Online Appendix: Estimation in a Generalization of Bivariate Probit Models with Dummy Endogenous Regressors

Sukjin Han Department of Economics University of Texas at Austin sukjin.han@austin.utexas.edu Sungwon Lee Global Asia Institute National University of Singapore gails@nus.edu.sg

This Draft: March 4, 2019

Abstract

This online appendix contains all the proofs of the main results in Han and Lee (2018), technical assumptions, and additional simulation results. Section A contains the proofs of the identification/non-identification results. Section B collects the proofs in the asymptotic theory of the sieve ML estimators, related technical assumptions, and other expressions. Finally, Section C shows more simulation results.

A Proofs of Results in Section 2

A.1 Proof of Theorem 2.6

Recall

$$q_0 \equiv F_{\tilde{\nu}}(-\mu_{\nu}/\sigma_{\nu}), \qquad q_1 \equiv F_{\tilde{\nu}}((1-\mu_{\nu})/\sigma_{\nu}), t_0 \equiv F_{\tilde{\varepsilon}}(-\mu_{\varepsilon}/\sigma_{\varepsilon}), \qquad t_1 \equiv F_{\tilde{\varepsilon}}((1-\mu_{\varepsilon})/\sigma_{\varepsilon}),$$

and

$$\begin{split} \tilde{p}_{11,0} &= C(F_{\tilde{\varepsilon}}(F_{\tilde{\varepsilon}}^{-1}(t_0) + \delta_1), q_0; \rho), \\ \tilde{p}_{11,1} &= C(F_{\tilde{\varepsilon}}(F_{\tilde{\varepsilon}}^{-1}(t_1) + \delta_1), q_1; \rho), \\ \tilde{p}_{10,0} &= t_0 - C(t_0, q_0; \rho), \\ \tilde{p}_{10,1} &= t_1 - C(t_1, q_1; \rho), \\ \tilde{p}_{00,0} &= 1 - t_0 - q_0 + C(t_0, q_0; \rho), \\ \tilde{p}_{00,1} &= 1 - t_1 - q_1 + C(t_1, q_1; \rho), \end{split}$$

where $\tilde{p}_{yd,x} \equiv \Pr[Y = y, D = d | X_1 = x]$. Again, we want to show that, given (q_0, q_1) which are identified from the reduced-form equation, there are two distinct sets of parameter values $(t_0, t_1, \delta_1, \rho)$ and $(t_0^*, t_1^*, \delta_1^*, \rho^*)$ (with $(t_0, t_1, \delta_1, \rho) \neq (t_0^*, t_1^*, \delta_1^*, \rho^*)$) that generate the same observed fitted probabilities $\tilde{p}_{yd,0}$ and $\tilde{p}_{yd,1}$ for all $(y, d) \in \{0, 1\}^2$. In showing this, the following lemma is useful:

Lemma A.1. Assumption 5 implies that, for any $(u_1, u_2) \in (0, 1)^2$ and $\rho \in \Omega$,

$$C_{\rho}(u_1, u_2; \rho) > 0.$$
 (A.1)

The proof of this lemma can be found below.

Now fix $(q_0, q_1) \in (0, 1)^2$. First, consider the fitted probability $\tilde{p}_{10,0}$. Given $t_0 \in (0, 1)$ and $\rho \in \Omega$, note that, for $\rho^* > \rho$,¹ there exists a solution $t_0^* = t_0^*(t_0, q_0, \rho, \rho^*)$ such that

$$t_0 - C(t_0, q_0; \rho) = \Pr[u_1 \le t_0, u_2 \ge q_0; \rho]$$
(A.2)

$$= \Pr[u_1 \le t_0^*, u_2 \ge q_0; \rho^*]$$
(A.3)

$$t_0^* - C(t_0^*, q_0; \rho^*),$$

and note that by Assumption 5 and a variant of Lemma A.1, we have that $t_0^* > t_0$. Here, (t_0, q_0, ρ) and (t_0^*, q_0, ρ^*) result in the same observed probability $\tilde{p}_{10,0} = t_0 - C(t_0, q_0; \rho) = t_0^* - C(t_0^*, q_0; \rho^*)$. Now consider the fitted probability $\tilde{p}_{11,0}$. Choose $\delta_1 = 0$. Also let $F_{\tilde{\varepsilon}} \sim Unif(0,1)$ only for simplicity, which is relaxed later. Then there exists a solution $t_0^{\dagger} = t_0^{\dagger}(t_0, q_0, \rho, \rho^*)$ such that

