶𝑦(𝑑,𝑊 )=1

∑

𝑘∈
𝜃𝑒𝑘 ∫ 𝑏𝑘(𝑢,𝑋)𝜔𝑑 (𝑢,𝑍,𝑋)𝑑𝑢

]

≡
∑

𝑤∈

∑

𝑒∶𝑦(𝑑,𝑤)=1

∑

𝑘∈
𝜃𝑒𝑘�̃�

𝑑
𝑘 (𝑤), (B.8)

where �̃�𝑑𝑘 (𝑤) ≡ 𝐸
[

∑

𝑧∈{0,1} 𝑝(𝑧,𝑤|𝑋) ∫ 𝑏𝑘(𝑢,𝑋)𝜔𝑑 (𝑢, 𝑧,𝑋)𝑑𝑢
]

with 𝑝(𝑧,𝑤|𝑥) ≡ Pr[𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥]. Also,

𝑝(1, 𝑑|𝑧,𝑤, 𝑥) =
∑ ∑

𝜃𝑒𝑘 ∫ 𝑑
𝑏𝑘(𝑢, 𝑥)𝑑𝑢
25
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≡
∑

𝑒∶𝑦(𝑑,𝑤)=1

∑

𝑘∈
𝜃𝑒𝑘𝛿

𝑑
𝑘 (𝑧, 𝑥), (B.9)

where 𝛿𝑑𝑘 (𝑧, 𝑥) ≡ ∫ 𝑑
𝑧,𝑥
𝑏𝑘(𝑢, 𝑥)𝑑𝑢. To deal with this infinite dimensional constraints (with respect to 𝑥), we proceed as follows. For

any measurable function ℎ ∶  → R, 𝐸 |ℎ(𝑋)| = 0 if and only if ℎ(𝑥) = 0 almost everywhere in  . Therefore, the equality restriction
B.9) can be replaced by

𝐸
|

|

|

|

|

|

∑

𝑒∶𝑦(𝑑,𝑤)=1

∑

𝑘∈
𝜃𝑒𝑘𝛿

𝑑
𝑘 (𝑧,𝑋) − 𝑝(1, 𝑑|𝑧,𝑤,𝑋)

|

|

|

|

|

|

= 0

or all (𝑑, 𝑧,𝑤) ∈ {0, 1} × × . Let 𝜃 ≡ {𝜃𝑒𝑘}(𝑒,𝑘)∈× and let

�̃�𝐾 ≡

{

𝜃 ∶
∑

𝑒∈
𝜃𝑒𝑘 = 1 and 𝜃𝑒𝑘 ≥ 0 ∀(𝑒, 𝑘) ∈  ×

}

.

Then, we can formulate the following finite-dimensional LP:

𝜏𝐾 = max
𝜃∈𝛩𝐾

∑

(𝑘,𝑤)∈×

{

∑

𝑒∶𝑦(1,𝑤)=1
𝜃𝑒𝑘�̃�

1
𝑘 (𝑤) −

∑

𝑒∶𝑦(0,𝑤)=1
𝜃𝑒𝑘�̃�

0
𝑘 (𝑤)

}

(B.10)

𝜏𝐾 = min
𝜃∈𝛩𝐾

∑

(𝑘,𝑤)∈×

{

∑

𝑒∶𝑦(1,𝑤)=1
𝜃𝑒𝑘�̃�

1
𝑘 (𝑤) −

∑

𝑒∶𝑦(0,𝑤)=1
𝜃𝑒𝑘�̃�

0
𝑘 (𝑤)

}

(B.11)

ubject to

𝐸
|

|

|

|

|

|

∑

𝑒∶𝑦(𝑑,𝑤)=1

∑

𝑘∈
𝜃𝑒𝑘𝛿

𝑑
𝑘 (𝑧,𝑋) − 𝑝(1, 𝑑|𝑧,𝑤,𝑋)

|

|

|

|

|

|

= 0 ∀(𝑑, 𝑧,𝑤) ∈ {0, 1} × × . (B.12)

Later, we want to introduce additional constraints from some identifying assumptions:

𝑅1𝑞 = 𝑎1, (B.13)

𝑅2𝑞 ≤ 𝑎2. (B.14)

For the equality restrictions, we can use the same approach that transforms (B.6). For the inequality restrictions (B.14), we can
allow any identifying assumptions for which 𝑅2 is a matrix rather than an operator:

Assumption MAT. 𝑅2 is a dim(𝑎2) × dim(𝑞) matrix.

Assumptions M and C and the unconditional version of Assumption MTS satisfy this condition.

B.4. Estimation and inference

Although the paper’s main focus is identification, we briefly discuss estimation and inference. Assume a random sample
of {𝑌𝑖, 𝐷𝑖, 𝑍𝑖,𝑊𝑖, 𝑋𝑖}𝑁𝑖=1. The estimation of the bounds characterized by the LP (LP1)–(LP3) is straightforward by replacing the
population objects (𝛾𝑑𝑘 , 𝛿

𝑑
𝑘 , 𝑝) with their sample counterparts (�̂�𝑑𝑘 , 𝛿

𝑑
𝑘 , �̂�). To account for the statistical error arising from estimation

based on the finite sample, we replace ∞-LP3 with a tuned constraint:

‖�̂�0𝑞 − �̂�‖ ≤ inf
𝑞∈

‖�̂�0𝑞 − �̂�‖ + 𝜅.

Here 𝜅 is a tuning parameter selected by the researchers. In the finite-dimensional LP, to be more specific, we apply the Euclidean
norm and replace (LP3) by

√

√

√

√

√

∑

𝑧,𝑤,𝑥

(

∑

𝑒∶𝑦(𝑑,𝑤)=1

∑

𝑘∈
𝜃𝑒,𝑥𝑘 𝛿𝑑𝑘 (𝑧, 𝑥) − �̂�(1, 𝑑|𝑧,𝑤, 𝑥)

)2

≤

inf
𝜃∈𝛩𝑘

√

√

√

√

√

∑

𝑧,𝑤,𝑥

(

∑

𝑒∶𝑦(𝑑,𝑤)=1

∑

𝑘∈
𝜃𝑒,𝑥𝑘 𝛿𝑑𝑘 (𝑧, 𝑥) − �̂�(1, 𝑑|𝑧,𝑤, 𝑥)

)2

+ 𝜅.

With continuous 𝑌 in (7.6)–(7.8), we replace (7.8) with (a slack version of) its sample counterparts:

1
𝑁

𝑁
∑

𝑖=1

|

|

|

|

|

|

∑

𝒌∈5

𝜃𝑥𝒌�̂�
𝑑
𝒌 (𝑌𝑖, 𝑍𝑖, 𝑋𝑖) − �̂�(𝑌𝑖, 𝑑|𝑍𝑖,𝑊𝑖, 𝑋𝑖)

|

|

|

|

|

|

≤ 𝜂,

where �̂�(𝑦, 𝑑|𝑧,𝑤, 𝑥) is some preliminary estimate of 𝜋(𝑦, 𝑑|𝑧,𝑤, 𝑥) and 𝜂 is another slackness parameter. Since 𝜂 takes into account
the error from the finite sample, there is no need to introduce an additional tuning parameter to account for the estimation error.
A similar idea applies to the case with continuous 𝑋 in (B.10)–(B.12).

