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Summary

The purpose of this paper is to provide guidelines for empirical researchers
who use a class of bivariate threshold crossing models with dummy endogenous
variables. A common practice employed by the researchers is the specification
of the joint distribution of unobservables as a bivariate normal distribution,
which results in a bivariate probit model. To address the problem of misspec-
ification in this practice, we propose an easy-to-implement semiparametric
estimation framework with parametric copula and nonparametric marginal dis-
tributions. We establish asymptotic theory, including root-n normality, for the
sieve maximum likelihood estimators that can be used to conduct inference on
the individual structural parameters and the average treatment effect (ATE). In
order to show the practical relevance of the proposed framework, we conduct a
sensitivity analysis via extensive Monte Carlo simulation exercises. The results
suggest that estimates of the parameters, especially the ATE, are sensitive to
parametric specification, while semiparametric estimation exhibits robustness
to underlying data-generating processes. We then provide an empirical illustra-
tion where we estimate the effect of health insurance on doctor visits. In this
paper, we also show that the absence of excluded instruments may result in
identification failure, in contrast to what some practitioners believe.

1 INTRODUCTION

The purpose of this paper is to provide guidelines for empirical researchers who use a class of bivariate threshold crossing
models with dummy endogenous variables. This class of models is typically written as follows. With the binary outcome
Y and the observed binary endogenous treatment D, we consider

Y = 1[X ′𝛽 + 𝛿1D − 𝜀 ≥ 0],
D = 1[X ′𝛼 + Z′𝛾 − 𝜈 ≥ 0],

(1)

where X denotes a vector of exogenous regressors that determine both Y and D, and Z denotes a vector of exogenous
regressors that directly affect D, but not Y (i.e., instruments for D). Since Y does not appear in the equation for D, this
model forms a triangular model, as a special case of a simultaneous equations model, with the binary endogenous vari-
ables. In this paper, we investigate the consequences of the common practices employed by empirical researchers who
use this class of models. As an important part of this investigation, we conduct a sensitivity analysis on the specifica-
tion of the joint distribution of the unobservables (𝜀, 𝜈). This is the component of the model that practitioners have the
least knowledge about, and thus typically impose a parametric assumption. To address the problem of misspecification,
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we propose a semiparametric estimation framework with parametric copula and nonparametric marginal distributions.
The semiparametric specification is an attempt to ensure robustness while achieving point identification and efficient
estimation.

The parametric class of models (Equation (1)) includes the bivariate probit model, in which the joint distribution of
(𝜀, 𝜈) is assumed to be a bivariate normal distribution. This model has been widely used in empirical research, including
the works of Evans and Schwab (1995), Neal (1997), Goldman et al. (2001), Altonji, Elder, and Taber (2005), Bhattacharya,
Goldman, and McCaffrey (2006), Rhine, Greene, and Toussaint-Comeau (2006), and Marra and Radice (2011), to name
just a few. The distributional assumption in this model, however, is made out of convenience or convention, and is hardly
justified by underlying economic theory and thus susceptible to misspecification. With binary endogenous regressors, the
objects of interest. In model (1) are the mean treatment parameters, in addition to the individual structural parameters.
Because the outcome variable is also binary, the mean treatment parameters such as the average treatment effect (ATE)
are expressed as the differential between the marginal distributions of 𝜀. Therefore, the problem of misspecification when
estimating these treatment parameters can be even more severe than that when estimating individual parameters.

At one extreme, a nonparametric joint distribution of (𝜀, 𝜈) can be used in a bivariate threshold crossing model, as in
Shaikh and Vytlacil (2011). Their results, however, suggest that the ATE is only partially identified in this fully flexi-
ble setting. Instead of sacrificing point identification, we impose a parametric assumption on the dependence structure
between the unobservables using copula functions that are known up to a scalar parameter. At the same time, in order to
ensure robustness, we allow the marginal distribution of 𝜀 (and 𝜈), which is involved in the calculation of the ATE, to be
unspecified. Our class of models encompasses both parametric and semiparametric models with parametric copula and
either parametric or nonparametric marginal distributions. This broad range of models allows us to conduct a sensitivity
analysis on the specification of the joint distribution of (𝜀, 𝜈).

Identification of the individual parameters and the ATE in this class of models is established in Han and Vytlacil
(2017; hereafter, HV17). They show that when the copula function for (𝜀, 𝜈) satisfies a certain stochastic ordering, iden-
tification is achieved in both parametric and semiparametric models under an exclusion restriction and mild support
conditions. Building on these results, we consider estimation and inference in the same setting. For the semiparametric
class of models (Equation (1)) with parametric copula and nonparametric marginal distributions, the likelihood contains
infinite-dimensional parameters (i.e., the unknown marginal distributions). To estimate this model, we consider the sieve
maximum likelihood (ML) estimation method for the finite- and infinite-dimensional parameters of the model, as well
as their functionals. Estimation of the parametric model, on the other hand, is within the standard ML framework.

The contributions of this paper can be summarized as follows. Through these contributions, this paper is intended to
provide a guideline to empirical researchers. First, we establish the asymptotic theory for the sieve ML estimators in a
class of semiparametric copula-based models. This result can be used to conduct inference on the functionals of the finite-
and infinite-dimensional parameters, such as inference on the individual structural parameters and the ATE. We show
that the sieve ML estimators are consistent and that their smooth functionals are root-n asymptotically normal.

Second, in order to show the practical relevance of the theoretical results for empirical researchers, we conduct a sensi-
tivity analysis via extensive Monte Carlo simulation exercises. We find that the parametric ML estimates, especially those
for the ATE, can be highly sensitive to the misspecification of the marginal distributions of the unobservables. On the other
hand, the sieve ML estimates perform well in terms of the mean squared error (MSE) as they are robust to the underlying
data-generating process (DGP). Moreover, their performance is comparable to that of the parametric estimates under a
correct specification. We also show that copula misspecification does not have a substantial effect in estimation, as long
as the true copula is within the stochastic ordering class of the identification. As copula misspecification is a problem
common to both parametric and semiparametric models considered in this paper, our sensitivity analysis suggests that a
semiparametric consideration may be more preferable in estimation and inference.

Third, we provide an empirical illustration of the sieve estimation and the sensitivity analysis of this paper. We estimate
the effect of health insurance on decisions to visit doctors using the the Medical Expenditure Panel Survey data combined
with the National Compensation Survey data by matching industry types. We compare the estimates of parametric and
semiparametric bivariate threshold crossing models with the Gaussian copula. We show that the estimates differ, espe-
cially so for the estimated ATEs, which suggest the misspecification of the marginal distribution of the unobservables,
consistent with the simulation results. In other words, the estimates of the bivariate probit model can be misleading in
this example.

Fourth, we formally show that identification may fail without the exclusion restriction, in contrast to the findings of
Wilde (2000). The bivariate probit model is sometimes used in applied work without instruments (Rhine et al., 2006;
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White & Wolaver, 2003). We show, however, that this restriction is not only sufficient but also necessary for identification
in parametric and semiparametric models when there is a single binary exogenous variable common to both equations.
We also show that under joint normality of the unobservables the parameters are, at best, weakly identified when there
are common (and possibly continuous) exogenous variables. 1 We also note that another source of identification failure
is the absence of restrictions on the dependence structure of the unobservables, as mentioned above.

The sieve estimation method is a useful nonparametric estimation framework that allows for a flexible specifica-
tion, while guaranteeing the tractability of the estimation problem; see Chen (2007) for a survey of sieve estimation in
semi-nonparametric models. The estimation method is also easy to implement in practice. The sieve ML estimation has
been used in various contexts: Chen, Fan, and Tsyrennikov (2006; hereafter, CFT06) considered the sieve estimation of
semiparametric multivariate distributions that were modeled using parametric copulas; Bierens (2008) applied the esti-
mation method to the mixed proportional hazard model; and Hu and Schennach (2008) and Chen, Hu, and Lewbel (2009)
used the method to estimate nonparametric models with nonclassical measurement errors. The asymptotic theory devel-
oped in this paper is based on the results established in the sieve extremum estimation literature (e.g., Bierens, 2014;
CFT06; Chen, 2007). A semiparametric version of bivariate threshold crossing models was also considered in Marra and
Radice (2011) and Ieva, Marra, Paganoni, and Radice (2014). In contrast to our setting, however, they introduced flexibility
for the index function of the threshold, and not for the distribution of the unobservables.

The remainder of this paper is organized as follows. The next section reviews the identification results of HV17, and
then discusses the lack of identification in the absence of exclusion restrictions and in the absence of restrictions on the
dependence structure of the unobservables. Section 3 introduces the sieve ML estimation framework for the semipara-
metric class of models defined in Equation (1), and Section 4 establishes the large-sample theory for sieve ML estimators.
Sensitivity analysis is conducted in Section 5 by investigating the finite-sample performance of the parametric ML and
sieve ML estimates under various specifications. Section 6 presents the empirical example, and Section 7 concludes.

2 IDENTIFICATION AND FAILURE OF IDENTIFICATION

2.1 Identification results in Han and Vytlacil (2017)
We first summarize the identification results in HV17. In model (1), let X

(k+1)×1
≡ (1,X1, … ,Xk)′ and Z

l×1
≡ (Z1, … ,Zl)′,

and conformably, let 𝛼 ≡ (𝛼0, 𝛼1, … , 𝛼k)
′ , 𝛽 ≡ (𝛽0, 𝛽1, … , 𝛽k)

′ , and 𝛾 ≡ (𝛾1, 𝛾2, … , 𝛾 l)
′ .

Assumption 1. X and Z satisfy that (X,Z) ⟂ (𝜀, 𝜈), where “⟂” denotes statistical independence.

Assumption 2. (X′
,Z′ ) does not lie in a proper linear subspace of Rk+l a.s.2

Assumption 3. There exists a copula function C ∶ (0, 1)2 → (0, 1) such that the joint distribution F𝜀𝜈 of (𝜀, 𝜈) satisfies
F𝜀𝜈(𝜀, 𝜈) = C[F𝜀(𝜀),F𝜈(𝜈)], where F𝜀 and F𝜈 are the marginal distributions of 𝜀 and 𝜈, respectively, that are strictly
increasing and absolutely continuous with respect to Lebesgue measure.3

Assumption 4. As scale and location normalizations, 𝛼1 = 𝛽1 = 1 and 𝛼0 = 𝛽0 = 0.

A model with alternative scale and location normalizations, var(𝜀) = var(𝜈) = 1 and E[𝜀] = E[𝜈] = 0, can be
viewed as a reparametrized version of the model with the normalizations given in Assumption 4; see, for example, the
reparametrization (Equation (2)) below. For x ∈ supp(X) and z ∈ supp(Z), write a one-to-one map (by Assumption 3) as

sxz ≡ F𝜈(x′𝛼 + z′𝛾), r0,x ≡ F𝜀(x′𝛽), r1,x ≡ F𝜀(x′𝛽 + 𝛿1). (2)

1HV17 only showed the sufficiency of this restriction for identification. Mourifié and Méango (2014) showed the necessity of the restriction, but their
argument does not exploit all information available in the model; see Section 2.2 of the present paper for further details.
2A proper linear subspace of Rk+l is a linear subspace with a dimension strictly less than k + l.The assumption is that if M is a proper linear subspace of
Rk+l,then Pr[(X ′,Z′) ∈ M] < 1.
3Sklar's theorem (e.g., Nelsen, 1999) guarantees the existence of such a copula, which is, in fact, unique becauseF𝜀 and F𝜈 are continuous.
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Take (x, z) and (x, z̃), for some x ∈ supp(X|Z = z) ∩ supp(X|Z = z̃), where supp(X|Z) is the conditional support of X,
given Z. Then, by Assumption 1, model (1) implies that the fitted probabilities are written as

p11,xz = C(r1,x, sxz), p11,xz̃ = C(r1,x, sxz̃),
p10,xz = r0,x − C(r0,x, sxz), p10,xz̃ = r0,x − C(r0,x, sxz̃),
p01,xz = sxz − C(r1,x, sxz), p01,xz̃ = sxz̃ − C(r1,x, sxz̃),

(3)

where p𝑦d,xz ≡ Pr[Y = 𝑦,D = d|X = x,Z = z] for (y, d) ∈ {0, 1}2. Equation (3) serves as the basis for the identification
and estimation of the model. Depending upon whether one is willing to impose an additional assumption on the depen-
dence structure of the unobservables (𝜀, 𝜈) via C(·, ·), the underlying parameters of the model are either point identified
or partially identified.