=

$$C(t_0, q_0; \rho) = \Pr[u_1 \le t_0, u_2 \le q_0; \rho]$$
(A.4)

$$= \Pr[u_1 \le t_0^{\dagger}, u_2 \le q_0; \rho^*]$$
 (A.5)

$$= C(t_0^{\dagger}, q_0; \rho^*),$$

and note that $t_0^{\dagger} < t_0$ by Assumption 5 and Lemma A.1. Then, by letting $\delta_1^* = t_0^{\dagger} - t_0^*$, $(t_0, q_0, \delta_1, \rho)$ and $(t_0^*, q_0, \delta_1^*, \rho^*)$ satisfy $\tilde{p}_{11,0} = C(t_0 + 0, q_0; \rho) = C(t_0^* + \delta_1^*, q_0; \rho^*)$. Lastly, note that $\tilde{p}_{00,0} = 1 - q_0 - \tilde{p}_{10,0}$ and $\tilde{p}_{01,0} = q_0 - \tilde{p}_{11,0}$, and so (t_0, δ_1, ρ) and $(t_0^*, \delta_1^*, \rho^*)$ above will also result in the same values of $\tilde{p}_{00,0}$ and $\tilde{p}_{01,0}$.

It is tempting to have a parallel argument for $\tilde{p}_{10,1}$, $\tilde{p}_{11,1}$, $\tilde{p}_{00,1}$, and $\tilde{p}_{01,1}$, but there is a complication. Although other parameters are not, δ_1 and ρ are common in both sets of probabilities. Therefore, we proceed as follows. First, consider $\tilde{p}_{10,1}$. Given $t_1 \in (0,1)$ and the above choice of

¹The inequality here and other inequalities implied from this (e.g., $t_0^* > t_0$, and etc.) are assumed only for concreteness.

 $\rho^* \in \Omega$, note that there exists a solution $t_1^* = t_1^*(t_1, q_1, \rho, \rho^*)$ such that

$$t_1 - C(t_1, q_1; \rho) = \Pr[u_1 \le t_1, u_2 \ge q_1; \rho]$$
(A.6)

$$= \Pr[u_1 \le t_1^*, u_2 \ge q_1; \rho^*]$$
(A.7)

$$= t_1^* - C(t_1^*, q_1; \rho^*),$$

and similarly as before, we have $t_1^* > t_1$. Here, (t_1, q_1, ρ) and (t_1^*, q_1, ρ^*) result in the same observed probability $\tilde{p}_{10,1} = t_1 - C(t_1, q_1; \rho) = t_1^* - C(t_1^*, q_1; \rho^*)$. Now consider $\tilde{p}_{11,1}$. Recall $\delta_1 = 0$ and $F_{\varepsilon} \sim Unif(0, 1)$. Then there exists a solution $t_1^{\dagger} = t_1^{\dagger}(t_1, q_1, \rho, \rho^*)$ such that

=

=

$$C(t_1, q_1; \rho) = \Pr[u_1 \le t_1, u_2 \le q_1; \rho]$$
(A.8)

$$= \Pr[u_1 \le t_1^{\dagger}, u_2 \le q_1; \rho^*]$$
 (A.9)

$$C(t_1^\dagger,q_1;
ho^*),$$

and thus $t_1^{\dagger} < t_1$. Then, if we can show that

$$t_1^{\dagger} = t_1^* + \delta_1^*, \tag{A.10}$$

where t_1^* and δ_1^* are the values already determined above, then $(t_1, q_1, \delta_1, \rho)$ and $(t_1^*, q_1, \delta_1^*, \rho^*)$ result in $\tilde{p}_{11,1} = C(t_1 + 0, q_1; \rho) = C(t_1^* + \delta_1^*, q_1; \rho^*)$. Then similar as before, the two sets of parameters will generate the same values of $\tilde{p}_{00,1} = 1 - q_1 - \tilde{p}_{10,1}$ and $\tilde{p}_{01,1} = q_1 - \tilde{p}_{11,1}$. Consequently, $(t_0, t_1, q_0, q_1, \delta_1, \rho)$ and $(t_0^*, t_1^*, q_0, q_1, \delta_1^*, \rho^*)$ generate the same entire observed fitted probabilities. The remaining question is whether we can find $(t_0, t_1, \delta_1, \rho)$ and $(t_0^*, t_1^*, \delta_1^*, \rho^*)$ such that (A.10) holds.