It is important to construct a confidence set for our target parameter or its bounds in order to account for the sampling variation in
26

measuring treatment effectiveness. It will also be interesting to develop a procedure to conduct a specification test for the identifying
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assumptions discussed in Section 6. The problem of statistical inference when the identified set is constructed via linear programming
has been studied in, e.g., Deb et al. (2023), Mogstad et al. (2018), Hsieh et al. (2022), Torgovitsky (2019a) and Fang et al. (2023).
Among these papers, Mogstad et al. (2018)’s setting is closest to our setting with discrete variables, and their inference procedure
can be directly adapted to our problem. Instead of repeating their result here, we only briefly discuss the procedure.

Recall 𝑞(𝑢) ≡ {𝑞(𝑒|𝑢, 𝑥)}𝑒∈ ,𝑥∈ is the latent distribution and 𝑝 ≡ {𝑝(1, 𝑑|𝑧, 𝑥)}𝑑,𝑧,𝑥 is the distribution of the data, and 𝑅𝜔, 𝑅0, 𝑅1,
and 𝑅2 denote the linear operators of 𝑞(⋅) that correspond to the target and constraints. Consider the following hypotheses:

𝐻0 ∶ 𝑝 ∈ 0, 𝐻1 ∶ 𝑝 ∈ ∖0,

where

0 ≡ {𝑝 ∈  ∶ 𝑅𝑞 = 𝑎 for some 𝑞 ∈ }

and

𝑅 ≡ (𝑅′
𝜔, 𝑅

′
0, 𝑅

′
1, 𝑅

′
2)

′,

𝑎 ≡ (𝜏, 𝑝′, 𝑎′1, 𝑎
′
2)

′.

Suppose �̂� and �̂� are sample counterparts of 𝑅 and 𝑎. Then, a minimum distance test statistic can be constructed as

𝑇𝑁 (𝜏) ≡ inf
𝑞∈𝐾

√

𝑁 ‖

‖

‖

�̂�𝑞 − �̂�‖‖
‖

.

Similar to Mogstad et al. (2017), 𝑇𝑁 (𝜏) is the solution to a convex optimization problem that can be reformulated as an LP using
duality. A (1 − 𝛼)-confidence set for the target parameter 𝜏 can be constructed by inverting the test:

𝐶𝑆1−𝛼 ≡ {𝜏 ∶ 𝑇𝑁 (𝜏) ≤ 𝑐1−𝛼}

where 𝑐1−𝛼 is the critical value for the test. The resulting object is of independent interest, and it can further be used to conduct
specification tests. The large sample theory for 𝑇𝑁 (𝜏), as well as a bootstrap procedure to calculate 𝑐1−𝛼 , will directly follow according
to Mogstad et al. (2017), which is omitted for succinctness.

When 𝑌 or 𝑋 is continuously distributed, then the resulting LP is semi-infinite dimensional. In this case, the inference procedure
by Chernozhukov et al. (2013) may be applied. In this case, the estimation of the bounds can be conducted within the framework.

Appendix C. Proofs

C.1. Proof of Lemma 3.1

Fix (𝑑, 𝑧,𝑤, 𝑥). By ∑

𝑒∈ 𝑞(𝑒|𝑢, 𝑥) = 1 for 𝑞 ∈ , we have

1 =
∑

𝑒∈
𝑞(𝑒|𝑢, 𝑥) =

∑

𝑒∶𝑦(𝑑,𝑤)=1
𝑞(𝑒|𝑢, 𝑥) +

∑

𝑒∶𝑦(𝑑,𝑤)=0
𝑞(𝑒|𝑢, 𝑥).

Then, in (∞-LP3), the constraint with 𝑝(0, 𝑑|𝑧,𝑤, 𝑥) can be written as

𝑝(0, 𝑑|𝑧,𝑤, 𝑥) = ∫ 𝑑
𝑧,𝑥

∑

𝑒∶𝑦(𝑑,𝑤)=0
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢 = ∫ 𝑑

𝑧,𝑥

{

1 −
∑

𝑒∶𝑦(𝑑,𝑤)=1
𝑞(𝑒|𝑢, 𝑥)

}

𝑑𝑢

= Pr[𝐷 = 𝑑|𝑍 = 𝑧,𝑊 = 𝑤,𝑋 = 𝑥] − ∫ 𝑑
𝑧,𝑥

∑

𝑒∶𝑦(𝑑,𝑤)=1
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢.

Then by rearranging terms, this constraint becomes

𝑝(1, 𝑑|𝑧,𝑤, 𝑥) = ∫ 𝑑
𝑧,𝑥

∑

𝑒∶𝑦(𝑑,𝑤)=1
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢,

since Pr[𝐷 = 𝑑|𝑍 = 𝑧,𝑊 = 𝑤,𝑋 = 𝑥]−𝑝(0, 𝑑|𝑧,𝑤, 𝑥) = 𝑝(1, 𝑑|𝑧,𝑤, 𝑥). Therefore, the constraint with 𝑝(0, 𝑑|𝑧,𝑤, 𝑥) does not contribute
to the restrictions imposed by (∞-LP3) and 𝑞 ∈ . □

C.2. Proof of Theorem 5.1

As 𝑌 ∈ {0, 1}, 𝑓 can be rewritten as:

𝑓 =
{

𝑚 = (𝑚0, 𝑚1) ∶ 𝑚𝑑 (𝑢, 𝑥) =
∑

𝑒∶𝑦(𝑑)=𝑦
𝑞(𝑒|𝑢, 𝑥), 𝑑 = {0, 1}, 𝑞 ∈ 𝑓

}

.

From (∞-LP3), we can write 𝐸[𝑌 |𝐷 = 0, 𝑧, 𝑥] in terms of 𝑞(𝑒|𝑢, 𝑥) as below:

𝐸[𝑌 |𝐷 = 0, 𝑧, 𝑥]=Pr [𝑌 = 1|𝐷 = 0, 𝑧, 𝑥] =
Pr [𝑌 = 1, 𝐷 = 0|𝑧, 𝑥]
27

Pr [𝐷 = 0|𝑧, 𝑥]
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f
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P

w

t

= 1
1 − 𝑃 (𝑧, 𝑥)

∑

𝑒∶𝑦(0)=1
∫

1

𝑃 (𝑧,𝑥)
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢

= 1
1 − 𝑃 (𝑧, 𝑥) ∫

1

𝑃 (𝑧,𝑥)

∑

𝑒∶𝑦(0)=1
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢 (C.1)

for ∀(𝑧, 𝑥) ∈  ×  . Then, for (𝑚0, 𝑚1) ∈ 𝑓

𝐸[𝑌 |𝐷 = 0, 𝑍,𝑋] = 1
1 − 𝑃 (𝑍,𝑋) ∫

1

𝑃 (𝑍,𝑋)
𝑚0(𝑢,𝑋)𝑑𝑢

almost surely. Symmetrically,

𝐸[𝑌 |𝐷 = 1, 𝑍,𝑋] = 1
𝑃 (𝑍,𝑋) ∫

𝑃 (𝑍,𝑋)

0
𝑚1(𝑢,𝑋)𝑑𝑢

lmost surely. Therefore, 𝑓 ⊆𝑖𝑑 .
Now suppose 𝑚 ∈ 𝑖𝑑 . By (5.1) and (C.1), for ∀𝑧, 𝑥 in a set of positive measure (and symmetrically for the other equation),

1
1 − 𝑃 (𝑧, 𝑥) ∫

1

𝑃 (𝑧,𝑥)
𝑚0(𝑢, 𝑥)𝑑𝑢 =

1
1 − 𝑃 (𝑧, 𝑥)