We first consider point identification. The results for point identification can be found in HV17, which we adapt here
given Assumption 4. The additional dependence structure can be characterized in terms of the stochastic ordering of the
copula parametrized with a scalar parameter.

Definition 1 (Strictly more SI or less SD). Let C(u2|u1) and C̃(u2|u1) be conditional copulas, for which 1 − C(u2|u1)
and 1 − C̃(u2|u1) are either increasing or decreasing in u1 for all u2. Such copulas are referred to as stochasti-
cally increasing (SI) or stochastically decreasing (SD), respectively. Then, C̃ is strictly more SI (or less SD) than C if
𝜓(u1,u2) ≡ C̃−1[C(u2|u1)|u1] is strictly increasing in u1,4 which is denoted by C≺SC̃.

This ordering is equivalent to having a ranking in terms of the first-order stochastic dominance. Let (U1,U2) ∼ C
and (Ũ1, Ũ2) ∼ C̃. When C̃ is strictly more SI (less SD) than C is, then Pr[Ũ2 > u2|Ũ1 = u1] increases even more than
Pr[U2 > u2|U1 = u1] does as u1 increases.5

Assumption 5. The copula in Assumption 3 satisfies C(·, ·) = C(·, ·; 𝜌) with a scalar dependence parameter 𝜌 ∈ Ω, is
twice differentiable in u1, u2 and 𝜌, and satisfies

C(u1|u2; 𝜌1)≺SC(u1|u2; 𝜌2) for any 𝜌1 < 𝜌2. (4)

The meaning of the last part of this assumption is that the copula is ordered in 𝜌 in the sense of the stochastic ordering
defined above. This requirement defines the class of copulas that we allow for identification. Many well-known copulas
satisfy Equation (4): the normal copula, Plackett copula, Frank copula, Clayton copula, among many others; see HV17
for the full list of copulas and their expressions. Under these assumptions, we first discuss the identification in a fully
parametric model.

Assumption 6. F𝜀 and F𝜈 are known up to means 𝜇 ≡ (𝜇𝜀, 𝜇𝜈) and variances 𝜎2 ≡ (𝜎2
𝜀 , 𝜎

2
𝜈 ).

Given this assumption, F𝜈(𝜈) = F𝜈̃(𝜈̃) and F𝜀(𝜀) = F𝜀̃(𝜀̃), where F𝜈̃ and F𝜀̃ are the distributions of 𝜈̃ ≡ (𝜈 − 𝜇𝜈)∕𝜎𝜈 and
𝜀̃ ≡ (𝜀 − 𝜇𝜀)∕𝜎𝜀, respectively. Define

 ≡ ⋃
z′𝛾≠z̃′𝛾

z,z̃∈supp(Z)

supp(X|Z = z) ∩ supp(X|Z = z̃).

Theorem 1. In model (1), suppose Assumptions 1 -6 hold. Then, (𝛼′
, 𝛽

′
, 𝛿1, 𝛾, 𝜌, 𝜇, 𝜎) are point identified in an open and

convex parameter space if (i) 𝛾 is a nonzero vector, and (ii)  does not lie in a proper linear subspace of Rk a.s.

The proof of this theorem is a minor modification of the proof of theorem 5.1 in HV17.
Although the parametric structure on the copula is necessary for the point identification of the parameters, HV17

showed that the parametric assumption for F𝜀 and F𝜈 was not necessary. In addition, if we make a large support
assumption, we can also identify the nonparametric marginal distributions F𝜀 and F𝜈 .

4Note that 𝜓(u1,u2) is increasing in u2 by definition.
5In the statistics literature, the SI dependence ordering is also referred to as the (strictly) “more regression dependent” or “more monotone regression
dependent” ordering; see Joe (1997) for details.
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Assumption 7. (i) The distributions of Xj (for 1 ≤ j ≤ k) and Zj (for 1 ≤ j ≤ l) are absolutely continuous
with respect to Lebesgue measure. (ii) There exists at least one element Xj in X such that its support conditional on
(X1, … ,Xj−1,Xj+1, … ,Xk) is R and 𝛼j ≠ 0 and 𝛽 j ≠ 0, where, without loss of generality, we let j = 1.

Theorem 2. In model (1), suppose Assumptions 1 -5 and 7(i) hold. Then, (𝛼′
, 𝛽

′
, 𝛿1, 𝛾, 𝜌) are point identified in an open

and convex parameter space if (i) 𝛾 is a nonzero vector and (ii)  does not lie in a proper linear subspace of Rk a.s. In
addition, if Assumption 7(ii) holds, F𝜀(·) and F𝜈(·) are identified up to additive constants.

An interesting function of the underlying parameters that are point identified under the parametric and semiparametric
distributional assumptions is the conditional ATE:

ATE(x) = E[Y1 − Y0|X = x] = F𝜀(x′𝛽 + 𝛿1) − F𝜀(x′𝛽). (5)

2.2 Extension of Han and Vytlacil (2017): Identification under conditional independence
The identification analysis of Han and Vytlacil (2017) relies on the full independence assumption (Assumption 1) for
(X,Z). The analysis, however, can be easily extended to a case where conditional independence is alternatively assumed.
Since this is a more empirically relevant situation, we explore this case in detail here. In the empirical section below, we
impose the conditional independence. Let M be a vector of (potentially endogenous) covariates in supp(M).

Assumption 1′ . X and Z satisfy that (X,Z) ⟂ (𝜀, 𝜈)|M.
Similarly, we modify Assumptions 2,3 and 5-7 accordingly. Then the following theorems immediately hold by apply-

ing the same proof strategies as in Theorems 1 and 2. Let Cm(u1,u2) ≡ C(u1,u2|M = m) be the conditional copula,
and F𝜀𝜈|m(𝜀, 𝜈) ≡ F𝜀𝜈|M=m(𝜀, 𝜈), F𝜀|m(𝜀) ≡ F𝜀|M=m(𝜀) and F𝜈|m(𝜈) ≡ F𝜈|M=m(𝜈) be the conditional distributions.

Theorem 3. In model (1), suppose Assumptions 1′ and 4 hold. Also, suppose Assumption 2 holds conditional on M,
and Assumptions 3 and 5,6 hold with Cm(u1,u2), F𝜀𝜈|m(𝜀, 𝜈), F𝜀|m(𝜀) and F𝜈|m(𝜈) instead, for all m ∈ supp(M). Then,
(𝛼′
, 𝛽

′
, 𝛿1, 𝛾, 𝜌, 𝜇, 𝜎) are point identified in an open and convex parameter space if (i) 𝛾 is a nonzero vector and (ii)  does

not lie in a proper linear subspace of Rk a.s. conditional on M.

Theorem 4. In model (1), suppose Assumptions 1′ and 4 hold. Also, suppose Assumptions 2 and 7(i) hold conditional
on M, and Assumptions 3 and 5 hold with Cm(u1,u2), F𝜀𝜈|m(𝜀, 𝜈), F𝜀|m(𝜀) and F𝜈|m(𝜈) instead, for all m ∈ supp(M). Then
(𝛼′
, 𝛽

′
, 𝛿1, 𝛾, 𝜌) are point identified in an open and convex parameter space if (i) 𝛾 is a nonzero vector; and (ii)  does not

lie in a proper linear subspace of Rk a.s. In addition, if Assumption 7(ii) holds conditional on M, F𝜀|m(·) and F𝜈|m(·) are
identified up to additive constants for all m ∈ supp(M).

2.3 The failures of identification
In this section, we discuss two sources of identification failure in the class of models (1): the absence of exclusion
restrictions and the absence of restrictions on the dependence structure of the unobservables (𝜀, 𝜈).

2.3.1 No exclusion restrictions
There are empirical works where Equation (1) is used without excluded instruments; see, for example, N. E. White and
Wolaver (2003) and Rhine et al. (2006). Identification in these papers relies on the results of Wilde (2000), who provide
an identification argument by counting the number of equations and unknowns in the system. Here, we show that this
argument is insufficient for identification. We show that without the excluded instruments (i.e., when 𝛾 = 0) the structural
parameters are not identified, even with a full parametric specification of the joint distribution (Assumptions 5 and 6).
The existence of common exogenous covariates X in both equations is not very helpful for identification, in a sense that
becomes clear below.

Before considering the lack of identification in a general case with possibly continuous X1 in X = (1,X1), we start the
analysis with binary X1. Mourifié and Méango (2014) show the lack of identification when there is no excluded instrument
in a bivariate probit model with binary X1. They only provide, however, a numerical counterexample. Moreover, their
analysis does not consider the full set of observed fitted probabilities, and hence possibly neglects information that could
have contributed to the identification. Here, we provide an analytical counterexample in a more general parametric class
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of model (Equation (1)) that nests the bivariate probit model. We show that (𝛿1, 𝜌, 𝜇𝜀, 𝜎𝜀) are not identified, even if the
full set of probabilities are used. Note that the reduced-form parameters (𝜇𝜈, 𝜎𝜈) are always identified from the equation
for D, and 𝛼 = 𝛽 = (0, 1)′ as a normalization using scalar X1.

Theorem 5. In model (1) with X = (1,X1), where X1 ∈ supp(X1) = {0, 1}, suppose that the assumptions in Theorem
1 hold, except that 𝛾 = 0. Then, there exist two element-wise distinct sets of (𝛿1, 𝜌, 𝜇𝜀, 𝜎𝜀) that generate the same
observed data.

In showing this lack-of-identification result, we find a counterexample where the copula density induced by C(u1,u2)
is symmetric around u2 = u1 and u2 = 1 − u1, and the density induced by F𝜀 is symmetric. Note that the bivariate
normal distribution, namely the normal copula with normal marginals, satisfies these symmetry properties. That is, in the
bivariate probit model with a common binary exogenous covariate and no excluded instruments, the structural parameters
arenotidentified.

The proof of Theorem 5 proceeds as follows. Under Assumption 4, let

q0 ≡ F𝜈̃(−𝜇𝜈∕𝜎𝜈), q1 ≡ F𝜈̃[(1 − 𝜇𝜈)∕𝜎𝜈],
t0 ≡ F𝜀̃(−𝜇𝜀∕𝜎𝜀), t1 ≡ F𝜀̃[(1 − 𝜇𝜀)∕𝜎𝜀].