To show this, we choose further specifications. We assume a normal copula.² We choose $\rho = 0$, $\rho^* = 1$, $q_0 = t_0 = 1/3$, and $q_1 = t_1 = 2/3$. Since (U_1, U_2) are jointly uniform, note that when $\rho = 0$, the probability of the quadrant in $[0, 1]^2$ specified by each of (A.2), (A.4), (A.6), and (A.8) equals the volume of the quadrant. When $\rho^* = 1$, all the probability mass lies on the 45 degree line in $[0, 1]^2$ and no where else, so the probability of a quadrant specified by each of (A.3), (A.5), (A.7), and (A.9) equals the length of the 45 line which intersects with that quadrant.

²This choice is not critical except that we can have ρ reach to 1.

Suppose that the following observational equivalence holds:

$$\begin{aligned} &\Pr[u_1 \leq t_0, u_2 \geq q_0; \rho] = \Pr[u_1 \leq t_0^*, u_2 \geq q_0; \rho^*] = 2/9, \\ &\Pr[u_1 \leq t_0, u_2 \leq q_0; \rho] = \Pr[u_1 \leq t_0^\dagger, u_2 \leq q_0; \rho^*] = 1/9, \\ &\Pr[u_1 \leq t_1, u_2 \geq q_1; \rho] = \Pr[u_1 \leq t_1^*, u_2 \geq q_1; \rho^*] = 2/9, \\ &\Pr[u_1 \leq t_1, u_2 \leq q_1; \rho] = \Pr[u_1 \leq t_1^\dagger, u_2 \leq q_1; \rho^*] = 4/9. \end{aligned}$$

One can easily show that these equations yield that $t_0^* = 5/9$, $t_0^{\dagger} = 1/9$, $t_1^* = 8/9$, and $t_1^{\dagger} = 4/9$. Consider the equation (A.10), which can be rewritten as $t_1^{\dagger} = t_1^* + t_0^{\dagger} - t_0^*$ or $t_1^{\dagger} - t_1^* = t_0^{\dagger} - t_0^*$. Then, note that we have $t_1^{\dagger} - t_1^* = t_0^{\dagger} - t_0^* = -4/9$, which is, in fact, the value of δ_1^* . In sum, the values of parameters that give the observationally equivalent fitted probabilities are

$$(t_0, t_1, q_0, q_1, \delta_1, \rho) = \left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}, 0, 0\right),$$
(A.11)

$$(t_0^*, t_1^*, q_0, q_1, \delta_1^*, \rho^*) = \left(\frac{5}{9}, \frac{8}{9}, \frac{1}{3}, \frac{2}{3}, -\frac{4}{9}, 1\right).$$
(A.12)

This argument can be made slightly more general, and thus the counterexample more realistic, by relaxing $F_{\tilde{\varepsilon}} \sim Unif(0,1)$ and $\rho^* = 1$. We show that a similar argument goes through with $F_{\tilde{\varepsilon}}$ being a general distribution function with a symmetric density function, and $-1 \leq \rho^* \leq 1$ as long as the copula density is symmetric around $u_2 = u_1$ (i.e., the 45 degree line) and $u_2 = 1 - u_1$. Let $F \equiv F_{\tilde{\varepsilon}}$ be a general distribution whose density function is symmetric. Then there exists a solution $s_0^{\dagger} = s_0^{\dagger}(t_0, q_0, \rho, \rho^*)$ such that

$$C(F(F^{-1}(t_0) + 0), q_0; \rho) = \Pr[u_1 \le t_0, u_2 \le q_0; \rho]$$

= $\Pr[u_1 \le s_0^{\dagger}, u_2 \le q_0; \rho^*]$
= $C(s_0^{\dagger}, q_0; \rho^*).$

Then, by letting $\delta_1^* = F^{-1}(s_0^{\dagger}) - F^{-1}(t_0^*)$, we have $s_0^{\dagger} = F(F^{-1}(t_0^*) + \delta_1^*)$ and therefore $(t_0, q_0, \delta_1, \rho)$ and $(t_0^*, q_0, \delta_1^*, \rho^*)$ result in $p_{11,x} = C(F(F^{-1}(t_0) + 0), q_0; \rho) = C(F(F^{-1}(t_0^*) + \delta_1^*), q_0; \rho^*)$. Suppose that $\delta_1 = 0$. Then there exists a solution $s_1^{\dagger} = s_1^{\dagger}(t_1, q_1, \rho, \rho^*)$ such that

$$C(F(F^{-1}(t_1) + 0), q_1; \rho) = \Pr[u_1 \le t_1, u_2 \le q_1; \rho]$$

= $\Pr[u_1 \le s_1^{\dagger}, u_2 \le q_1; \rho^*]$
= $C(s_1^{\dagger}, q_1; \rho^*).$