∑

𝑒∶𝑦(0)=1
∫

1

𝑃 (𝑧,𝑥)
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢 (C.2)

1
𝑃 (𝑧, 𝑥) ∫

1

𝑃 (𝑧,𝑥)
𝑚1(𝑢, 𝑥)𝑑𝑢 =

1
𝑃 (𝑧, 𝑥)

∑

𝑒∶𝑦(1)=1
∫

𝑃 (𝑧,𝑥)

0
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢 (C.3)

herefore, we need to find some 𝑞(𝑒|𝑢, 𝑥) ∈ 𝑓 such that (C.2) and (C.3) are satisfied. Recall 𝑒 ≡ (𝑦(0), 𝑦(1)). We construct 𝑞(𝑒|𝑢, 𝑥)
s

𝑞(𝑒|𝑢, 𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − 𝑚𝑎𝑥{𝑚0(𝑢, 𝑥), 𝑚1(𝑢, 𝑥)}, 𝑒 = (0, 0)
𝑚𝑎𝑥{𝑚1(𝑢, 𝑥) − 𝑚0(𝑢, 𝑥), 0}, 𝑒 = (0, 1)
𝑚𝑎𝑥{𝑚0(𝑢, 𝑥) − 𝑚1(𝑢, 𝑥), 0}, 𝑒 = (1, 0)
𝑚𝑖𝑛{𝑚0(𝑢, 𝑥), 𝑚1(𝑢, 𝑥)}, 𝑒 = (1, 1)

(C.4)

y the property of binary 𝑌 , it can be proved that the constructed 𝑞(𝑒|𝑢, 𝑥) in (C.4) is a function in 𝑄𝑓 and also satisfies (C.2) and
C.3) following the fact that ∀(𝑢, 𝑥) ∈  × 

𝑚0(𝑢, 𝑥) =
∑

𝑒∶𝑦(0)=1
𝑞(𝑒|𝑢, 𝑥),

𝑚1(𝑢, 𝑥) =
∑

𝑒∶𝑦(1)=1
𝑞(𝑒|𝑢, 𝑥).

herefore, 𝑖𝑑 ⊆𝑓 . □

.3. Proof of Theorem 5.2

For this proof, we introduce a proposition adapting a result of Hafsa and Mandallena (2003). Let 𝑞 ∶  →  be a measurable
unction with  compact in R𝐿 and  ⊂ R𝐿 and let ℎ ∶  ×  → R ∪ {−∞} ∪ {+∞} be a continuous function. Let 𝐶𝑐 ( ) be the
pace of all continuous functions from  whose support is compact. Finally, let (ℎ) be the set of measurable function 𝑞 ∶  → 
uch that ℎ(⋅, 𝑞(⋅)) ∈ 𝐿1( , 𝜇).

roposition C.1. Let  ⊂ 𝐿2( , 𝜇). If  ⊂ 𝐶𝑐 ( ),  ∩(ℎ) ≠ ∅, and ℎ is convex in its second variable, then

inf
𝑞∈∫

ℎ(𝑢, 𝑞(𝑢))𝑑𝜇(𝑢) = ∫
inf

𝜉∈𝛤 (𝑢)
ℎ(𝑢, 𝜉)𝑑𝜇(𝑢)

ith 𝛤 (𝑢) ≡ cl{𝑞(𝑢) ∶ 𝑞 ∈  ∩(ℎ)} 𝜇-a.e.

This proposition is immediate from Corollary 5.1 in Hafsa and Mandallena (2003) because 𝐶𝑐 ( ) is normally decomposable and
he 𝜇-essential supremum 𝛤 of a subset  ⊂ 𝐿2( , 𝜇) satisfies 𝛤 (𝑢) = cl{𝑞(𝑢) ∶ 𝑞 ∈  ∩(ℎ)} 𝜇-a.e.21

We prove Theorem 5.2 by showing (i) 𝑓 ⊆𝑖𝑑 and (ii) 𝑖𝑑 ⊈𝑓 . The proof of (i) is straightforward. For any (𝑚0, 𝑚1) ∈ 𝑓 ,

𝑚0(𝑢, 𝑥) =
∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
𝑞(𝑒|𝑢, 𝑥),

𝑚1(𝑢, 𝑥) =
∑

𝑦∈
𝑦

∑

𝑒∶𝑦(1)=𝑦
𝑞(𝑒|𝑢, 𝑥),∀(𝑢, 𝑥) ∈  × 

21 For the definition of a normally decomposable set and 𝜇-essential supremum, we refer the reader to Hafsa and Mandallena (2003).
28
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𝑅

for some 𝑞(𝑒|𝑢, 𝑥) ∈ 𝑓 . Then, for any (𝑧, 𝑥) ∈  ×  ,

1
1 − 𝑃 (𝑧, 𝑥) ∫

1

𝑃 (𝑧,𝑥)
𝑚0(𝑢, 𝑥)𝑑𝑢 =

1
1 − 𝑃 (𝑧, 𝑥)

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
∫

1

𝑃 (𝑧,𝑥)
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢,

1
𝑃 (𝑧, 𝑥) ∫

𝑃 (𝑧,𝑥)

0
𝑚1(𝑢, 𝑥)𝑑𝑢 =

1
𝑃 (𝑧, 𝑥)

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(1)=𝑦
∫

𝑃 (𝑧,𝑥)

0
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢.

y definition of 𝑓 , it holds that

∑

𝑒∶𝑦(0)=𝑦
∫

1

𝑃 (𝑧,𝑥)
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢 = 𝑝(𝑦, 0|𝑧, 𝑥) = Pr[𝑌 = 𝑦|𝐷 = 0, 𝑧, 𝑥] (1 − 𝑃 (𝑧, 𝑥)) ,

∑

𝑒∶𝑦(1)=𝑦
∫

1

𝑃 (𝑧,𝑥)
𝑞(𝑒|𝑢, 𝑥)𝑑𝑢 = 𝑝(𝑦, 1|𝑧, 𝑥) = Pr[𝑌 = 𝑦|𝐷 = 1, 𝑧, 𝑥]𝑃 (𝑧, 𝑥),

hich implies

1
1 − 𝑃 (𝑍,𝑋) ∫

1

𝑃 (𝑍,𝑋)
𝑚0(𝑢,𝑋)𝑑𝑢 = 𝐸 [𝑌 |𝐷 = 0, 𝑍,𝑋] ,

1
𝑃 (𝑍,𝑋) ∫

𝑃 (𝑍,𝑋)

0
𝑚1(𝑢,𝑋)𝑑𝑢 = 𝐸 [𝑌 |𝐷 = 1, 𝑍,𝑋] ,

almost surely. Therefore, we conclude that 𝑓 ⊆𝑖𝑑 .
Next, we prove (ii) by showing that there exists some 𝑚𝑑 ∈ 𝑖𝑑 , 𝑚𝑑 ∉ 𝑓 . Without loss of generality, we pick 𝑑 = 0 and

construct a 𝑚0(𝑢, 𝑥) function such that 𝑚0 ∈ 𝑖𝑑 and 𝑚0 ∉ 𝑓 , or equivalently, ∀𝑞 ∈ 𝑓 , ∃𝑥 ∈  such that

𝑚0(𝑢, 𝑥) ≠
∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
𝑞(𝑒|𝑢, 𝑥)

or 𝑢 lying in some set 𝐴 ⊆ [0, 1] with non-zero measure.
Given  is discrete and  is compact, let (𝑧∗, 𝑥∗) ∈  ×  be such that 𝑃 (𝑧∗, 𝑥∗) ≥ 𝑃 (𝑧, 𝑥) ∀(𝑧, 𝑥) ∈  ×  . For example, let