Then, we have
p̃11,0 = C{F𝜀̃[F−1

𝜀̃ (t0) + 𝛿1], q0; 𝜌}, p̃11,1 = C{F𝜀̃[F−1
𝜀̃ (t1) + 𝛿1], q1; 𝜌},

p̃10,0 = t0 − C(t0, q0; 𝜌), p̃10,1 = t1 − C(t1, q1; 𝜌),
p̃00,0 = 1 − t0 − q0 + C(t0, q0; 𝜌), p̃00,1 = 1 − t1 − q1 + C(t1, q1; 𝜌),

where p̃𝑦d,x ≡ Pr[Y = 𝑦,D = d|X1 = x]. We want to show that, given (q0, q1) which are identified from the reduced-form
equation, there are two distinct sets of parameter values (t0, t1, 𝛿1, 𝜌) and (t∗0 , t

∗
1 , 𝛿

∗
1 , 𝜌

∗) (with (t0, t1, 𝛿1, 𝜌)≠ (t∗0 , t
∗
1 , 𝛿

∗
1 , 𝜌

∗))
that generate the same observed fitted probabilities p̃𝑦d,0 and p̃𝑦d,1 for all (y, d) ∈ {0, 1}2 under some choices of C(u1,u2)
and F𝜀. A detailed proof can be found in the Supporting Information Appendix.

One might argue that the lack of identification in Theorem 5 is due to the limited variation of X. Although this is a
plausible conjecture, this does not seem to be the case in the model considered here.6 We now consider a general case
with possibly continuous X1, and discuss what can be said about the existence of two distinct sets of (𝛽, 𝛿1, 𝜌, 𝜇𝜀, 𝜎𝜀) that
generate the same observed data. To this end, define

q(x) ≡ F𝜈̃[(x′𝛼 − 𝜇𝜈)∕𝜎𝜈], t(x) ≡ F𝜀̃[(x′𝛽 − 𝜇𝜀)∕𝜎𝜀].

Then,
p11,x = C

(
F𝜀̃{F−1

𝜀̃ [t(x)] + 𝛿1}, q(x); 𝜌
)
,

p10,x = t(x) − C[t(x), q(x); 𝜌],
p00,x = 1 − t(x) − q(x) + C[t(x), q(x); 𝜌].

Similar to the proof strategy for the binary X1 case, we want to show that, given (𝛼, 𝜇𝜈, 𝜎𝜈), there are two distinct sets of
parameter values (𝛽, 𝛿1, 𝜌, 𝜇𝜀, 𝜎𝜀) and (𝛽∗, 𝛿∗1 , 𝜌

∗, 𝜇∗
𝜀 , 𝜎

∗
𝜀 ) that generate the same observed fitted probabilities pyd,x for all

(y, d) ∈ {0, 1}2 and x ∈ supp(X) under some choices of C(u1,u2) and F𝜀.
Let t(x) ≡ F𝜀̃(x′𝛽) ∈ (0, 1) for all x and for some 𝛽. Also, choose 𝛿1 = 0 and some 𝜌 ∈ Ω. For 𝜌* > 𝜌, we want to show

that there exists (𝛽∗, 𝛿∗1 ) such that, for t∗(x) ≡ F𝜀̃(x′𝛽∗),

p10,x = t(x) − C[t(x), q(x); 𝜌] = t∗(x) − C[t∗(x), q(x); 𝜌∗], (6)

p11,x = C
(

F𝜀̃{F−1
𝜀̃ [t(x)] + 0}, q(x); 𝜌

)
= C(s†(x), q(x); 𝜌∗), (7)

for all x, where
s†(x) = F𝜀̃{F−1

𝜀̃ [t∗(x)] + 𝛿∗1}. (8)

6In fact, in Heckman's (1979) sample selection model under normality, although identification fails with binary exogenous covariates in the absence of
the exclusion restriction, it is well known that identification is achieved with continuous covariates by exploiting the nonlinearity of the model (Vella,
1998).
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The question is whether we find (𝛽, 𝛿1, 𝜌) and (𝛽∗, 𝛿∗1 , 𝜌
∗) such that Equations (6)–(8) hold simultaneously. First, note

that, since 𝜌* > 𝜌, we have t* > t and hence 𝛽* ≠ 𝛽 by the assumption that there is no linear subspace in the space of X.
Now, choose C(·, ·; 𝜌) to be a normal copula and choose 𝜌 = 0 and 𝜌* = 1. Then, using arguments similar to those of the
binary case (found in the Supporting Information Appendix), we obtain

t∗(x) = q(x) + [1 − q(x)]t(x) (9)

and s†(x) = q(x)t(x). Then, Equation (8) can be rewritten as

𝛿∗1 = F−1
𝜀̃ [s†(x)] − F−1

𝜀̃ [t∗(x)] = F−1
𝜀̃ [q(x)t(x)] − F−1

𝜀̃ {q(x) + [1 − q(x)]t(x)}. (10)

The complication here is to ensure that this equation is satisfied for all x. Note that Equations (9) and (10) are consistent
with the definition of a distribution function of a continuous r.v.: F𝜀̃(+∞) = 1, F𝜀̃(−∞) = 0, and F𝜀̃(𝜀) is strictly increasing.
We can then show numerically that a distribution function that is close to a normal distribution satisfies the conditions
with a particular choice of (𝛽∗, 𝛿∗1 ); see Figure 1. Although no formal derivation of the counterexample is given, this result
suggests the following:

(i) In the bivariate probit model with continuous common exogenous covariates and no excluded instruments, the
parameters will be, at best, weakly identified.

(ii) This also implies that, in the semiparametric model considered in Theorem 2, the structural parameters and the
marginal distributions are not identified without an exclusion restriction, even if X1 has large support.

2.3.2 No restrictions on dependence structures
When the restriction imposed on C(·, ·) (i.e., Assumption 5) is completely relaxed, the underlying parameters of model
(1) may fail to be identified, regardless of whether the exclusion restriction holds. That is, a structure describing how the
unobservables (𝜀, 𝜈) are dependent on each other is necessary for identification. This is closely related to the results in the
literature that the treatment parameters (which are lower dimensional functions of the individual parameters) in trian-
gular models similar to Equation (1) are only partially identified without distributional assumptions; see Bhattacharya,
Shaikh, and Vytlacil (2008), Chiburis (2010), Shaikh and Vytlacil (2011), and Mourifié (2015).

Suppose Assumptions 1,2,3,4 hold. Then the model becomes a semiparametric threshold crossing model in that the
joint distribution is completely unspecified. Then, as a special case of Shaikh and Vytlacil (2011), one can easily derive
bounds for the ATE F𝜀(x

′
𝛽 + 𝛿1) − F𝜀(x

′
𝛽). The sharpness of these bounds is shown in their paper under a rectangular

support assumption for (X,Z), which is, in turn, relaxed in Mourifié (2015). In addition, using Assumption 6, one can
also derive bounds for the individual parameters x′

𝛽 and 𝛿1, as shown in Chiburis (2010). When there are no excluded

FIGURE 1 A numerical calculation of a distribution
function under which identification fails (blue line),
compared with a normal distribution function (green
line) [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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instruments in the model, Chiburis shows that the bounds on the ATE do not improve on the bounds of Manski (1990),
whose argument applies to the individual parameters.

3 SIEVE AND PARAMETRIC ML ESTIMATIONS

Based on the identification results, we now consider estimation. Let 𝜓 ≡ (𝛼′
, 𝛽

′
, 𝛿1, 𝛾, 𝜌) denote the vector of the struc-

tural individual parameters. Let f𝜖 and f𝜈 be the density functions associated with the distribution functions F𝜖 and F𝜈 ,
respectively, of the unobservables. Then, (𝜓 ′

, f𝜖, f𝜈)
′ is the set of parameters in the semiparametric version of the model.

The model becomes fully parametric, once the infinite-dimensional parameters f𝜖 and f𝜈 are fully characterized by some
finite-dimensional parameters; that is, f𝜖(·; 𝜂𝜖) and f𝜈(·; 𝜂𝜈) for 𝜂𝜖 ∈ R

d𝜂𝜖 and 𝜂𝜈 ∈ R
d𝜂𝜈 . This yields (𝜓 ′, 𝜂′𝜖, 𝜂

′
𝜈)′ to be the set

of parameters in the parametric version of the model. For either case, the parameter of the model is denoted by 𝜃 for con-
venience; that is, 𝜃 ≡ (𝜓 ′

, f𝜖, f𝜈)
′ in the semiparametric model and 𝜃 ≡ (𝜓 ′, 𝜂′𝜖, 𝜂

′
𝜈)′ in the parametric model. For the rest of

this paper, we explicitly express 𝜃0 to be the true parameter value for 𝜃. This applies to all the other parameter expressions.
Let Ψ̃ be the parameter space for 𝜓 . For the parametric model, the spaces for the finite-dimensional parameters 𝜂𝜖 and

𝜂𝜈 are denoted by H𝜖 ⊆ R
d𝜂𝜖 and H𝜈 ⊆ R

d𝜂𝜈 , respectively. Then, the parameter space Θ̃ for 𝜃 ≡ (𝜓 ′, 𝜂′𝜖, 𝜂
′
𝜈)′ becomes a Carte-

sian product of Ψ̃, H𝜖 , and H𝜈 ; that is, Θ̃ ≡ Ψ̃ × H𝜖 × H𝜈 ⊆ R
d𝜓+d𝜂𝜖+d𝜂𝜈 , in the parametric model.7 For the semiparametric

model, we consider the following function spaces as the spaces for f𝜖 and f𝜈 :

𝑗 ≡
{
𝑓 = q2 ∶ q ∈  ,∫ {q(x)}2dx = 1

}
, (11)

where j ∈ {𝜖, 𝜈} and  is a space of functions, which we specify later. Then, the parameter space Θ̃ of 𝜃 ≡ (𝜓 ′
, f𝜖, f𝜈)

′ can
be written as Θ̃ ≡ Ψ̃ × 𝜖 × 𝜈 in the semiparametric model. Note that the function spaces 𝜖 and 𝜈 contain functions
that are nonnegative.

We adopt the ML method to estimate the parameters in the model. Let {Wi = {Yi,Di,X ′
i ,Z

′
i} ∶ i = 1, 2, … ,n} be the

random sample. For both parametric and semiparametric models with corresponding 𝜃, we define the conditional density
function of (Yi,Di) conditional on (X ′

i ,Z
′
i )
′ as

𝑓 (Yi,Di|Xi,Zi; 𝜃) =
∏
𝑦,d=0,1

[p𝑦d(Xi,Zi; 𝜃)]1{Yi=𝑦,Di=d},

where pyd(x, z; 𝜃) abbreviates the right-hand-side expression that equates to pyd,xz in Equation (3). Then, the log of density
l(𝜃,w) ≡ log𝑓 (𝑦, d|x, z; 𝜃) becomes

l(𝜃,Wi) ≡ ∑
𝑦,d=0,1

1𝑦d(Yi,Di) · log p𝑦d(Xi,Zi; 𝜃), (12)

where 1yd(Yi,Di) ≡ 1{Yi = y,Di = d}. Consequently, the log-likelihood function can be written as Qn(𝜃) = 1
n

∑n
i=1 l(𝜃,Wi).

Now, the ML estimator 𝜃n of 𝜃0 ≡ (𝜓 ′
0, 𝜂𝜖0, 𝜂𝜈0)′ in the parametric model is defined as

𝜃n ≡ arg max
𝜃∈Θ̃

Qn(𝜃). (13)

For the semiparametric model, let 𝜀n and 𝜈n be appropriate sieve spaces for 𝜀 and 𝜈 , respectively, and let f𝜖n(·; a𝜖n)
and f𝜈n(·; a𝜈n) be the sieve approximations of f𝜖 and f𝜈 on their sieve spaces 𝜖n and 𝜈n, respectively. Then, we define the
sieve ML estimator 𝜃̂n of 𝜃0 ≡ (𝜓 ′

0, 𝑓𝜖0, 𝑓𝜈0)′ in the semiparametric model as follows:

𝜃̂n ≡ arg max
𝜃∈Θ̃n

Qn(𝜃), (14)

where Θ̃n ≡ Ψ̃ × 𝜖n × 𝜈n is the sieve space for 𝜃.