Then, if we can show that

$$F^{-1}(s_1^{\dagger}) = F^{-1}(t_1^*) + \delta_1^*$$

then $s_1^{\dagger} = F(F^{-1}(t_1^*) + \delta_1^*)$ and therefore $(t_1, q_1, \delta_1, \rho)$ and $(t_1^*, q_1, \delta_1^*, \rho^*)$ result in $\tilde{p}_{11,1} = C(F(F^{-1}(t_1) + 0), q_1; \rho) = C(F(F^{-1}(t_1^*) + \delta_1^*), q_1; \rho)$. Note $F^{-1}(s_1^{\dagger}) = F^{-1}(t_1^*) + \delta_1^*$ can be rewritten as $F^{-1}(s_1^{\dagger}) = F^{-1}(t_1^*) + F^{-1}(s_0^{\dagger}) - F^{-1}(t_0^*)$ or

$$F^{-1}(s_1^{\dagger}) - F^{-1}(t_1^*) = F^{-1}(s_0^{\dagger}) - F^{-1}(t_0^*).$$
(A.13)

But note that since the density of F is symmetric, any two values s and \tilde{s} in (0,1) that are symmetric around $u_1 = 1/2$ will satisfy $F^{-1}(s) = -F^{-1}(\tilde{s})$. Therefore, since in our example s_0^{\dagger} and t_1^* are symmetric around $u_1 = 1/2$, and so are s_1^{\dagger} and t_0^* , we have the desired result (A.13), and the counterexample (A.11)–(A.12) remains valid. Note that the symmetry of the density function of F plays a key role here; the uniform distribution trivially satisfies the condition as does the normal distribution.

The above counter-example to identification involves a parameter on the boundary of the parameter space ($\rho^* = 1$), while the identification results in the paper assume that the parameter space is open and thus that $\rho \in (-1, 1)$. We now show that the key idea of the argument remains the same with $-1 < \rho^* < 1$. Suppose that the copula density is symmetric around $u_2 = u_1$ and $u_2 = 1 - u_1$. The normal copula satisfies this condition for any $\rho \in (-1, 1)$. Because of this condition, the symmetry of s_0^{\dagger} and t_1^* (and of s_1^{\dagger} and t_0^*) around $u_1 = 1/2$ does not break at a different value of ρ^* , even though the values of s_0^{\dagger} , t_1^* , s_1^{\dagger} , and t_0^* themselves change. Therefore, (A.13) continues to hold with $\rho^* \neq 1$.

A.2 Proof of Lemma A.1

The proof of Lemma A.1 is a slight modification of the proof of Theorem 2.14 of Joe (1997, p. 44). Suppose $C_{2|1} \prec_S \tilde{C}_{2|1}$. Let $(U_1, U_2) \sim C$, $(\tilde{U}_1, \tilde{U}_2) \sim \tilde{C}$, with $U_j \stackrel{d}{=} \tilde{U}_j$, j = 1, 2. By Theorem 2.9 of Joe (1997, p. 40), $(U_1, U_2) \stackrel{d}{=} (\tilde{U}_1, \psi(U_1, U_2))$ with $\psi(u_1, u_2) = \tilde{C}_{2|1}^{-1}(C_{2|1}(u_2|u_1)|u_1)$. Since $C_{2|1} \prec_S \tilde{C}_{2|1}$, ψ is increasing in u_1 and u_2 . We consider two cases:

• Case 1: Suppose that u_1 and u_2 are such that $\psi(u_1, u_2) \leq u_2$. Then

$$\tilde{C}(u_1, u_2) = \Pr[\tilde{U}_1 \le u_1, \tilde{U}_2 \le u_2)] = \Pr[\tilde{U}_1 < u_1, \tilde{U}_2 < u_2)]$$

= $\Pr[U_1 < u_1, \psi(U_1, U_2) < u_2)] \ge \Pr[U_1 < u_1, \psi(u_1, U_2) < u_2]$
> $\Pr[U_1 < u_1, U_2 < u_2)] = C(u_1, u_2)$

where the strict inequality holds since $U_2 < u_2$ implies $\psi(u_1, U_2) \leq \psi(u_1, u_2) \leq u_2$ (but not vice versa since $\psi(u_1, U_2) \leq u_2$ and $\psi(u_1, u_2) \leq u_2$ does not necessarily imply $U_2 < u_2$ and $\Pr[\psi(u_1, u_2) < \psi(u_1, U_2)] = \Pr[u_2 < U_2] \neq 0$), and the second last inequality holds since, given $U_1 < u_1$, $\psi(U_1, U_2) \leq \psi(u_1, U_2) < u_2$.