𝑧∗, 𝑥∗) = argmax𝑃 (𝑧, 𝑥) by Assumption EC(i). Define ̂ as

̂ =

⎧

⎪

⎨

⎪

⎩

argsup
𝑞∈𝑓

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)
𝑞(𝑒|𝑢, 𝑥∗)𝑑𝑢

⎫

⎪

⎬

⎪

⎭

.

y Assumption EC(ii) and 𝑞 being a function on a compact set, 𝑓 is uniformly equicontinuous. Also, {𝑞(𝑢) ∶ 𝑞 ∈ 𝑓 } is relatively
ompact in [0, 1] for all 𝑢.22 Therefore, 𝑓 is relatively compact (Simon, 1986). Moreover, 𝑓 is closed by Assumption EC(ii),
rzelà–Ascoli theorem, and Lebesgue’s dominated convergence theorem.23 Therefore 𝑓 is compact. Finally, the integral operator
hown in ̂ is continuous in 𝑞. Therefore, there exists 𝑞 ∈ 𝑓 that achieves the supremum, or equivalently 𝑞 ∈ ̂.

Next, since  = {𝑦1,… , 𝑦𝐿} with 𝐿 ≥ 3, there exist at least two non-zero values in  , which we denote as 𝑦∗ and 𝑦†. We can
hen construct

𝜓(𝑒, 𝑢) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑠𝑔𝑛(𝑦†)⋅𝑦†
(1−𝑃 (𝑧∗ ,𝑥∗))⋅𝐿 , 𝑒 ∈ {𝑒 ∈  ∶𝑦(0) = 𝑦∗} , 𝑢 ∈ [𝑃 (𝑧∗, 𝑥∗), 1+𝑃 (𝑧

∗ ,𝑥∗)
2 ]

− 𝑠𝑔𝑛(𝑦†)⋅𝑦∗
(1−𝑃 (𝑧∗ ,𝑥∗))⋅𝐿 , 𝑒 ∈

{

𝑒 ∈  ∶𝑦(0) = 𝑦†
}

, 𝑢 ∈ [ 1+𝑃 (𝑧
∗ ,𝑥∗)

2 , 1]

0, otherwise,

where 𝑠𝑔𝑛(𝑦) = 1 if 𝑦 > 0 and −1 if 𝑦 < 0. We construct 𝑚0(𝑢, 𝑥) as:

𝑚0(𝑢, 𝑥) =
∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
𝑞(𝑒|𝑢, 𝑥) + 𝜓(𝑒, 𝑢).

Then we can show 𝑚0(𝑢, 𝑥) ∈ 𝑖𝑑 as follows: ∀(𝑧, 𝑥) ∈  ×  ,

∫

1

𝑃 (𝑧,𝑥)
𝑚0(𝑢, 𝑥)𝑑𝑢 =

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
∫

1

𝑃 (𝑧,𝑥)
{𝑞(𝑒|𝑢, 𝑥) + 𝜓(𝑒, 𝑢)}𝑑𝑢

= 𝐸[𝑌 |𝐷 = 0, 𝑧, 𝑥] (1 − 𝑃 (𝑧, 𝑥)) + 𝑦∗ ⋅
∑

𝑒∶𝑦(0)=𝑦∗
𝑠𝑔𝑛(𝑦†) ⋅ 𝑦†∕𝐿

22 A subset of a topological space is relatively compact if its closure is compact.
23 This is because of the following: 𝑓 ⊂ 𝐿2([0, 1]) is equicontinuous and uniformly bounded and thus, by Arzelà–Ascoli theorem, for any {𝑞𝑛} such that

‖

‖

𝑞𝑛 − 𝑞‖‖2 → 0 there exists a subsequence {𝑞𝑛𝑘 } such that ‖

‖

‖

𝑞𝑛𝑘 − 𝑞
‖

‖

‖∞
→ 0. Then, 𝑞𝑛𝑘 (𝑢) → 𝑞(𝑢) ∀𝑢. Note that 0 ≤ 𝑞(𝑒|⋅, 𝑥) ≤ 1 and ∑

𝑒 𝑞(𝑒|⋅, 𝑥) = 1 trivially hold
s 𝑞𝑛𝑘 ∈ 𝑓 ⊂ . Also 𝑞 is continuous as 𝑞𝑛𝑘 is continuous and uniformly converges to 𝑞. Finally, since 𝑞𝑛𝑘 ≤ 1, by the dominated convergence theorem,
𝑞 = 𝑅 lim 𝑞 = lim 𝑅 𝑞
29

0 0 𝑘 𝑛𝑘 𝑘 0 𝑛𝑘 = 𝑝. Therefore, 𝑞 ∈ 𝑓 .
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− 𝑦† ⋅
∑

𝑒∶𝑦(0)=𝑦†
𝑠𝑔𝑛(𝑦†) ⋅ 𝑦∗∕𝐿

= 𝐸[𝑌 |𝐷 = 0, 𝑧, 𝑥] (1 − 𝑃 (𝑧, 𝑥)) + 𝑠𝑔𝑛(𝑦†) ⋅ 𝑦† ⋅ 𝑦∗ − 𝑠𝑔𝑛(𝑦†) ⋅ 𝑦† ⋅ 𝑦∗

= 𝐸[𝑌 |𝐷 = 0, 𝑧, 𝑥] (1 − 𝑃 (𝑧, 𝑥)) ,

here the second equality holds as 𝑞 ∈ 𝑓 (𝑥∗), the third equality is by the definition of 𝜓 and 𝑃 (𝑧, 𝑥) ≤ 𝑃 (𝑧∗, 𝑥∗) ∀(𝑧, 𝑥) and the
ourth equality follows by the fact that for any 𝑦 ∈  , the cardinality of set

{

𝑒 ∈  ∶ 𝑔𝑒(0) = 𝑦
}

is the same as || = 𝐿. Therefore,
0(𝑢, 𝑥) satisfies (5.1) and thus 𝑚0(𝑢, 𝑥) ∈ 𝑖𝑑 .

Next we show 𝑚0(𝑢, 𝑥) ∉ 𝑓 . Note that for 𝑥 = 𝑥∗

∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)
𝑚0(𝑢, 𝑥∗)𝑑𝑢 =

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)
𝑞(𝑒|𝑢, 𝑥∗)𝑑𝑢 +

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)
𝜓(𝑒, 𝑢)𝑑𝑢

= sup
𝑞∈𝑓

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)
𝑞(𝑒|𝑢, 𝑥∗)𝑑𝑢 + 1

2
𝑠𝑔𝑛(𝑦†)𝑦†

> sup
𝑞∈𝑓

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)
𝑞(𝑒|𝑢, 𝑥∗)𝑑𝑢.

hen, we want to show that, for any 𝑞 ∈ 𝑓

sup
𝑞∈𝑓

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)
𝑞(𝑒|𝑢, 𝑥∗)𝑑𝑢 ≥ ∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
𝑞(𝑒|𝑢, 𝑥∗)𝑑𝑢. (C.5)

f this inequality is true, then we can conclude that, for any 𝑞 ∈ 𝑓

∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)

[

𝑚0(𝑢, 𝑥∗) −
∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
𝑞(𝑒|𝑢, 𝑥∗)

]

𝑑𝑢 > 0.

n other words, there exists some 𝐴 ⊆ [𝑃 (𝑧∗, 𝑥∗), 1+𝑃 (𝑧
∗ ,𝑥∗)