7For example, if one imposes Assumption 6, then 𝜂𝜖 = (𝜇𝜖, 𝜎𝜖)
′ and 𝜂𝜈 = (𝜇𝜈, 𝜎𝜈)

′ .
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With the parameter spaces 𝜖 and 𝜈 in Equation (11), we are interested in a class of “smooth” univariate square root
density functions. Specifically, we assume that

√
𝑓𝜖 and

√
𝑓𝜈 belong to the class of p-smooth functions and we restrict

our attention to linear sieve spaces for 𝜖 and 𝜈 .8 In this case, the choice of sieve spaces for 𝜖 and 𝜈 depends on the
supports of 𝜖 and 𝜈. If the supports are bounded, then one can use the polynomial sieve, trigonometric sieve, or cosine
sieve. When the supports are unbounded, then we can use the Hermite polynomial sieve or the spline wavelet sieve.

In this paper, we implicitly assume that the copula function is correctly specified. As mentioned earlier, using a para-
metric copula may lead to model misspecification. It is well known that when the model is misspecified, the ML estimator
converges to a pseudo-true value which minimizes the Kullback–Leibler (KL) divergence (e.g., White, 1982). This result
applies to a semiparametric model (e.g., Chen & Fan, 2006a, 2006b) as in our semiparametric case. We, however, do not
investigate the asymptotic properties of the sieve estimators under copula misspecification, as it is beyond the scope of this
paper. Instead, later in simulation, we investigate how the copula misspecification affects the performance of estimators.9

4 ASYMPTOTIC THEORY FOR SIEVE ML ESTIMATORS

In this section, we provide the asymptotic theory for the sieve ML estimator 𝜃̂n of 𝜃 ≡ (𝜓 ′, f𝜖, f𝜈)′ in the semiparametric
model. This theory will be useful for practitioners to conduct inference. The asymptotic theory for the ML estimator 𝜃n
of 𝜃 ≡ (𝜓 ′, 𝜂𝜖, 𝜂𝜈)′ in the parametric model is relatively standard and can be found in Newey and McFadden (1994),
for example. The theory establishes that the parametric ML estimator is consistent, asymptotically normal, and efficient
under some regularity conditions. To investigate the asymptotic properties of the sieve ML estimator, we slightly modify
our model as follows.

Let G(·) be a strictly increasing function mapping from R to [0, 1]. We further assume that G is differentiable and that its
derivative g(x) ≡ dG(x)

dx
is bounded away from zero on R. Then, without loss of generality (e.g., Bierens, 2014), we consider

the following transformation of F𝜖0 and F𝜈0 as

F𝜖0(x) = H𝜖0[G𝜖(x)], F𝜈0(x) = H𝜈0[G𝜈(x)], (15)

where H𝜖0(·) and H𝜈0(·) are unknown distribution functions on [0, 1]. For G, we can choose the standard normal distri-
bution function or the logistic distribution function. Since we assume that the distribution functions of 𝜖 and 𝜈 admit
density functions, we require that H𝜖0 and H𝜈0(·) be differentiable, and write their derivatives as h𝜖0(·) and h𝜈0(·), respec-
tively. For each j ∈ {𝜖, 𝜈}, let 𝑗 ≡ {h𝑗 = q2 ∶ q ∈ } for some function space  . With this modification, we redefine
the parameter as 𝜃 = (𝜓 ′, h𝜖, h𝜈)′ ∈ Θ̃† ≡ Ψ̃ ×𝜖 ×𝜈 . Note that, using the transformation of the distribution functions
in Equation (15), the unknown infinite-dimensional parameters are defined on a bounded domain. In the Supporting
Information Appendix, we show that the transformation does not affect the identification result.

We redefine the parameter space to facilitate developing the asymptotic theory. The identification requires that the
space of the finite-dimensional parameter Ψ̃ be open and convex (see Theorems 1 and 2), and thus Ψ̃ cannot be compact.
We introduce an “optimization space” that contains the true parameter 𝜓0 and consider it as the parameter space of 𝜓 .
Formally, we restrict the parameter space for estimation in the following way.

Assumption 9. There exists a compact and convex subset Ψ ⊆ Ψ̃ such that 𝜓0 ∈ int(Ψ), where int(A) is the interior
of the set A.

With the optimization space, we define the parameter space as Θ ≡ Ψ ×𝜖 ×𝜈 , and the corresponding sieve space is
denoted by Θn ≡ Ψ ×𝜖n ×𝜈n. Then, the sieve ML estimator in Equation (14) is also redefined as follows:

𝜃̂n ≡ argmax
𝜃∈Θn

Qn(𝜃). (16)

8A definition of p-smooth functions can be found in Chen (2007, p. 5570) or CFT06 (p. 1230). We give the formal definition of p-smooth functions in
Section 4.
9For related issues of copula misspecification, refer to Chen and Fan, 2006a, or Liao and Shi, 2017, for example. In particular, Chen and Fan (2006a)
propose a test procedure for model selection that is based on the test of Vuong (1989). Liao and Shi (2017) extend Vuong's test to cases where mod-
els contain infinite-dimensional parameters and propose a uniformly asymptotically valid Vuong test for semi/nonparametric models. Their setting
encompasses those models that can be estimated by the sieve ML as a special case.
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4.1 Consistency of the sieve ML estimators
We begin by showing the consistency of the sieve ML estimator. Since the parameter involves both finite- and
infinite-dimensional objects, we establish the consistency of the sieve ML estimators with respect to a pseudo distance
function dc on Θ×Θ.10 All of the norms and the definitions of function spaces in this paper are provided in the Supporting
Information Appendix.

We present the following assumptions, under which the sieve ML estimator in Equation (16) is consistent with respect
to the pseudo-metric dc(·, ·).

Assumption 10. There exists a measurable function p(X ,Z) such that for all 𝜃 ∈ Θ and for all y, d = 0, 1, p𝑦d,XZ(𝜃) ≥
p(X ,Z), with E| log(p(X ,Z))| <∞ and E

[
1

p(X ,Z)2

]
< ∞.

Assumption 11. {Wi ∶ i = 1, 2, … ,n} is a random sample, with E
[||(X ′

i ,Z
′
i )
′||2E] < ∞.

Assumption 12. (i)
√

h𝜖0,
√

h𝜈0 ∈ Λp
R([0, 1]), with p >

1
2

and some R > 0; (ii) 𝜖 = 𝜈 =  where  ≡{
h = q2 ∶ q ∈ Λp

R([0, 1]), ∫ 1
0 q = 1

}
, with R being defined as in (i) and Λp

R([0, 1]) being a Hölder ball with radius R;
(iii) the density functions h𝜖0 and h𝜈0 are bounded away from zero on [0, 1].

Assumption 13. (i) 𝜖n = 𝜈n ≡ {h ∈  ∶ h(x) = pkn(x)′akn , akn ∈ Rkn , ||h||∞ < 2R2}, where kn → ∞ and kn∕n → 0
as n → ∞; (ii) for all j ≥ 1, we have Θj ⊆ Θj+1, and there exists a sequence {𝜋j𝜃0}j such that dc(𝜋j𝜃0, 𝜃0) → 0 as j → ∞.

Assumption 14. For j = 1, 2, let C𝑗(u1,u2; 𝜌) ≡ 𝜕C(u1,u2;𝜌)
𝜕u𝑗

and C𝜌(u1,u2; 𝜌) ≡ 𝜕C(u1,u2;𝜌)
𝜕𝜌

. The derivatives Cj(·, ·; ·) and
C𝜌(·, ·; ·) are uniformly bounded for all j = 1, 2.

Assumption 10 guarantees that the log-likelihood function l(𝜃,Wi) is well defined for all 𝜃 ∈ Θ and that Q0(𝜃0) > −∞.
Assumption 11 restricts the DGP, and assumes the existence of moments of the data. Assumption 12 defines the parameter
space and implies that the infinite-dimensional parameters are in some smooth class called a Hölder class. Note that
conditions (i) and (ii) in Assumption 12 together imply that h𝜖0 and h𝜈0 belong to Λp

R̃
([0, 1]), where R̃ ≡ 2m+1R2 < ∞.11

Thus we may assume that h𝜖0 and h𝜈0 belong to a Hölder ball with smoothness p under Assumption 12.12 The condition
that 𝜖 and 𝜈 are the same can be relaxed, but it is imposed for simplicity. The first part of Assumption 13 restricts
our choice of sieve spaces for 𝜖 and 𝜈 to linear sieve spaces with order kn. This can be relaxed so that the choice of kn
is different for h𝜖 and h𝜈 . The latter part of Assumption 13 requires that the sieve space be chosen appropriately so that
the unknown parameters can be well approximated. Because the unknown infinite-dimensional parameters belong to a
Hölder ball and are defined on bounded supports, we can choose the polynomial sieve, trigonometric sieve, cosine sieve,
or spline sieve.13 For example, if we choose the polynomial sieve or the spline sieve, then one can show that dc(𝜋kn𝜃0, 𝜃0) =
O(k−p

n ) (e.g., Lorentz, 1966). Assumption 14 imposes the boundedness of the derivatives of the copula function.
The following theorem demonstrates that under the above assumptions the sieve estimator 𝜃̂n is consistent with respect

to the pseudo metric, dc.

Theorem 6. Suppose that Assumptions 1-5 and 7 hold. If Assumptions 9-14 are satisfied, then dc(𝜃̂n, 𝜃0)
p
−−→ 0.

10It is important to choose appropriate norms to ensure the compactness of the original parameter space, as compactness plays a key role in establishing
the asymptotic theory. Since the parameter space is infinite dimensional, it may be compact under certain norms but not under other norms. An
infinite-dimensional space that is closed and bounded is not necessarily compact, and thus it is more demanding to show that the parameter space is
compact under certain norms. To overcome this difficulty, we take the approach introduced by Gallant and Nychka (1987), which uses two norms to
obtain the consistency. Their idea is to use the strong norm to define the parameter space as a ball, and then to ensure the compactness of the parameter
space using the consistency norm. In our setting, the Hölder norm is the strong norm and || · ||c is the consistency norm. Related to this issue, Freyberger
and Masten (2019) recently extend the idea to more cases and present compactness results for several parameter spaces.
11See the Supporting Information Appendix for details.
12These conditions implicitly define the strong norm (Hölder norm).
13Refer to Chen (2007) or CFT06 for details on the choice of sieve spaces.
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4.2 Convergence rates
In this section, we derive the convergence rate of the sieve ML estimator. The convergence rate provides information on
how fast the estimator converges to the true parameter value. Heuristically, the faster the convergence rate, the larger the
effective sample size is for estimation. The next theorem demonstrates the convergence rate of the sieve ML estimator
with respect to the L2-norm || · ||2.

Theorem 7. Suppose that Assumptions 1-5, 7, and 9-14 hold. If Assumption B.1 in the Supporting Information Appendix
additionally holds, then we have ||𝜃̂n − 𝜃0||2 = Op

(
max

{√
kn∕n, k−p

n

})
. Furthermore, if we choose kn ∝ n

1
2p+1 , then we

have ||𝜃̂n − 𝜃0||2 = Op

(
n− p

2p+1

)
.

The former convergence rate is standard in the literature, where the first term corresponds to variance, which increases
in kn, and the second term corresponds to the approximation error ||𝜃0 − 𝜋k𝜃0||2, which decreases in kn. The choice
of kn ∝ n

1
2p+1 yields the optimal convergence rate, which is slower than the parametric rate (n−1/2). Note that this rate

increases with the degree of smoothness, p.