• Case 2: Suppose that u_1 and u_2 are such that $\psi(u_1, u_2) > u_2$. Then

$$u_2 - C(u_1, u_2) = \Pr[U_1 > u_1, U_2 < u_2)] > \Pr[U_1 > u_1, \psi(u_1, U_2) \le u_2)]$$

$$\geq \Pr[U_1 > u_1, \psi(U_1, U_2) \le u_2)] = \Pr[\tilde{U}_1 > u_1, \tilde{U}_2 < u_2] = u_2 - \tilde{C}(u_1, u_2)$$

where the strict inequality holds since $U_2 > u_2$ implies $\psi(u_1, U_2) \ge \psi(u_1, u_2) > u_2$ or $\psi(u_1, U_2) \le u_2$ implies $U_2 \le u_2$ (but not vice versa).

Therefore in both cases, $C(u_1, u_2) < \tilde{C}(u_1, u_2)$ for any u_1 and u_2 .

B Proofs of Results in Section **4**

B.1 Identification under Transformation of Marginal Distribution Functions

Recall that we consider the following specification of the marginal distribution functions to derive the asymptotic theory for the sieve ML estimator:

$$F_{\epsilon 0}(x) = H_{\epsilon 0}(G(x)), \quad F_{\nu 0}(x) = H_{\nu 0}(G_{\nu}(x)),$$
(B.1)

where $G : \mathbb{R} \to [0, 1]$ is a strictly increasing function with its derivative $g(x) \equiv \frac{dG(x)}{dx}$ and g(x) is bounded away from zero on \mathbb{R} .

We first verify that there exist $H_{\epsilon 0}$ and $H_{\nu 0}$ that satisfy (B.1) for given $F_{\epsilon 0}$, $F_{\nu 0}$, and G. Since G is assumed to be strictly increasing, there exists an inverse function G^{-1} . Letting $H_{\epsilon 0}(\cdot) = F_{\epsilon 0}(G^{-1}(\cdot))$ and $H_{\nu 0}(\cdot) = F_{\nu 0}(G^{-1}(\cdot))$, it is straightforward to show that $H_{\epsilon 0}$ and $H_{\nu 0}$ are mappings from [0,1] to [0,1] and that satisfy the relations in (B.1). Note too that this transformation does not change the identification results. That is, F_0 is identified on \mathbb{R} if and only if H_0 is identified on [0,1]. Assuming that g is bounded away from zero on \mathbb{R} and bounded above, the unknown density function h_{j0} can be written as $h_{j0}(x) = \frac{f_{j0}(G^{-1}(x))}{g(G^{-1}(x))}$ for each $j \in {\epsilon, \nu}$, which is well-defined on [0,1]. In addition, we can see that $h_{\epsilon 0}$ and $h_{\nu 0}$ are identified if and only if the unknown marginal density functions $f_{\epsilon 0}$ and $f_{\nu 0}$ are identified.

We note that the choice of G depends on the tail behavior of $f_{\epsilon 0}$ and $f_{\nu 0}$. If researchers believe that the unknown marginal density functions have fat tails, then they should choose a distribution function with fat tails for G. On the other hand, one can choose the logistic or the standard normal distribution function for G when $f_{\epsilon 0}$ and $f_{\nu 0}$ are likely to have thin tails. This is because Assumption 11 implicitly requires that the unknown marginal density functions and gdecay at the same rate at the tails. Specifically, we observe that

$$h_{\epsilon 0}(0) = \lim_{x \to 0^+} h_{\epsilon 0}(x) = \lim_{t \to -\infty} \frac{f_{\epsilon 0}(t)}{g(t)},$$

and the limit exists if the decaying rates are of the same order. We also provide simulation results to examine how the performance of our semiparametric estimator varies across the choice of G when the marginal density functions have fat tails (see Section (C.3)).