2 ] with non-zero measure such that for 𝑢 ∈ 𝐴 and for any 𝑞 ∈ 𝑓

𝑚0(𝑢, 𝑥∗) >
∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
𝑞(𝑒|𝑢, 𝑥∗),

hich implies that 𝑚0 ∉ 𝑓 . Therefore, we can conclude 𝑖𝑑 ⊈𝑓 .
It remains to show (C.5). It is convenient to define 𝑞(𝑢; 𝑥) ≡ {𝑞(𝑒|𝑢, 𝑥)}𝑒∈ and

(𝑥) ≡ {𝑞(⋅; 𝑥) ∶
∑

𝑒∈
𝑞(𝑒|𝑢, 𝑥) = 1 and 𝑞(𝑒|𝑢, 𝑥) ≥ 0 ∀(𝑒, 𝑢)},

𝑓 (𝑥) ≡
{

𝑞(⋅; 𝑥) ∈ 𝐿2 ∶ 𝑞(⋅; 𝑥) ∈ (𝑥) and satisfies Eq. (∞-LP3) for given 𝑥
}

,

nd simplify notation as 𝑞∗(𝑢) ≡ 𝑞(𝑢; 𝑥∗) ≡ {𝑞(𝑒|𝑢, 𝑥∗)}𝑒∈ with 𝑞∗𝑒 (𝑢) ≡ 𝑞(𝑒|𝑢, 𝑥∗) and ∗
𝑓 ≡ 𝑓 (𝑥∗). Then,

sup
𝑞∈𝑓

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)
𝑞(𝑒|𝑢, 𝑥∗)𝑑𝑢 ≥ sup

𝑞∗∈∗
𝑓

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)
𝑞(𝑒|𝑢, 𝑥∗)𝑑𝑢.

or the right-hand side term in the inequality, we want to use Proposition C.1 to interchange the supremum and the integral. In the
roposition, let 𝑞∗(⋅) ∶  →  with  = [𝑃 (𝑧∗, 𝑥∗), (1 + 𝑃 (𝑧∗, 𝑥∗))∕2] and  = [0, 1]𝐿4 and ℎ(𝑢, 𝑞∗(𝑢)) = −

∑

𝑦∈ 𝑦
∑

𝑒∶𝑦(0)=𝑦 𝑞
∗
𝑒 (𝑢). First,

ince 𝑞∗ is assumed to be continuous (Assumption EC), ∗
𝑓 ⊂ 𝐶𝑐 ([0, 1]). Next, note that −∑

𝑦∈ 𝑦
∑

𝑒∶𝑦(0)=𝑦 𝑞
∗
𝑒 (⋅) ∈ 𝐿1( , 𝐹 ) where 𝐹

s the CDF of 𝑈 (i.e., an identity function) because 𝑞∗𝑒 (⋅) ∈ 𝐿1( , 𝐹 ). Therefore, ∗
𝑓 ∩(ℎ) = ∗

𝑓 . Finally, ℎ is linear and thus trivially
onvex. Therefore, by Proposition C.1, 𝛤 (𝑢) = cl{𝑞∗(𝑢) ∶ 𝑞∗ ∈ ∗

𝑓 } and

sup
𝑞∗∈∗

𝑓
∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
𝑞∗𝑒 (𝑢)𝑑𝑢 = ∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
sup{𝑞∗(𝑢) ∶ 𝑞∗ ∈ ∗

𝑓 }𝑑𝑢.

ut because, for any given 𝑢, sup{𝑞∗(𝑢) ∶ 𝑞∗ ∈ ∗
𝑓 } ≥ 𝑞∗(𝑢) for any 𝑞∗ ∈ ∗

𝑓 , we have

∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
sup{𝑞∗(𝑢) ∶ 𝑞∗ ∈ ∗

𝑓 }𝑑𝑢 ≥ ∫

1+𝑃 (𝑧∗ ,𝑥∗)
2

𝑃 (𝑧∗ ,𝑥∗)

∑

𝑦∈
𝑦

∑

𝑒∶𝑦(0)=𝑦
𝑞∗(𝑢)𝑑𝑢

for any 𝑞∗ ∈ ∗
𝑓 . This proves the desired inequality (C.5). □

C.4. Proof of Lemma 6.1

Let 𝛥𝑤,𝑤′ ≡ 𝑌 (1, 𝑤) − 𝑌 (0, 𝑤′). We first prove (i), namely the identifiability of 𝜏𝐿𝐴𝑇𝐸 (𝑤,𝑤′). Observe that

𝐸[𝛥 |𝑃 (0) ≤ 𝑈 ≤ 𝑃 (1)]
30

𝑤,𝑤′
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= 𝐸[𝛥𝑤,𝑤|𝑃 (0) ≤ 𝑈 ≤ 𝑃 (1)] + 𝐸[𝑌 (0, 𝑤) − 𝑌 (0, 𝑤′)|𝑃 (0) ≤ 𝑈 ≤ 𝑃 (1)]

he first term can be identified as

𝐸[𝛥𝑤,𝑤|𝑃 (0) ≤ 𝑈 ≤ 𝑃 (1)] =
𝐸[𝑌 |𝑍 = 1,𝑊 = 𝑤] − 𝐸[𝑌 |𝑍 = 0,𝑊 = 𝑤]

𝑃 (1) − 𝑃 (0)
nder Assumptions EX and SEL(a) and by a simple extension of the proof in Imbens and Angrist (1994). For the second term, it
uffices to identify 𝐸[𝑌 (0, 𝑤)|𝑃 (0) ≤ 𝑈 ≤ 𝑃 (1)] for any given 𝑤. Note that

(1 − 𝑃 (𝑧))𝐸[𝑌 |𝐷 = 0, 𝑍 = 𝑧,𝑊 = 𝑤] = (1 − 𝑃 (𝑧))𝐸[𝑌 (0, 𝑤)|𝑈 > 𝑃 (𝑧)]

= ∫

1

𝑃 (𝑧)
𝐸[𝑌 (0, 𝑤)|𝑈 = 𝑢]𝑑𝑢

y Assumptions EX and SEL(a). Therefore,

𝐸[𝑌 (0, 𝑤)|𝑃 (0) ≤ 𝑈 ≤ 𝑃 (1)]

= 1
𝑃 (1) − 𝑃 (0) ∫

𝑃 (1)

𝑃 (0)
𝐸[𝑌 (0, 𝑤)|𝑈 = 𝑢]𝑑𝑢

=
(1 − 𝑃 (0))𝐸[𝑌 |𝐷 = 0, 𝑍 = 0,𝑊 = 𝑤] − (1 − 𝑃 (1))𝐸[𝑌 |𝐷 = 0, 𝑍 = 1,𝑊 = 𝑤]

𝑃 (1) − 𝑃 (0)
.