4.3 Asymptotic normality of smooth functionals
We now establish the asymptotic normality of smooth functionals. The parameters in our model contains both finite- and
infinite-dimensional parameters, and many objects of interest are written as functionals of both types of the parameters.
The results of this section can be used to calculate the standard error of the estimate of a functional of interest (includ-
ing the individual finite-dimensional parameters), or to conduct inference (i.e., testing hypotheses and constructing
confidence intervals) based on normal approximation.

Before proceeding, we strengthen the smoothness condition in Assumption 5. Let Cij(u1,u2; 𝜌) denote the second-order
partial derivative of a copula function C(u1,u2; 𝜌) with respect to i and j, for i, j ∈ {u1,u2, 𝜌}.

Assumption 15. The copula function C(u1,u2; 𝜌) is twice continuously differentiable with respect to u1,u2, and 𝜌,
and its first- and second- order partial derivatives are well defined in a neighborhood of 𝜃0.

Let V be the linear span of Θ − {𝜃0}. For t ∈ [0, 1], define the directional derivative of l(𝜃,W) at the direction v ∈ V as

dl(𝜃0 + tv,W)
dt

||||t=0
≡ lim

t→0

l(𝜃0 + tv,W) − l(𝜃0)
t

= 𝜕l(𝜃0,W)
𝜕𝜓 ′ v𝜓 +

∑
𝑗∈{𝜖,𝜈}

𝜕l(𝜃0,W)
𝜕h𝑗

[v𝑗], (17)

where 𝜕l(𝜃0,W)
𝜕𝜓 ′ v𝜓 , 𝜕l(𝜃0,W)

𝜕h𝜖
[v𝜖], and 𝜕l(𝜃0,W)

𝜕h𝜈
[v𝜈] are given by Equations B.4–B.6 in the Supporting Information Appendix. If

we denote the closed linear span of V under the Fisher norm || · || by V̄, then (V̄, || · ||) is a Hilbert space.
Let T ∶ Θ → R be a functional. For any v ∈ V, we write

𝜕T(𝜃0)
𝜕𝜃′

[v] ≡ lim
t→0

T(𝜃0 + tv) − T(𝜃0)
t

,

provided the right-hand-side limit is well defined. The following assumption characterizes the smoothness of the
functional T.

Assumption 16. The following conditions hold: (i) There exist constants w > 1+ 1
2p

and a small 𝜖0 > 0 such that for
any v ∈ V with ||v|| ≤ 𝜖0 ||||T(𝜃0 + v) − T(𝜃0) −

𝜕T(𝜃0)
𝜕𝜃′

[v]
|||| = O(||v||w).

(ii) For any v ∈ V, T(𝜃0 + tv) is continuously differentiable in t ∈ [0, 1] around t = 0, and

‖‖‖‖𝜕T(𝜃0)
𝜕𝜃′

‖‖‖‖ ≡ sup
v∈V,||v||>0

||| 𝜕T(𝜃0)
𝜕𝜃′

[v]|||||v|| < ∞.
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Assumption 16 defines a smooth functional T and guarantees the existence of v∗ ∈ V̄ such that < v∗, v >= 𝜕T(𝜃0)
𝜕𝜃′

[v] for

all v ∈ V and ||v∗||2 = ‖‖‖ 𝜕T(𝜃0)
𝜕𝜃′

‖‖‖2
. Here, we call v* the Riesz representer for the functional T.

The next assumption requires that the Riesz representer be well approximated over the sieve space and that it converges
at a rate with respect to the Fisher norm.

Assumption 17. There exists 𝜋nv* ∈ Θn − {𝜃0} such that ||𝜋nv* − v*|| = o(n−1/4).

The following proposition states that the plug-in sieve ML estimator T(𝜃̂n) of T(𝜃0) is
√

n -asymptotically normally
distributed under certain conditions. The technical conditions (Assumptions B.1, B.2, and B.3) can be found in the
Supporting Information Appendix.

Proposition 1. Suppose that Assumptions 1–5, 7, 9-17, and B.1–B.3 are satisfied. If kn ∝ n
1

2p+1 , then we have

√
n(T(𝜃̂n) − T(𝜃0))

d
−−→

(
0,
‖‖‖‖𝜕T(𝜃0)

𝜕𝜃′

‖‖‖‖
2)
.

It is worth noting that, although the parameter T(𝜃0) contains an infinite-dimensional object (i.e., the marginal
distributions of 𝜖 and 𝜈), the sieve plug-in estimator is

√
n-estimable due to the fact that T is a smooth functional.

4.3.1 Example 1: Asymptotic normality for the finite-dimensional parameter 𝜓0
The finite-dimensional parameter 𝜓0 is a special case of the smooth functionals. Here, we demonstrate the asymptotic
normality of the sieve estimator of the finite-dimensional parameter 𝜓0.

Theorem 8. Suppose that Assumptions 1 -5, 7, 9-15, 17, and B1–B4 hold. Then, we have

√
n(𝜓̂n − 𝜓0)

d
−−→ (

0,∗(𝜓0)−1) , (18)

and the form of ∗(𝜓) is given in the Supporting Information Appendix.

The covariance matrix in Equation (18) needs to be estimated. To do so, CFT06 adopted the covariance estimation
method proposed by Ai and Chen (2003). Since an infinite-dimensional optimization is involved in calculating 𝜓0 , we
provide a sieve estimator of ∗(𝜓0)−1. The sieve spaces for b𝜖 and b𝜈 can be the same as those for h𝜖 and h𝜈 , respectively.
As in Ai and Chen, we first estimate efficient score functions by solving the following minimization problem: for all
k = 1, 2, … , d𝜓

(b̂𝜖k, b̂𝜈k) ≡ arg min
(b𝜖k ,b𝜈k)∈𝜖n×𝜈n

1
n

n∑
i=1

{
𝜕l(𝜃̂n,Wi)
𝜕𝜓k

−
(
𝜕l(𝜃̂n,Wi)
𝜕h𝜖

[b𝜖k] +
𝜕l(𝜃̂n,Wi)
𝜕h𝜈

[b𝜈k]
)}2

.

Let b̂𝑗 = (b̂𝑗1, b̂𝑗2, … , b̂𝑗d𝜓 )
′ for given j ∈ {𝜖, 𝜈} and compute

̂∗(𝜓̂n) =
1
n

n∑
i=1

{[
𝜕l(𝜃̂n,Wi)

𝜕𝜓
−
(
𝜕l(𝜃̂n,Wi)
𝜕h𝜖

[b̂𝜖] +
𝜕l(𝜃̂n,Wi)
𝜕h𝜈

[b̂𝜈]
)]

×
[
𝜕l(𝜃̂n,Wi)

𝜕𝜓
−
(
𝜕l(𝜃̂n,Wi)
𝜕h𝜖

[b̂𝜖] +
𝜕l(𝜃̂n,Wi)
𝜕h𝜈

[b̂𝜈]
)]′}

to obtain a consistent estimator of ∗(𝜓0). We now summarize this result as follows:

Theorem 9. Suppose that assumptions in Theorem 8 hold. Then, ̂∗(𝜓̂n) = ∗(𝜓0) + op(1).

The proof of the theorem can be found in theorem 5.1 in Ai and Chen (2003).

4.3.2 Example 2: Asymptotic normality for the conditional ATE
We now consider the conditional ATE, E[Y1 −Y0|X = x] = F𝜖0(x

′
𝛽0 + 𝛿10) −F𝜖0(x

′
𝛽0). From Proposition 1, we provide the

asymptotic normality of the sieve plug-in estimator of the conditional ATE:
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Theorem 10. Let x ∈ supp(X) be given. Suppose that the conditions in Proposition 1 hold with T(𝜃0) = ATE(𝜃0; x). Then,
we have √

n(ATE(𝜃̂n; x) − ATE(𝜃0; x))
d
−−→

(
0,
‖‖‖‖𝜕ATE(𝜃0; x)

𝜕𝜃′
[v]

‖‖‖‖
2)
, (19)

where ‖‖‖ 𝜕ATE(𝜃0;x)
𝜕𝜃′

[v]‖‖‖2
= supv∈V,||v||>0

||| 𝜕ATE(𝜃0 ;x)
𝜕𝜃′ [v]|||||v|| , and the form of 𝜕ATE(𝜃0;x)

𝜕𝜃′
[v] is given by Equation B.7 in the Supporting

Information Appendix.
Furthermore, the asymptotic variance in Equation (19) can be estimated as follows:

𝜎̂2
ATE(𝜃;x) ≡ max

v∈Θn

‖‖‖‖‖𝜕ATE(𝜃̂n; x)
𝜕𝜃′

[v]
‖‖‖‖‖

2

.

4.4 Weighted bootstrap
The asymptotic variances characterized in the previous subsection can be estimated using the sieve methods. In practice,
estimating asymptotic variances may be sensitive to the choice of the number of sieve approximation terms. Furthermore,
when the dimension of 𝜃0 is large, it is relatively cumbersome to estimate the asymptotic variance of the sieve estimator for
the finite-dimensional parameter. In this subsection, we briefly discuss the weighted bootstrap as an alternative procedure.

For general semiparametric M-estimation, Ma and Kosorok (2005) and Cheng and Huang (2010) provide the validity
of the weighted bootstrap for finite-dimensional parameters in a class of semiparametric models that includes our model.
Related to these results, Chen and Pouzo (2009) provide the bootstrap validity in semiparametric conditional moment
models. We do not pursue to prove the bootstrap validity in this paper, as these references sufficiently address it. In our
empirical exercise, we use the weighted bootstrap scheme proposed in these papers to obtain the standard errors of the
estimated functionals of interest. Let T(𝜃0) be a smooth functional of interest and B be the number of bootstrap iterations.
The weighted bootstrap is carried out as follows:

1. For each b = 1, 2, … ,B, let {B(b)
i ∶ i = 1, 2, … ,n} be a random sample generated from a positive random variable

Bi such that EBi = 1, var(Bi) = 1, and is independent of {Wi ∶ i = 1, 2, … ,n}.14

2. For each bootstrap iteration b = 1, 2, … ,B, define 𝜃̂∗(b)n be a bootstrap estimate of 𝜃0:

𝜃̂
∗(b)
n ≡ arg max

𝜃∈Θ̃n

Q∗(b)
n (𝜃),

where Q∗(b)
n (𝜃) ≡ 1

n

∑n
i=1 B(b)

i · l(𝜃,Wi). Obtain the bootstrap estimate of the functional of interest by using 𝜃̂∗(b)n and
denote it by T(𝜃̂∗(b)n ).

3. The bootstrap standard error of T(𝜃̂n) is given by
√

1
B

∑B
b=1

(
T(𝜃̂∗(b)n ) − T̄∗

B

)
, where T̄∗

B ≡ 1
B

∑B
b=1 T(𝜃̂∗(b)n ).

One may use the bootstrap standard errors to construct confidence intervals, and such confidence intervals rely on the
normal approximation. As an alternative to the normal approximation, one can use percentile confidence intervals. For
a small p ∈ (0, 1), a (1 − p) × 100% percentile confidence interval for a functional T(𝜃0) is constructed as follows:

PCI(p) ≡ [
Q∗

T(p∕2), Q∗
T(1 − p∕2)

]
,

where Q∗
T(𝜏) is the 𝜏th quantile of bootstrap estimates {T(𝜃̂∗(b)n ) ∶ b = 1, 2, … ,B}. We suggest that practitioners use the

percentile confidence intervals rather than the confidence intervals with the bootstrap standard errors.