B.2 Technical Expressions

B.2.1 Hölder Norm and Hölder Class

Let $\mathcal{C}^{m}(\mathcal{X})$ be the space of *m*-times continuously differentiable real-valued functions on \mathcal{X} . Let $\zeta \in (0, 1]$ and, given a *d*-tuple ω , let $[\omega] = \omega_1 + \ldots + \omega_d$. Denote the differential operator by \mathcal{D} and let $\mathcal{D}^{\omega} = \frac{\partial^{[\omega]}}{\partial x_1^{\omega_1} \ldots \partial x_d^{\omega_d}}$. Letting $p = m + \zeta$, the Hölder norm of $h \in \mathcal{C}^m(\mathcal{X})$ is defined as follows:

$$||h||_{\Lambda^p} \equiv \sup_{[\omega] \le m, x} |\mathcal{D}^{\omega} h(x)| + \sup_{[\omega] = m} \sup_{x, y \in \mathcal{X}, ||x-y||_E \ne 0} \frac{|\mathcal{D}^{\omega} h(x) - \mathcal{D}^{\omega} h(y)|}{||x-y||_E^{\zeta}},$$

where ζ is the Hölder exponent.

A Hölder class with smoothness p > 0, denoted by $\Lambda^p(\mathcal{X})$, is defined as $\Lambda^p(\mathcal{X}) \equiv \{h \in \mathcal{C}^m(\mathcal{X}) : ||h||_{\Lambda^p} < \infty\}$. A Hölder ball with radius R, $\Lambda^p_R(\mathcal{X})$, is defined as $\Lambda^p_R(\mathcal{X}) \equiv \{h \in \Lambda^p(\mathcal{X}) : ||h||_{\Lambda^p} \le R < \infty\}$.

B.2.2 Sup-norm and Pseudo-metric d_c

For any $h \in \mathcal{H}_{\epsilon}$ (or \mathcal{H}_{ν}), define the sup-norm on \mathcal{H}_{ϵ} (or \mathcal{H}_{ν}) as follows:

$$||h||_{\infty} \equiv \sup_{t \in [0,1]} |h(t)|.$$

Let $\theta = (\psi', h_{\epsilon}, h_{\nu})' \in \Theta$ be given. We define the consistency norm $|| \cdot ||_c$ as follows:

$$||\theta||_c \equiv ||\psi||_E + ||h_\epsilon||_{\infty} + ||h_\nu||_{\infty},$$

where $|| \cdot ||_E$ is the Euclidean norm. The pseudo-metric $d_c(\cdot, \cdot) : \Theta \times \Theta \to [0, \infty)$, which induced by the consistency norm $|| \cdot ||_c$, is defined as

$$d_c(\theta_1, \theta_2) = ||\theta_1 - \theta_2||_c.$$

B.2.3 *L*²-norm

$$||\theta - \theta_0||_2 \equiv ||\psi - \psi_0||_E + ||h_{\epsilon} - h_{\epsilon 0}||_2 + ||h_{\nu} - h_{\nu 0}||_2,$$
(B.2)

where $||h - \tilde{h}||_2^2 \equiv \int_0^1 (h(t) - \tilde{h}(t))^2 dt$ for any $h, \tilde{h} \in \mathcal{H}$. It is straightforward to show that $||\theta - \theta_0||_2 \leq d_c(\theta, \theta_0)$, where $d_c(\theta, \theta_0) = ||\psi - \psi_0||_E + ||h_\epsilon - h_{\epsilon 0}||_{\infty} + ||h_\nu - h_{\nu 0}||_{\infty}$.

B.2.4 Fisher inner product and Fisher norm

Recall that \mathbb{V} is the linear span of $\Theta - \{\theta_0\}$. Define the Fisher inner product on the space \mathbb{V} as

$$\langle v, \tilde{v} \rangle \equiv E\left[\left(\frac{\partial l(\theta_0, W)}{\partial \theta} [v] \right) \left(\frac{\partial l(\theta_0, W)}{\partial \theta} [\tilde{v}] \right) \right]$$

for given $v, \tilde{v} \in \mathbb{V}$. Then, the Fisher norm for $v \in \mathbb{V}$ is defined as