We prove (ii) for Assumption U. Let 𝛥𝑤 ≡ 𝛥𝑤,𝑤 ≡ 𝑌 (1, 𝑤) − 𝑌 (0, 𝑤). Suppose 𝜏𝐿𝐴𝑇𝐸 (𝑤,𝑤) > 0. Then, because 𝑃 (1) − 𝑃 (0) > 0,

0 < ∫

𝑃 (1)

𝑃 (0)
𝐸[𝛥𝑤|𝑈 = 𝑢]𝑑𝑢

= ∫

𝑃 (1)

𝑃 (0)
{𝐸[𝛥𝑤|𝛥𝑤 > 0, 𝑈 = 𝑢] Pr[𝛥𝑤 > 0|𝑈 = 𝑢]

+ 𝐸[𝛥𝑤|𝛥𝑤 ≤ 0, 𝑈 = 𝑢] Pr[𝛥𝑤 ≤ 0|𝑈 = 𝑢]}𝑑𝑢. (C.6)

hen it cannot be that Pr[𝛥𝑤 ≤ 0|𝑈 = 𝑢] = 1 ∀𝑢 because 𝐸[𝛥𝑤|𝛥𝑤 ≤ 0, 𝑈 = 𝑢] ≤ 0 ∀𝑢, which contradicts 𝜏𝐿𝐴𝑇𝐸 (𝑤,𝑤) > 0. A symmetric
rgument proves (ii) for Assumption U∗ by using (𝑤,𝑤′) instead of (𝑤,𝑤). To prove (iii), note that (C.6) yields

∫

𝑃 (1)

𝑃 (0)

{

Pr[𝛥𝑤 = 1|𝑈 = 𝑢] − Pr[𝛥𝑤 = −1|𝑈 = 𝑢]
}

𝑑𝑢

ecause 𝑌 (𝑑,𝑤) ∈ {0, 1}. Then it cannot be that Pr[𝛥𝑤 ≥ 0|𝑈 = 𝑢] ≤ Pr[𝛥𝑤 ≤ 0|𝑈 = 𝑢] ∀𝑢 because this inequality is equivalent to
r[𝛥𝑤 = 1|𝑈 = 𝑢] ≤ Pr[𝛥𝑤 = −1|𝑈 = 𝑢] as Pr[𝛥𝑤 = 0|𝑈 = 𝑢] cancels out, which then contradicts 𝜏𝐿𝐴𝑇𝐸 (𝑤,𝑤) > 0. The proof with
ssumptions SEL(b) and EX(b) is analogous, and thus omitted. □

.5. Proof of Theorem 6.1

Suppress 𝑋 for simplicity. In proving the claim of the theorem for 𝑊 , we fix 𝑍 = 𝑧. We first prove with Case (a). To simplify
otation, define 𝑒 be the decimal transform of 𝑒 ≡ (𝑦(0, 0), 𝑦(0, 1), 𝑦(1, 0), 𝑦(1, 1)) defined in the text, where its value corresponds to

‘#’’ in Table 1. Define the r.v. 𝜖 accordingly. Also, let 𝑞(𝑒1,… , 𝑒𝐽 |𝑢) ≡ Pr[𝜖 ∈ {𝑒1,… , 𝑒𝐽 }|𝑢] =
∑𝐽
𝑗=1 𝑞(𝑒𝑗 |𝑢). Based on Table 1, we can

asily derive

𝑝(1, 1|𝑧, 1) = ∫

𝑃 (𝑧)

0

∑

𝑒∶𝑦(1,1)=1
𝑞(𝑒|𝑢)𝑑𝑢 = ∫

𝑃 (𝑧)

0
𝑞(9,… , 16|𝑢)𝑑𝑢,

𝑝(1, 1|𝑧, 0) = ∫

𝑃 (𝑧)

0

∑

𝑒∶𝑦(1,0)=1
𝑞(𝑒|𝑢)𝑑𝑢 = ∫

𝑃 (𝑧)

0
𝑞(5,… , 8, 13,… , 16|𝑢)𝑑𝑢,

𝑝(1, 0|𝑧, 1) = ∫

1

𝑃 (𝑧)

∑

𝑒∶𝑦(0,1)=1
𝑞(𝑒|𝑢)𝑑𝑢 = ∫

1

𝑃 (𝑧)
𝑞(3, 4, 7, 8, 11, 12, 15, 16|𝑢)𝑑𝑢,

𝑝(1, 0|𝑧, 0) = ∫

1

𝑃 (𝑧)

∑

𝑒∶𝑦(0,0)=1
𝑞(𝑒|𝑢)𝑑𝑢 = ∫

1

𝑃 (𝑧)
𝑞(2, 4, 6, 8, 10, 12, 14, 16|𝑢)𝑑𝑢.

efine the operator

𝑇 𝑑𝑧 𝑞
𝑒 ≡ ∫ 𝑑

𝑧

𝑞(𝑒|𝑢)𝑑𝑢.

hen, for the r.h.s. (𝑝11|𝑧1, 𝑝11|𝑧0, 𝑝10|𝑧1, 𝑝10|𝑧0)′ of the constraints in (LP3) that correspond to 𝑍 = 𝑧, the corresponding l.h.s. is

⎛

⎜

⎜

⎜

⎜

⎜

⎜

∫ 𝑃 (𝑧)0 𝑞(9,… , 16|𝑢)𝑑𝑢

∫ 𝑃 (𝑧)0 𝑞(5,… , 8, 13,… , 16|𝑢)𝑑𝑢

∫ 1
𝑃 (𝑧) 𝑞(3, 4, 7, 8, 11, 12, 15, 16|𝑢)𝑑𝑢
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

31

⎝

∫𝑃 (𝑧) 𝑞(2, 4, 6, 8, 10, 12, 14, 16|𝑢)𝑑𝑢⎠
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=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 𝑇 1
𝑧 𝑇 1

𝑧 𝑇 1
𝑧 𝑇 1

𝑧 𝑇 1
𝑧 𝑇 1

𝑧 𝑇 1
𝑧 𝑇 1

𝑧

0 0 0 0 𝑇 1
𝑧 𝑇 1

𝑧 𝑇 1
𝑧 𝑇 1

𝑧 0 0 0 0 𝑇 1
𝑧 𝑇 1

𝑧 𝑇 1
𝑧 𝑇 1

𝑧

0 0 𝑇 0
𝑧 𝑇 0

𝑧 0 0 𝑇 0
𝑧 𝑇 0

𝑧 0 0 𝑇 0
𝑧 𝑇 0

𝑧 0 0 𝑇 0
𝑧 𝑇 0

𝑧

0 𝑇 0
𝑧 0 𝑇 0

𝑧 0 𝑇 0
𝑧 0 𝑇 0

𝑧 0 𝑇 0
𝑧 0 𝑇 0

𝑧 0 𝑇 0
𝑧 0 𝑇 0

𝑧

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑞

≡ 𝑇 𝑞,

where 𝑇 is a matrix of operators implicitly defined and 𝑞(𝑢) ≡ (𝑞(1|𝑢),… ., 𝑞(16|𝑢)). Now for 𝑞 ∈ 𝐾 , define a 16𝐾-vector

𝜃 ≡
⎛

⎜

⎜

⎝

𝜃1

⋮
𝜃16

⎞

⎟

⎟

⎠

where, for each 𝑒 ∈ {1,… , 16}, 𝜃𝑒 ≡ (𝜃𝑒1,… , 𝜃𝑒𝐾 )
′. Similarly, let 𝑏(𝑢) ≡ (𝑏1(𝑢),… , 𝑏𝐾 (𝑢))′. Then, we have 𝑞(𝑒|𝑢) = 𝑏(𝑢)′𝜃𝑒. Let 𝐻 be a

16 × 16 diagonal matrix of 1’s and 0’s that imposes additional identifying assumptions on the outcome data-generating process. In
this proof, 𝐻 is used to incorporate Assumption R(i). Given 𝐻 , the constraints in (LP3) (that correspond to 𝑍 = 𝑧) can be written
as

𝑇𝐻𝑞 =
{

𝑇𝐻 ⊗ 𝑏′
}

𝜃 = (𝑝11|𝑧1, 𝑝11|𝑧0, 𝑝10|𝑧1, 𝑝10|𝑧0)′

for 𝑞 ∈ 𝐾 and 𝜃 ∈ 𝛩𝐾 .
Now, we prove the claim of the theorem. Suppose the claim is not true, i.e., the even rows are linearly dependent to odd rows

in 𝑇𝐻 . Given the form of 𝑇 , which has full rank under Assumption R(ii)(a), this linear dependence only occurs when 𝐻 is such
that 𝐻𝑗𝑗 = 1 for 𝑗 ∈ {1, 4, 13, 16} and 0 otherwise. But, according to Table 1, this implies that Pr[𝑌 (𝑑,𝑤) ≠ 𝑌 (𝑑,𝑤′)] = 0 for all 𝑑 and
𝑤 ≠ 𝑤′, which contradicts Assumption R(i). This proves the theorem for Case (a).