5 MONTE CARLO SIMULATION AND SENSITIVITY ANALYSIS

In this section, we conduct a sensitivity analysis via Monte Carlo simulation exercises to provide guidance for empirical
researchers. To this end, we investigate the finite-sample performance of the sieve ML estimators of the finite-dimensional

14Note that the condition on the variance of Bi can be relaxed. In our empirical example, we use Bi ∼ exp(1).
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TABLE 1 Correct specification (n = 500) (true marginal: normal)

𝛾 𝛿1 𝜌sp ATE 𝛾 𝛿1 𝜌sp ATE
Parametric estimation, Gaussian copula Semiparametric estimation, Gaussian copula

True values 0.8000 1.1000 0.5000 0.3643 True values 0.8000 1.1000 0.5000 0.3643
Estimate 0.8074 1.1469 0.4956 0.3657 Estimate 0.8070 1.1577 0.5037 0.3584
SD 0.0934 0.3954 0.1537 0.0897 SD 0.0940 0.4141 0.1528 0.0935
Bias 0.0074 0.0469 -0.0044 0.0014 Bias 0.0070 0.0577 0.0038 -0.0060
RMSE 0.0936 0.3982 0.1537 0.0897 RMSE 0.0943 0.4181 0.1528 0.0937

Parametric estimation, Frank copula Semiparametric estimation, Frank copula
True values 0.8000 1.1000 0.5000 0.3643 True values 0.8000 1.1000 0.5000 0.3643
Estimate 0.8027 1.1450 0.4909 0.3681 Estimate 0.8028 1.1556 0.4981 0.3598
SD 0.0936 0.3379 0.1310 0.0781 SD 0.0943 0.3588 0.1314 0.0829
Bias 0.0027 0.0450 -0.0091 0.0037 Bias 0.0028 0.0556 -0.0019 -0.0045
RMSE 0.0936 0.3409 0.1313 0.0781 RMSE 0.0944 0.3631 0.1314 0.0830

Parametric estimation, Clayton copula Semiparametric estimation, Clayton copula
True values 0.8000 1.1000 0.5000 0.3643 True values 0.8000 1.1000 0.5000 0.3643
Estimate 0.8024 1.1083 0.5075 0.3598 Estimate 0.8027 1.1275 0.5140 0.3504
SD 0.0942 0.3371 0.1368 0.0791 SD 0.0935 0.3719 0.1354 0.0816
Bias 0.0024 0.0083 0.0075 -0.0045 Bias 0.0027 0.0275 0.0139 -0.0139
RMSE 0.0942 0.3372 0.1370 0.0792 RMSE 0.0936 0.3729 0.1361 0.0828

Parametric estimation, Gumbel copula Semiparametric estimation, Gumbel copula
True values 0.8000 1.1000 0.5000 0.3643 True values 0.8000 1.1000 0.5000 0.3643
Estimate 0.8026 1.1339 0.5060 0.3605 Estimate 0.8035 1.1564 0.5102 0.3562
SD 0.0974 0.4002 0.1488 0.0894 SD 0.0994 0.4300 0.1535 0.0978
Bias 0.0026 0.0339 0.0060 -0.0038 Bias 0.0035 0.0564 0.0102 -0.0081
RMSE 0.0974 0.4016 0.1489 0.0895 RMSE 0.0995 0.4337 0.1539 0.0981

parameter𝜓0 and the ATE. We compare them with the performance of the parametric ML estimators under various DGPs
and model specifications, and illustrate how the parametric estimators of 𝜓0 and the ATE suffer from misspecification of
the marginal distribution of 𝜖. Note that the ATE involves 𝜓0 and the marginal of 𝜖.

5.1 Simulation design
We compare the performance of the parametric and semiparametric estimators when the marginal distributions are mis-
specified in the parametric models. To calculate the parametric estimators, we specify the parametric models with normal
distributions for the marginals of 𝜖 and 𝜈, owing to their popularity. For the DGPs, we consider two marginals of 𝜖 and
𝜈: the standard normal distribution (to reflect correct specification) and a mixture of normal distributions (to reflect
misspecification).

The DGPs are as follows:
Yi = 1{Xi𝛽 + Di𝛿1 ≥ 𝜖}, Di = 1{Xi𝛼 + Zi𝛾 ≥ 𝜈},

where
(𝛼, 𝛾, 𝛽, 𝛿1) = (−1, 0.8,−1, 1.1), (X ,Z)′ ∼ 

(
(0, 0)′,

(
1 −0.1
−0.1 1

))
and (𝜖, 𝜈)′ ∼ C(F𝜖0(·),F𝜈0(·); 𝜌). Here, F𝜖0 and F𝜈0 are normal or a mixture of normal.15 For C(·, ·; 𝜌), we consider the Gaus-
sian, Frank, Clayton, and Gumbel copulas, which satisfy the identifying assumption (Assumption 5). The dependence
structure between 𝜖 and 𝜈 is characterized by a one-dimensional parameter 𝜌 in all copulas considered, but the interpreta-
tion of the dependence parameter differs across the copulas. To resolve this issue, we report Spearman's 𝜌 corresponding
to the estimated dependence parameter in each copula specification. We estimate the models with several values of 𝜌 to
examine whether the performance of the estimators varies with the degree of dependence. Although we assume that the
copula is correctly specified, economic theory does not provide a justification for the choice of copula. In this simulation
study, we also examine the effect of copula misspecification on the performance of the estimators.16

15For the mixture of normal distributions, 𝜖 and 𝜈 are generated from 0.6 (−1, 𝜎2) + 0.4 (1.5, 𝜎2) for appropriate 𝜎 > 0, so that the mean is zero and
the variance is one.
16Misspecification problems in copula-based models have been documented using Monte Carlo simulations in the statistics literature (e.g., Kim, Siva-
pulle, & Silvapulle, 2007a, 2007b; Lawless & Yilmaz, 2011). In particular, Lawless and Yilmaz (2011) compared the performance of the parametric and
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TABLE 2 Misspecification of marginals (n = 500) (true marginal: mixture of normals)

𝛾 𝛿1 𝜌sp ATE 𝛾 𝛿1 𝜌sp ATE
Parametric estimation, Gaussian copula Semiparametric estimation, Gaussian copula

True values 0.8000 1.1000 0.5000 0.1066 True values 0.8000 1.1000 0.5000 0.1066
Estimate 0.7994 1.0925 0.4496 0.2443 Estimate 0.8562 1.2696 0.4895 0.1241
SD 0.1281 0.6285 0.1651 0.1129 SD 0.1113 0.3728 0.1059 0.0653
Bias -0.0006 -0.0075 -0.0504 0.1377 Bias 0.0562 0.1696 -0.0105 0.0174
RMSE 0.1281 0.6285 0.1726 0.1780 RMSE 0.1247 0.4096 0.1064 0.0675

Parametric estimation, Frank copula Semiparametric estimation, Frank copula
True values 0.8000 1.1000 0.5000 0.1066 True values 0.8000 1.1000 0.5000 0.1066
Estimate 0.8056 1.3088 0.3976 0.2894 Estimate 0.8377 1.2541 0.4829 0.1276
SD 0.1272 0.5093 0.1221 0.0883 SD 0.1141 0.3564 0.0963 0.0689
Bias 0.0056 0.2088 -0.1024 0.1827 Bias 0.0377 0.1541 -0.0171 0.0210
RMSE 0.1273 0.5504 0.1594 0.2030 RMSE 0.1202 0.3883 0.0978 0.0720

Parametric estimation, Clayton copula Semiparametric estimation, Clayton copula
True values 0.8000 1.1000 0.5000 0.1066 True values 0.8000 1.1000 0.5000 0.1066
Estimate 0.8099 1.1439 0.4236 0.2555 Estimate 0.8441 1.2234 0.4948 0.1192
SD 0.1309 0.5236 0.1412 0.0913 S.D 0.1134 0.3611 0.0999 0.0611
Bias 0.0099 0.0439 -0.0764 0.1488 Bias 0.0441 0.1234 -0.0053 0.0126
RMSE 0.1312 0.5254 0.1605 0.1746 RMSE 0.1217 0.3816 0.1001 0.0624

Parametric estimation, Gumbel copula Semiparametric estimation, Gumbel copula
True values 0.8000 1.1000 0.5000 0.1066 True values 0.8000 1.1000 0.5000 0.1066
Estimate 0.7892 1.0326 0.4650 0.2373 Estimate 0.8484 1.2692 0.4900 0.1259
SD 0.1333 0.5297 0.1338 0.0986 S.D 0.1142 0.3646 0.0986 0.0645
Bias -0.0108 -0.0674 -0.0350 0.1307 Bias 0.0484 0.1692 -0.0099 0.0193
RMSE 0.1337 0.5340 0.1383 0.1637 RMSE 0.1241 0.4019 0.0991 0.0673

We impose a restriction that X has no constant for the location normalization, and fix 𝛼 and 𝛽 to −1 for the scale
normalization. We use these normalizations in both parametric and semiparametric models, and it allows us to easily
compare the performance of the parametric and semiparametric estimators. We consider two sample sizes—500 and
1,000—and all results are obtained from 2,000 Monte Carlo replications. As a performance measure of the estimators, we
consider the root mean squared errors (RMSEs) in our simulation.

5.2 Estimation of parametric and semiparametric models
The parametric models can be estimated by the standard ML method. Since bivariate probit models are commonly used in
practice, we specify the model using the Gaussian copula and normal marginals. In addition to that, we also try different
copulas and normal marginals.17

Consider semiparametric models. Recall that we assume that
√

h𝑗 ∈ Λp([0, 1]). Therefore, for each j ∈ {𝜖, 𝜈}, we
approximate hj to

h𝑗(x) =

(∑kn𝑗

k=0 a𝑗k𝜓𝑗k(x)
)2

∫ 1
0

(∑kn𝑗

k=0 a𝑗k𝜓𝑗k(x)
)2

dx
, (20)

where {𝜓𝑗k(·)}
kn𝑗

k=0 is the set of approximating functions for hj(·), and knj is the number of approximating functions. The
approximation in Equation (20) guarantees that ∫ 1

0 h𝑗(x)dx = 1 by construction. We take the space of the polynomials as
the sieve space for h𝜖 and h𝜈 . The orders of the polynomials (kn𝜖 and kn𝜈) are set to be proportional to n1/7. To incorporate
the specification given in Equation (15), we choose the standard normal distribution function for G.

semiparametric ML estimators in a copula-based model and showed that the semiparametric two-step method outperformed the parametric estimation
method when the copula function was misspecified.
17Such an estimation method in related parametric models can be found in Marra and Radice (2011). The R package (GJRM) used in their paper can
be used to estimate our parametric model as well.
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TABLE 3 Summary statistics Variable Mean SD Min. Max.
Y Whether or not visit doctor 0.182 0.386 0 1
D Whether or not have insurance 0.657 0.475 0 1
M Age 42.591 10.574 25 64

Years of education 13.433 2.892 0 17
Income (hourly) 20.094 11.990 0.4 73.08
Family size 2.932 1.595 1 14
Living in MSA 0.868 0.338 0 1
Male 0.500 0.500 0 1
Region: NorthEast 0.141 0.348 0 1
Region: MidWest 0.226 0.418 0 1
Region: South 0.369 0.483 0 1
Region: West 0.264 0.441 0 1
Race: White 0.739 0.439 0 1
Race: Black 0.170 0.376 0 1
Race: Minority 0.010 0.099 0 1
Race: Asian 0.081 0.273 0 1
Ever married 0.782 0.413 0 1
Physical health below Good† 0.095 0.293 0 1
Mental health below Good† 0.036 0.186 0 1

Z Number of employees 149.385 182.662 1 500
Firm has multiple locations 0.682 0.466 0 1

X sick 32 68.317 17.402 42 91
sick 34 70.463 3.633 67 77

Number of observations = 7,555

† The original variables for these variables are coded into five groups: Excellent, Very
Good, Good, Fair, and Poor. These variables show the proportion of individuals in the
sample that consider their physical/mental health is below Good (i.e., Fair or Poor).