$$||v||^2 \equiv \langle v, v \rangle.$$

B.2.5 Relationship between the Fisher norm and L^2 -norm

Note that for any $\theta_1, \theta_2 \in \Theta$, we have

$$\begin{aligned} ||\theta_{1} - \theta_{2}||^{2} &= E\left[\left(\frac{\partial l(\theta_{0}, W_{i})}{\partial \theta}[\theta_{1} - \theta_{2}]\right)^{2}\right] \\ &\leq B\left\{E\left[\left\{\frac{\partial l(\theta_{0}, W_{i})}{\partial \psi'}(\psi_{1} - \psi_{2})\right\}^{2}\right] + E\left[\left\{\frac{\partial l(\theta_{0}, W_{i})}{\partial h_{\epsilon}}[h_{\epsilon 1} - h_{\epsilon 2}]\right\}^{2}\right] + E\left[\left\{\frac{\partial l(\theta_{0}, W_{i})}{\partial h_{\nu}}[h_{\nu 1} - h_{\nu 2}]\right\}^{2}\right]\right\} \\ &\leq \tilde{B}||\theta_{1} - \theta_{2}||_{2}^{2} \end{aligned} \tag{B.3}$$

for some $B, \tilde{B} > 0$ under Assumptions 10, 11, and 13. From equation (B.3), it is straightforward to see that the convergence rate of the sieve ML estimator with respect to the Fisher norm $|| \cdot ||$ is at least as fast as the convergence rate with respect to the L^2 -norm.

B.2.6 Directional derivatives of the log-likelihood function

Let $r_{10} = F_{\epsilon 0}(x'\beta_0 + \delta_{10}), r_{00} = F_{\epsilon 0}(x'\beta_0)$, and $s_0 = F_{\nu 0}(x'\alpha_0 + z'\gamma_0)$. For given $v = (v'_{\psi}, v_{\epsilon}, v_{\nu})' \in \mathbb{V}$, we have

$$\frac{\partial l(\theta_0, w)}{\partial \psi'} v_{\psi} = \sum_{\tilde{y}, \tilde{d} \in \{0, 1\}} (\mathbf{1}_{\tilde{y}, \tilde{d}} \cdot \frac{1}{p_{\tilde{y}\tilde{d}, xz}(\theta_0)} \cdot \frac{\partial p_{\tilde{y}\tilde{d}, xz}(\theta_0)}{\partial \psi'}) v_{\psi}, \tag{B.4}$$

$$\frac{\partial l(\theta_{0},w)}{\partial h_{\epsilon}}[v_{\epsilon}] = \mathbf{1}_{11}(y,d) \times \left[\frac{1}{p_{11,xz}(\theta_{0})}C_{1}(r_{10},s_{0};\rho_{0})\int_{0}^{G(x'\beta_{0}+\delta_{10})}v_{\epsilon}(t)dt\right] \\
+ \mathbf{1}_{10}(y,d) \times \left[\frac{1}{p_{10,xz}(\theta_{0})}\left\{\left(1-C_{1}(r_{00},s_{0};\rho_{0})\right)\int_{0}^{G(x'\beta_{0})}v_{\epsilon}(t)dt\right\}\right] \\
+ \mathbf{1}_{01}(y,d) \times \left[\frac{1}{p_{01,xz}(\theta_{0})}\left\{-C_{1}(r_{10},s_{0};\rho_{0})\int_{0}^{G(x'\beta_{0}+\delta_{10})}v_{\epsilon}(t)dt\right\}\right] \\
+ \mathbf{1}_{00}(y,d) \times \left[\frac{1}{p_{00,xz}(\theta_{0})}\left\{\left(1-C_{1}(r_{00},s_{0};\rho_{0})\right)\int_{0}^{G(x'\beta_{0})}v_{\epsilon}(t)dt\right\}\right], \quad (B.5)$$

and

$$\frac{\partial l(\theta_0, w)}{\partial h_{\nu}}[v_{\nu}] = \left\{ \mathbf{1}_{11}(y, d) \times \frac{1}{p_{11,xz}(\theta_0)} C_2(r_{10}, s_0; \rho_0) + \mathbf{1}_{10}(y, d) \times \frac{1}{p_{10,xz}(\theta_0)} (-C_2(r_{00}, s_0; \rho_0)) + \mathbf{1}_{01}(y, d) \times \frac{1}{p_{01,xz}(\theta_0)} (1 - C_2(r_{10}, s_0; \rho_0)) + \mathbf{1}_{00}(y, d) \times \frac{1}{p_{00,xz}(\theta_0)} (1 - C_2(r_{00}, s_0; \rho_0)) \right\} \\
\times \int_0^{G(x'\alpha_0 + z'\gamma_0)} v_{\nu}(t) dt. \tag{B.6}$$