Now we move to prove the theorem for Case (b), analogous to the previous case. For every 𝑧, we can derive

𝑝(1, 1|𝑧, 1) = ∫

𝑃 (𝑧,1)

0

∑

𝑒∶𝑦(1,1)=1
𝑞(𝑒|𝑢)𝑑𝑢 = ∫

𝑃 (𝑧,1)

0
𝑞(9,… , 16|𝑢)𝑑𝑢,

𝑝(1, 1|𝑧, 0) = ∫

𝑃 (𝑧,0)

0

∑

𝑒∶𝑦(1,0)=1
𝑞(𝑒|𝑢)𝑑𝑢 = ∫

𝑃 (𝑧,0)

0
𝑞(5,… , 8, 13,… , 16|𝑢)𝑑𝑢,

𝑝(1, 0|𝑧, 1) = ∫

1

𝑃 (𝑧,1)

∑

𝑒∶𝑦(0,1)=1
𝑞(𝑒|𝑢)𝑑𝑢 = ∫

1

𝑃 (𝑧,1)
𝑞(3, 4, 7, 8, 11, 12, 15, 16|𝑢)𝑑𝑢,

𝑝(1, 0|𝑧, 0) = ∫

1

𝑃 (𝑧,0)

∑

𝑒∶𝑦(0,0)=1
𝑞(𝑒|𝑢)𝑑𝑢 = ∫

1

𝑃 (𝑧,0)
𝑞(2, 4, 6, 8, 10, 12, 14, 16|𝑢)𝑑𝑢.

Define

𝑇 𝑑𝑧,𝑤𝑞
𝑒 ≡ ∫ 𝑑

𝑧,𝑤

𝑞(𝑒|𝑢)𝑑𝑢

where  𝑑
𝑧,𝑤 can be analogously defined. Then,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∫ 𝑃 (𝑧,𝑤)0 𝑞(9,… , 16|𝑢)𝑑𝑢

∫ 𝑃 (𝑧,𝑤
′)

0 𝑞(5,… , 8, 13,… , 16|𝑢)𝑑𝑢

∫ 1
𝑃 (𝑧,𝑤) 𝑞(3, 4, 7, 8, 11, 12, 15, 16|𝑢)𝑑𝑢

∫ 1
𝑃 (𝑧,𝑤′) 𝑞(2, 4, 6, 8, 10, 12, 14, 16|𝑢)𝑑𝑢

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 𝑇 1
𝑧,𝑤 𝑇 1

𝑧,𝑤 𝑇 1
𝑧,𝑤 𝑇 1

𝑧,𝑤 𝑇 1
𝑧,𝑤 𝑇 1

𝑧,𝑤 𝑇 1
𝑧,𝑤 𝑇 1

𝑧,𝑤

0 0 0 0 𝑇 1
𝑧,𝑤′ 𝑇 1

𝑧,𝑤′ 𝑇 1
𝑧,𝑤′ 𝑇 1

𝑧,𝑤′ 0 0 0 0 𝑇 1
𝑧,𝑤′ 𝑇 1

𝑧,𝑤′ 𝑇 1
𝑧,𝑤′ 𝑇 1

𝑧,𝑤′

0 0 𝑇 0
𝑧,𝑤 𝑇 0

𝑧,𝑤 0 0 𝑇 0
𝑧,𝑤 𝑇 0

𝑧,𝑤 0 0 𝑇 0
𝑧,𝑤 𝑇 0

𝑧,𝑤 0 0 𝑇 0
𝑧,𝑤 𝑇 0

𝑧,𝑤

0 𝑇 0
𝑧,𝑤′ 0 𝑇 0

𝑧,𝑤′ 0 𝑇 0
𝑧,𝑤′ 0 𝑇 0

𝑧,𝑤′ 0 𝑇 0
𝑧,𝑤′ 0 𝑇 0

𝑧,𝑤′ 0 𝑇 0
𝑧,𝑤′ 0 𝑇 0

𝑧,𝑤′

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑞

≡ �̃� 𝑞,

where �̃� is a matrix of operators implicitly defined. Then, inserting 𝐻 , the constraint becomes

�̃�𝐻𝑞 =
{

�̃�𝐻 ⊗ 𝑏′
}

𝜃 = (𝑝11|𝑧1, 𝑝11|𝑧0, 𝑝10|𝑧1, 𝑝10|𝑧0)′

for 𝑞 ∈ 𝐾 and 𝜃 ∈ 𝛩𝐾 . Then the remaining argument is similar to the previous case by adopting the idea of Lemma B.1 (and taking
𝐵 =

{

�̃�𝐻 ⊗ 𝑏′
}

) to account for the change in the range of integral due to 𝑃 (𝑧,𝑤) being a function of 𝑤. This completes the proof
32

for 𝑊 . The proof for 𝑍 can be analogously done and shown in Lemma B.1. □
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C.6. Proof of Lemma B.1

Suppose 𝑓 (𝑘) is a constant function: 𝑓 (𝑘) = 𝑐 for all 𝑘 for some 𝑐. By properties of Bernstein polynomials, it satisfies that

∫

𝑃 (𝑧1)

0
𝑏𝑘,𝐾 (𝑢)𝑑𝑢 =

𝐾+1
∑

𝑖=𝑘+1

𝑏𝑖,𝐾+1
(

𝑃 (𝑧1)
)

𝐾 + 1
=

𝐾+1
∑

𝑖=𝑘+1

(

𝐾 + 1
𝑖

) 𝑃 (𝑧1)𝑖
(

1 − 𝑃 (𝑧1)
)𝐾+1−𝑖

𝐾 + 1
,

∫

𝑃 (𝑧2)

0
𝑏𝑘,𝐾 (𝑢)𝑑𝑢 =

𝐾+1
∑

𝑖=𝑘+1

𝑏𝑖,𝐾+1
(

𝑃 (𝑧2)
)

𝐾 + 1
=

𝐾+1
∑

𝑖=𝑘+1

(

𝐾 + 1
𝑖

) 𝑃 (𝑧2)𝑖
(

1 − 𝑃 (𝑧2)
)𝐾+1−𝑖

𝐾 + 1
.