5.3 Simulation results
We begin by examining the simulation results under correct specification (i.e., the true marginal distributions and the
specified marginal distributions are both normal). Table 1 shows the simulation results for n = 500. We find that the
ML estimators of 𝜓 and the ATE perform well in the parametric models, with negligible biases and small variances.18

The performance of the sieve ML estimators of 𝜓 and the ATE in the semiparametric models is as good as that in the
parametric models, even with this moderate sample size.

Now, we consider the cases where the marginal distributions are misspecified in the parametric models. Table 2 con-
siders the case where the true marginal distributions are a mixture of normal distributions, but the researcher specifies
them as normal distributions. In this table, the RMSEs of the parametric ML estimators are larger than those of the sieve
ML estimators. This implies that the parametric ML estimators suffer from misspecification whereas the sieve ML esti-
mators do not. Moreover, the parametric estimators of the ATE are substantially distorted under this misspecification,
presumably because the ATE is a function of the misspecified distribution of 𝜖. Note that the poor performance of the
parametric estimators is attributed not only to large bias but also large variance. For instance, the bias of the parametric
estimator of the ATE with the Gaussian copula is 0.1377, which is about eight times larger than that of the corresponding
sieve estimator. These biases of the parametric estimators of the ATE are substantial in that they do not disappear with
the increased sample size.19 Therefore, the simulation results demonstrate that when the marginal distributions are mis-
specified the sieve estimators outperform the parametric estimators in terms of the RMSE. The Supporting Information
Appendix also contains simulation results for the cases where both the copula and the marginal distributions are mis-
specified. The results show that, even under copula misspecification, the sieve ML estimators remain to outperform the
parametric counterparts when the marginal distributions are misspecified.

Overall, the simulation results suggest that researchers are recommended to use the semiparametric models and the
sieve ML estimation proposed in this paper when they are concerned about model misspecification. The following is a
summary of the main findings from our simulation study:

18The ATE is evaluated at the mean of X.
19We provide simulation results with a larger sample size (n = 1, 000), and they can be found in the Supporting Information Appendix.
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Parametric Semiparametric
Age† 0.130*** 0.077***

(0.018) (0.038)
Years of education† 0.190*** 0.098**

(0.018) (0.044)
Family size† -0.120*** -0.041*

(0.017) (0.023)
Income† 0.268*** 0.416***

(0.028) (0.089)
Male 0.193*** 0.062

(0.036) (0.039)
Living in MSA -0.090* -0.040

(0.047) (0.056)
Ever married -0.112*** -0.048

(0.043) (0.050)
Physical health very good 0.001 -0.024

(0.050) (0.042)
Physical health good 0.009 -0.011

(0.053) (0.043)
Physical health fair -0.097 -0.066

(0.071) (0.060)
Physical health poor 0.080 0.039

(0.155) (0.126)
Mental health very good 0.004 -0.016

(0.043) (0.043)
Mental health good -0.031 -0.029

(0.049) (0.038)
Mental health fair -0.009 -0.041

(0.095) (0.067)
Mental health poor 0.135 0.113

(0.287) (0.399)
Days for sick leave† (T32) 0.119*** 0.094***

(0.020) (0.025)
Days for sick leave† (T34) 0.113*** 0.113

(0.019) (N/A)
Number of employees (Z1) 0.228*** 0.231**

(0.020) (0.116)
Firm has multiple locations (Z2) 0.374*** 0.173***

(0.034) (0.067)
Region and race dummies Yes Yes
Number of observations 7,555 7,555

Note. Standard errors in parentheses. *p < 0.10; **p < 0.05; ***p < 0.01. The coef-
ficient on T34 in the semiparametric model is fixed for normalization. Gaussian
copula is used. † indicates that the variable is standardized.

TABLE 4 Estimates in selection equation

(i) When the model is correctly specified, the performance of the sieve ML estimators is comparable to that of the
parametric ML estimators.

(ii) When the marginal distributions are misspecified, the sieve ML estimation is recommended in order to improve
the performance.

(iii) The semiparametric ML estimators performs better than the parametric ML estimators under both copula and
marginal misspecification. Therefore, the semiparametric models are preferred to the parametric models in such
cases.

(iv) Especially for the ATE, whenever the marginal distributions are misspecified, the parametric ML estimates can be
significantly distorted.

We provide additional simulation results in the Supporting Information Appendix, where we consider (a) a larger sam-
ple size, (b) both copula and marginal misspecification, (c) different degrees of dependence, (d) marginal density functions
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of heavy tails, and (e) the coverage probabilities of bootstrap confidence intervals. Here is a summary. Across various sim-
ulation designs (a–c), our main findings remain the same. When the marginal distributions are believed to have fat tails,
we recommend practitioners to use the transformation function G that has fat tails. Lastly, the percentile bootstrap works
well with the coverage probabilities close to its nominal level.

6 EMPIRICAL EXAMPLE

In this section, we illustrate in an application the practical relevance of the theoretical results developed in this paper. It
is widely recognized that health insurance coverage can be an important factor for patients' decisions for making medical
visits. At the same time, having insurances is endogenously determined by an individual's health status and socioeconomic
characteristics. In our empirical application, we analyze how health insurance coverage affects an individual's decision
to visit a doctor. In this example, Y is a binary outcome variable indicating whether an individual visited a doctor's office,
and D is the endogenous treatment variable that indicates whether an individual has his or her own private insurance.

We use the 2010 wave of the Medical Expenditure Panel Survey (MEPS) as our main data source. We focus on all the
visits that occurred in January, 2010. We restrict the sample to contain individuals with age between 25 and 64, and
exclude individuals who have retained any kinds of federal or state insurance in 2010. For Z, we consider two instrumental
variables that are used in Zimmer (2018)—the number of employees in the firm at which the individual works and a
dummy variable that indicates whether a firm has multiple locations. These variables reflect how big the firm is, and
the underlying rationale for using these variables as instruments is as follows: The bigger the firm is, the more likely it
provides fringe benefits including health insurance. Therefore, it is likely that these instruments affect insurance status.
We can argue, however, that they do not have direct effects on decisions to visit doctors.20 We assume that these variables
are exogenous conditional on covariates. For additional covariates M, we include age, gender, years of education, family
size (the number of family members), income, region, race, marital status, subjective physical and mental health status
evaluations, and whether living in a metropolitan statistical area. For the exogenous variable X in our model, we use
information about the provision of paid sick leave, which is separately collected from the National Compensation Survey
published by the US Bureau of Labor Statistics. We match the information for various industries with the primary data
set we use. Conditional on the covariates listed above, we assume that the number of sick leave days and leave benefits
are exogenous, by the same argument as for the instruments. Since X and Z are assumed to be exogenous only conditional
on M, we rely on Assumption 1′ instead of Assumption 1 for identification.

Since we include various control variables, one concern may be that the resulting estimators are imprecise with a mod-
erate sample size. It is worth emphasizing, however, that our semiparametric estimators do not suffer from the curse
of dimensionality as theoretically shown in Section 4. This is because of the parametric index structure in our model.
Moreover, we do not attempt to estimate the distributions of the unobservables conditional on these covariates, but only
estimate the marginal distributions.

Table 3 summarizes the variables used in estimation and shows their summary statistics. While 65.7% of individuals
had private health insurances in January 2010, only 18.2% of them visited doctors during the period. We use two variables
for the pay sick leave provision (i.e., X)—within each industry, the percentage of workers who are provided with paid
sick leave benefits and the percentage of workers who are provided with a fixed number of days for sick leave per year.
The summary statistics for these two variables show that there are sufficient variations across individuals in different
industries. Note that all the continuous variables are standardized in order to ensure stability in estimation.21

Before estimating the parametric and semiparametric models, we run a first-stage ordinary least squares regression of
D on X, M, and Z to see if the excluded instruments are weak. The F-statistic value is 167.19, and thus we assume that
the instruments are strong.22 For the normalization of the parametric model, we use the convention E[𝜖] = E[𝜈] = 0 and
var(𝜖) = var(𝜈) = 1. On the other hand, for the semiparametric model, we impose the normalization used in our simula-
tion studies; that is, we exclude the constant terms and the coefficients on sick 34 are fixed to be corresponding parametric
estimates. We choose the Gaussian copula to capture the dependence structure between 𝜖 and 𝜈. In both models, the stan-

20Note that it is difficult to justify these instruments for individuals who are either self-employed or unemployed. To avoid this issue, we exclude those
individuals from our analysis.
21That is, for a continuous random variable X, define X̃ = X−X̄n

ŝd(X)
, where X̄n and ŝd(X) are the sample average and standard deviation of X, respectively.

22The F-statistic in the first-stage linear regression may not be the best indicator for detecting weak instruments in nonlinear models. Han and McCloskey
(2019) developed inference methods that were robust to weak identification for a class of nonlinear models, and considered bivariate probit models as
one of the leading examples.
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Parametric Semiparametric
Treatment (𝛿) 0.493*** 0.368**

(0.168) (0.183)
Age† 0.055*** 0.059

(0.020) (0.047)
Years of education† 0.142*** 0.126*

(0.028) (0.066)
Family size† -0.055*** -0.052*

(0.021) (0.030)
Income† 0.018 0.031

(0.026) (0.068)
Male -0.398*** -0.373**

(0.037) (0.169)
Living in MSA 0.063 0.040

(0.052) (0.061)
Ever married 0.188*** 0.179**

(0.049) (0.084)
Physical health very good 0.227*** 0.201**

(0.056) (0.084)
Physical health good 0.395*** 0.356***

(0.059) (0.130)
Physical health fair 0.691*** 0.644***

(0.077) (0.224)
Physical health poor 0.978*** 0.959*

(0.163) (0.492)
Mental health very good -0.033 -0.040

(0.048) (0.057)
Mental health good -0.066 -0.064

(0.053) (0.064)
Mental health fair 0.042 0.053

(0.105) (0.154)
Mental health poor 0.300 0.186

(0.297) (0.320)
Days for sick leave† (T32) -0.026 -0.023

(0.026) (0.027)
Days for sick leave† (T34) -0.049** -0.049

(0.025) (N/A)
Region and Race dummies Yes Yes
Number of observations 7,555 7,555

Note. Standard errors in parentheses. *p < 0.10; **p < 0.05; ***p < 0.01. The
coefficient on T34 in the semiparametric model is fixed for normalization.
Gaussian copula is used. † indicates that the variable is standardized.

TABLE 5 Estimates in outcome equation

dard errors are obtained by the bootstrap procedure (Section 4.4), where the bootstrap weights are generated from the
exponential distribution with the parameter value 1.

Tables 4 and 5 present the estimation results for the selection equation and the outcome equation, respectively. Between
the parametric and semiparametric models, the magnitude and significance of the estimates differs, although, overall,
the signs of the estimates are similar. Table 6 shows the ATE estimates evaluated at various values of X and M, as well
as the estimates of the copula parameter 𝜌. The parametric estimate of 𝜌 is statistically significant under the 5% level,
whereas the semiparametric estimate is not. We can find that the parametric estimates of the ATE are different from
the corresponding semiparametric estimates. For example, the parametric ATE estimate evaluated at the 50% quantile of
(X′
,M′ )′ is about 0.129, which means that having private insurance increases the probability of visiting doctors by 12.9%.