Let 𝑘 = 𝑚 for some 𝑚 ∈ {1,… , 𝐾}. Then, 𝑓 (𝑚) = 𝑐 is equivalent to
𝐾+1
∑

𝑖=𝑚+1

(

𝐾 + 1
𝑖

)

𝑃 (𝑧1)𝑖
(

1 − 𝑃 (𝑧1)
)𝐾+1−𝑖 = 𝑐

𝐾+1
∑

𝑖=𝑚+1

(

𝐾 + 1
𝑖

)

𝑃 (𝑧2)𝑖
(

1 − 𝑃 (𝑧2)
)𝐾+1−𝑖 . (C.7)

imilarly let 𝑘 = 𝑚 − 1, then 𝑓 (𝑚 − 1) = 𝑐 is equivalent to
𝐾+1
∑

𝑖=𝑚

(

𝐾 + 1
𝑖

)

𝑃 (𝑧1)𝑖
(

1 − 𝑃 (𝑧1)
)𝐾+1−𝑖 = 𝑐

𝐾+1
∑

𝑖=𝑚

(

𝐾 + 1
𝑖

)

𝑃 (𝑧2)𝑖
(

1 − 𝑃 (𝑧2)
)𝐾+1−𝑖 . (C.8)

y subtracting (C.8) from (C.7), we have
(

𝐾 + 1
𝑚

)

𝑃 (𝑧1)𝑚
(

1 − 𝑃 (𝑧1)
)𝐾+1−𝑚 = 𝑐

(

𝐾 + 1
𝑚

)

𝑃 (𝑧2)𝑚
(

1 − 𝑃 (𝑧2)
)𝐾+1−𝑚

r equivalently,

𝑐 =
𝑃 (𝑧1)𝑚

(

1 − 𝑃 (𝑧1)
)𝐾+1−𝑚

𝑃 (𝑧2)𝑚
(

1 − 𝑃 (𝑧2)
)𝐾+1−𝑚

.

Because this equation holds for any 𝑚 ∈ {1,… , 𝐾}, take 𝑚 = 1, then

𝑐 =
𝑃 (𝑧1)

(

1 − 𝑃 (𝑧1)
)𝐾

𝑃 (𝑧2)
(

1 − 𝑃 (𝑧2)
)𝐾 , (C.9)

and take 𝑚 = 𝐾, then

𝑐 =
𝑃 (𝑧1)𝐾

(

1 − 𝑃 (𝑧1)
)

𝑃 (𝑧2)𝐾 (1 − 𝑃 (𝑧2))
. (C.10)

ut (C.9) and (C.10) hold if and only if 𝑃 (𝑧1) = 𝑃 (𝑧2), which is a contradiction. Analogously, we can show that 𝑓 (𝑘) =
∫ 1
𝑃 (𝑧1)

𝑏𝑘,𝐾 (𝑢)𝑑𝑢

∫ 1
𝑃 (𝑧2)

𝑏𝑘,𝐾 (𝑢)𝑑𝑢
is not a constant function. Therefore, the coefficient matrix has full rank.

C.7. Proof of Theorem B.1

For any given �̄� ∈ [0, 1], 𝜏(�̄�) = ∑

𝑒∈∶𝑦(1)=1 𝑞
∗
�̄� (𝑒|�̄�) −

∑

𝑒∈∶𝑦(0)=1 𝑞
∗
�̄� (𝑒|�̄�) for some 𝑞∗�̄� (⋅) ≡ {𝑞∗�̄� (𝑒|⋅)}𝑒∈ in the feasible set of the LP,

(B.1) and (B.3). Therefore, 𝜏(�̄�) = 𝜏𝑀𝑇𝐸,�̄�(�̄�) for 𝜏𝑀𝑇𝐸,�̄�(�̄�) =
∑

𝑒∈∶𝑦(1)=1 𝑞
∗
�̄� (𝑒|�̄�) −

∑

𝑒∈∶𝑦(0)=1 𝑞
∗
�̄� (𝑒|�̄�), which is in  by definition. We

an have a symmetric proof for 𝜏(⋅). □

C.8. Proof of Theorem B.2

Again, by the fact that 𝜏𝑀𝑇𝐸 (⋅) =
∑

𝑒∈∶𝑦(1)=1 𝑞(𝑒|⋅) −
∑

𝑒∈∶𝑦(0)=1 𝑞(𝑒|⋅) in general, 𝜏(𝑢) = ∑

𝑒∈∶𝑦(1)=1 𝑞
∗(𝑒|𝑢) −

∑

𝑒∈∶𝑦(0)=1 𝑞
∗(𝑒|𝑢) for

ll 𝑢 ∈ [0, 1] is equivalent to 𝜏(⋅) being contained in , and similarly for 𝜏(⋅). □

ppendix D. Additional numerical exercises

We present several additional numerical simulation results in this section.

.1. More results on the varying cardinality of  and 

As showed in Section 8.2, the identifying power of statistical independence of IVs becomes increasingly salient as the cardinality
f  increases. An extreme case is when 𝑌 is continuous. In this scenario, we present additional simulation results that compare
ur bounds with Mogstad et al. (2018)’s. To reduce the computational burden arising from the dimension of 𝑌 , we fix the order of
ernstein approximation at 5 for both our and Mogstad et al. (2018)’s approach. Both when the endpoints of  stay fixed or vary,
ur bounds are significantly narrower, which is consistent with the results in the discrete scenario; see Fig. 9.

Next, the manner in which the bounds are affected by the cardinality of  is unclear in Section 8.2. This is because we fix the
ndpoints of 𝑍. Intuitively, if the endpoints of  move further away, the bound would shrink. Fig. 10 shows that this is in fact the
33

ase.
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Fig. 9. Full vs. mean independence: Bounds on ATE with continuous 𝑌 .

Fig. 10. Bounds on ATE for different support of .

D.2. Common exogenous variable

In Section 8, we set 𝑊 to be a reverse IV in our main DGP. It is important to note that what matters for identifying power is the
exogeneity of 𝑊 and not the reverse exclusion of 𝑊 . To clarify this point, we compare the results derived from a reverse IV with
those from a common exogenous variable. For the latter, we use the main DGP in Section 8.

Fig. 11 exhibits very similar results between the reverse IV and the common exogenous variable. This evidence suggests that the
crucial role in improving the bounds lies in the exogeneity of 𝑊 , rather than its reverse exclusion.

D.3. Discussions on misspecification

For sieve approximations, implicit smoothness assumptions are inherent. It would be crucial to evaluate the extent of misspec-
ification using a DGP that exhibits the lack of smoothness. To demonstrate the possibility of misspecification within our approach
34
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Fig. 11. Comparison with common exogenous variable vs. reverse IV.

Fig. 12. Bounds on non-smooth MTE with different 𝐾.

and further illustrate the choice of 𝐾, we select a DGP where the MTE function is defined as 𝑚1(𝑢) − 𝑚0(𝑢) = 0.7 ⋅ |𝑠𝑖𝑛(2𝜋𝑢)|. Note
that the sine function is difficult to approximate in general. Moreover, the MTE has kink points, which the Bernstein approximation
would fail to capture. Under this DGP, the pointwise bound for the MTE function with varying polynomial orders 𝐾 is depicted in
Fig. 12. When 𝐾 is set as low as 5, the sieve approximation incurs severe misspecification in that the bound only covers the true
MTE over a brief interval among the compliers. From 𝐾 = 10 onwards, the bounds cover most of the true MTE except the middle
part. While all polynomials orders fail to capture the kink point, the magnitude of misspecification diminishes when 𝐾 is large.

To more clearly compare the magnitude of misspecification across the choices of 𝐾, we select 100 evenly-spaced points on
 = [0, 1], and compute the Hausdorff distance for the set of 𝑢 where the MTE falls outside the identified set. Fig. 13 show a
significant reduction in the magnitude of misspecification when 𝐾 takes larger values.
35
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Fig. 13. Misspecification with different 𝐾.
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