On the other hand, the corresponding semiparametric estimate shows that the effect is 10.4%. The discrepancy in the ATE
estimates between the parametric and semiparametric models suggests the possible misspecification of the marginals,
which is consistent with the premise of this paper.
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TABLE 6 Estimated ATEs and Spearman's 𝜌 Parametric Semiparametric
ATE at the mean 0.114*** 0.100**

(0.037) (0.048)
ATE at 50% quantile 0.129*** 0.104*

(0.045) (0.054)
ATE at 25% quantile 0.121** 0.104

(0.050) (0.058)
ATE at 75% quantile 0.139*** 0.105*

(0.043) (0.056)
Spearman's 𝜌 -0.200** -0.154

(0.105) (0.134)
Number of observations 7,555 7,555

Note. Standard errors in parentheses. *p < 0.10; **p < 0.05; ***p < 0.01.

7 CONCLUSIONS

In this paper, we propose semiparametric estimation and inference methods for generalized bivariate probit models.
Specifically, we develop the asymptotic theory for the sieve ML estimators of semiparametric copula-based triangular
systems with binary endogenous variables. We show that the sieve ML estimators are consistent and that their smooth
functionals are

√
n -asymptotically normal under some regularity conditions. This semiparametric estimation approach

allows for flexibility in the models and thus provides robustness in estimation and inference.
We conduct a sensitivity analysis to examine how sensitive the estimation results are to model specifications. The results

show that, overall, the semiparametric sieve ML estimators perform well in terms of both bias and variance. When the
marginal distributions are misspecified, the sieve ML estimators substantially outperform the parametric ML estimators
and the latter exhibit substantial bias. In particular, we find that the parametric estimates of the parameters involving the
misspecified marginal distributions, such as the ATE, are highly misleading. When the model is correctly specified, we
find that the performance of the sieve ML estimators is comparable to that of the parametric ones. When the copula is also
misspecified, the distortion of the parametric estimates under misspecification of the marginals can become even more
severe, whereas the semiparametric estimates do not seem to be affected by this misspecification as long as the copula of
the true DGP is within the stochastic ordering class. A related and interesting question is how the results would change
if the data are not generated from this class of copulas.

We also formally show that the exclusion restriction is not only sufficient, but is also necessary for identification.
Without the exclusion restriction, the model parameters are not identified or, under the normality assumption, are, at
best, weakly identified. Some empirical studies ignore the exclusion restriction when estimating the model, and our
nonidentification result provides a caveat for practitioners.

ACKNOWLEDGMENTS

The authors thank Jason Abrevaya, Xiaohong Chen, Stephen Donald, Brendan Kline, Ed Vytlacil, and Haiqing Xu for
valuable discussions and helpful comments. An earlier version of this paper has been circulated under the title “Sensitivity
analysis in triangular systems of equations with binary endogenous variables.”

OPEN RESEARCH BADGES

This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to
reproduce the reported results. The data is available at [http://qed.econ.queensu.ca/jae/datasets/han001/].

REFERENCES
Ai, C., & Chen, X. (2003). Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica,

71(6), 1795–1843.
Altonji, J. G., Elder, T. E., & Taber, C. R. (2005). An evaluation of instrumental variable strategies for estimating the effects of catholic schooling.

Journal of Human Resources, 40(4), 791–821.

http://qed.econ.queensu.ca/jae/datasets/han001/


HAN AND LEE 21

Bhattacharya, J., Goldman, D., & McCaffrey, D. (2006). Estimating probit models with self- selected treatments. Statistics in Medicine, 25(3),
389–413.

Bhattacharya, J., Shaikh, A. M., & Vytlacil, E. (2008). Treatment effect bounds under monotonicity assumptions: An application to Swan–Ganz
catheterization. American Economic Review, 98(2), 351–356.

Bierens, H. J. (2008). Semi-nonparametric interval-censored mixed proportional hazard models: Identification and consistency results.
Econometric Theory, 24(3), 749–794.

Bierens, H. J. (2014). Consistency and asymptotic normality of sieve ML estimators under low-level conditions. Econometric Theory, 30(5),
1021–1076.

Chen, X. (2007). Large sample sieve estimation of semi-nonparametric models. In J. Heckman, & E. Leamer (Eds.), Handbook of Econometrics,
Vol. 6B. Amsterdam, Netherlands: Elsevier, pp. 5549–5632.

Chen, X., & Fan, Y. (2006a). Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula
misspecification. Journal of Econometrics, 135(1), 125–154.

Chen, X., & Fan, Y. (2006b). Estimation of copula-based semiparametric time series models. Journal of Econometrics, 130(2), 307–335.
Chen, X., Fan, Y., & Tsyrennikov, V. (2006). Efficient estimation of semiparametric multivariate copula models. Journal of the American

Statistical Association, 101(475), 1228–1240.
Chen, X., Hu, Y., & Lewbel, A. (2009). Nonparametric identification and estimation of non- classical errors-in-variables models without

additional information. Statistica Sinica, 19(3), 949–968.
Chen, X., & Pouzo, D. (2009). Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals. Journal

of Econometrics, 152(1), 46–60.
Cheng, G., & Huang, J. Z. (2010). Bootstrap consistency for general semiparametric M-estimation. Annals of Statistics, 38(5), 2884–2915.
Chiburis, R. (2010). Semiparametric bounds on treatment effects. Journal of Econometrics, 159(2), 267–275.
Evans, W. N., & Schwab, R. M. (1995). Finishing high school and starting college: Do Catholic schools make a difference? Quarterly Journal of

Economics, 110(4), 941–974.
Freyberger, J., & Masten, M. (2019). A practical guide to compact infinite dimensional parameter spaces. Econometric Reviews. 38(9), 979–1006.
Gallant, A. R., & Nychka, D. W. (1987). Semi-nonparametric maximum likelihood estimation. Econometrica, 55(2), 363–390.
Goldman, D., Bhattacharya, J., Mccaffrey, D., Duan, N., Leibowitz, A., Joyce, G., & Morton, S. (2001). Effect of insurance on mortality in an

HIV-positive population in care. Journal of the American Statistical Association, 96(455), 883–894.
Han, S., & McCloskey, A. (2019). Estimation and inference with a (nearly) singular Jacobian. Quantitative Economics. 10(3), 1019–1068.
Han, S., & Vytlacil, E. (2017). Identification in a generalization of bivariate probit models with dummy endogenous regressors. Journal of

Econometrics, 199(1), 63–73.
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), 153–162.
Hu, Y., & Schennach, S. M. (2008). Instrumental variable treatment of nonclassical measurement error models. Econometrica, 76(1), 195–216.
Ieva, F., Marra, G., Paganoni, A. M., & Radice, R. (2014). A semiparametric bivariate probit model for joint modeling of outcomes in STEMI

patients. Computational and Mathematical Methods in Medicine, 2014, article no. 240435.
Joe, H. (1997). Multivariate models and multivariate dependence concepts, Chapman and Hall/CRC Monographs on Statistics and Applied

Probability. London, UK: Taylor and Francis.
Kim, G., Silvapulle, M. J., & Silvapulle, P. (2007a). Comparison of semiparametric and parametric methods for estimating copulas. Computa-

tional Statistics and Data Analysis, 51(6), 2836–2850.
Kim, G., Silvapulle, M. J., & Silvapulle, P. (2007b). Semiparametric estimation of the error distribution in multivariate regression using copulas.

Australian and New Zealand Journal of Statistics, 49(3), 321–336.
Lawless, J. F., & Yilmaz, Y. E. (2011). Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation

in copula models. Computational Statistics and Data Analysis, 55(7), 2446–2455.
Liao, Z., & Shi, X. (2017). A uniform model selection test for semi/nonparametric models. (Working Paper). Madison, WI: Department of

Economics, University of Wisconsin–Madison.
Lorentz, G. (1966). Approximation of functions. New York, NY: Holt, Rinehart & Winston.
Ma, S., & Kosorok, M. R. (2005). Robust semiparametric M-estimation and the weighted bootstrap. Journal of Multivariate Analysis, 96(1),

190–217.
Manski, C. F. (1990). Nonparametric Bounds on Treatment Effects. The American Economic Review, 80(2), 319–323.
Marra, G., & Radice, R. (2011). Estimation of a semiparametric recursive bivariate probit model in the presence of endogeneity. Canadian

Journal of Statistics, 39(2), 259–279.
Mourifié, I. (2015). Sharp bounds on treatment effects in a binary triangular system. Journal of Econometrics, 187(1), 74–81.
Mourifié, I., & Méango, R. (2014). A note on the identification in two equations probit model with dummy endogenous regressor. Economics

Letters, 125(3), 360–363.
Neal, D. A. (1997). The effects of Catholic secondary schooling on educational achievement. Journal of Labor Economics, 15(1), 98–123.
Nelsen, R. B. (1999). An Introduction to Copulas. Berlin, Germany: Springer.
Newey, W. K., & McFadden, D. (1994). Large sample estimation and hypothesis testing. In R. F. Engle, & D. L. McFadden (Eds.), Handbook of

Econometrics, Vol. 4. Berlin, Germany: Elsevier, pp. 2111–2245.
Rhine, S. L., Greene, W. H., & Toussaint-Comeau, M. (2006). The importance of check-cashing businesses to the unbanked: Racial/ethnic

differences. Review of Economics and Statistics, 88(1), 146–157.



22 HAN AND LEE

Shaikh, A. M., & Vytlacil, E. J. (2011). Partial identification in triangular systems of equations with binary dependent variables. Econometrica,
79(3), 949–955.

Vella, F. (1998). Models with sample selection bias: A survey. Journal of Human Resources, 33(1), 127–169.
Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57(2), 307–333.
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50(1), 1–25.
White, N. E., & Wolaver, A. M. (2003). Occupation choice, information, and migration. Review of Regional Studies, 33(2), 142–163.
Wilde, J. (2000). Identification of multiple equation probit models with endogenous dummy regressors. Economics Letters, 69(3), 309–312.
Zimmer, D. (2018). Using copulas to estimate the coefficient of a binary endogenous regressor in a Poisson regression: Application to the effect

of insurance on doctor visits. Health Economics, 27(3), 545–556.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Han S, Lee S. Estimation in a generalization of bivariate probit models with dummy
endogenous regressors. J Appl Econ. 2019;1–22. https://doi.org/10.1002/jae.2727

https://doi.org/10.1002/jae.2727
https://doi.org/10.1002/jae.2727

	Estimation in a generalization of bivariate probit models with dummy endogenous regressors
	Abstract
	INTRODUCTION
	IDENTIFICATION AND FAILURE OF IDENTIFICATION
	Identification results in Han and Vytlacil (2017)
	Extension of Han and Vytlacil (2017): Identification under conditional independence
	The failures of identification
	No exclusion restrictions
	No restrictions on dependence structures


	SIEVE AND PARAMETRIC ML ESTIMATIONS
	ASYMPTOTIC THEORY FOR SIEVE ML ESTIMATORS
	Consistency of the sieve ML estimators
	Convergence rates
	Asymptotic normality of smooth functionals
	Example 1: Asymptotic normality for the finite-dimensional parameter 0
	Example 2: Asymptotic normality for the conditional ATE

	Weighted bootstrap

	MONTE CARLO SIMULATION AND SENSITIVITY ANALYSIS
	Simulation design
	Estimation of parametric and semiparametric models
	Simulation results

	EMPIRICAL EXAMPLE
	CONCLUSIONS
	References