B.2.7 Directional derivative of the ATE

Let $v = (v'_{\psi}, v_{\epsilon}, v_{\nu})' \in \mathbb{V}$. Then,

$$\frac{\partial ATE(\theta_{0};x)}{\partial \theta'}[v] = \left\{ f_{\epsilon 0}(x'\beta_{0} + \delta_{10})(x'v_{\beta} + v_{\delta}) - f_{\epsilon 0}(x'\beta_{0})x'v_{\beta} \right\} + \int_{G(x'\beta_{0})}^{G(x'\beta_{0} + \delta_{10})} v_{\epsilon}(t)dt, \quad (B.7)$$

where $f_{\epsilon 0}(x) = h_{\epsilon 0}(G(x))g(x)$.

B.3 Proof of Theorem 4.1

Define $Q_0(\theta) \equiv E[l(\theta, W_i)]$. The following proposition is a modification of Theorem 3.1 in Chen (2007) and establishes the consistency of sieve M-estimator.³

Proposition B.1. Let $\hat{\theta}_n$ be the sieve extremum estimator defined in (4.2). Suppose that the following conditions hold :

(i) $Q_0(\theta)$ is uniquely maximized at θ_0 in Θ and $Q_0(\theta_0) > -\infty$;

(ii) Θ is compact under $d_c(\cdot, \cdot)$, and $Q_0(\theta)$ is upper semicontinuous on Θ under $d_c(\cdot, \cdot)$;

(iii) The sieve spaces, Θ_n , are compact under $d_c(\cdot, \cdot)$;

(iv) $\Theta_k \subseteq \Theta_{k+1} \subseteq \Theta$ for all $k \ge 1$, and there exists a sequence $\pi_k \theta_0 \in \Theta_k$ such that $d_c(\theta_0, \pi_k \theta_0) \to 0$ as $k \to \infty$;

³See also Remark 3.3 in Chen (2007).

(v) For all $k \ge 1$, $p \lim_{n \to \infty} \sup_{\theta \in \Theta_k} |Q_n(\theta) - Q_0(\theta)| = 0$. Then, $d_c(\hat{\theta}_n, \theta_0) = o_p(1)$.

We show that the conditions in Theorem 4.1 imply those in this proposition to prove consistency of the sieve estimator. We first need to verify that (i) the true parameter θ_0 is the unique maximizer of $Q_0(\cdot)$ over Θ and that (ii) the sample log-likelihood function $Q_n(\cdot)$ uniformly converges to $Q_0(\cdot)$ over the sieve space in probability to establish the consistency of the sieve ML estimator. The following lemma shows that if the model with unknown marginal distributions are identified and some additional conditions are satisfied, then the true parameter θ_0 is the unique maximizer of $Q_0(\cdot)$ over Θ .

Lemma B.1. Suppose that Assumptions 1-5, 7, 8 and 9 are satisfied. Then the condition (i) in Proposition B.1 is satisfied.

Proof. By Theorem 2.3, the model parameter is identified. Under Assumption 9, we can see that for any $\theta \in \Theta$, $|Q_0(\theta)| \leq E|l(\theta, W_i)| \leq \sum_{y,d \in \{0,1\}} E|\log(p_{yd,XZ}(\theta))| < \infty$, and thus the function $Q_0(\theta)$ is well-defined on Θ and $Q_0(\theta) > -\infty$ for all $\theta \in \Theta$; hence $Q_0(\theta_0) > -\infty$. Since the model is identified, it implies that for $\theta \neq \theta_0$, there exists a set $E \subset \operatorname{supp}(X, Z)$ such that $\int_E dP_{XZ} > 0$ and for some $y, d \in \{0, 1\}$, $\frac{p_{yd,xZ}(\theta)}{p_{yd,xZ}(\theta_0)} \neq 1$ on E, where P_{XZ} is the distribution function of (X, Z). Thus, we have

$$Q_{0}(\theta) - Q_{0}(\theta_{0}) = \int \sum_{y,d \in \{0,1\}} p_{yd,xz}(\theta_{0}) \log\left(\frac{p_{yd,xz}(\theta)}{p_{yd,xz}(\theta_{0})}\right) dP_{XZ} < \log\left(\int_{E} \sum_{y,d \in \{0,1\}} p_{yd,xz}(\theta) dP_{XZ}\right) \le 0.$$

where the strict inequality holds by the fact that $p_{yd,xz}(\theta) \neq p_{yd,xz}(\theta_0)$ on E and Jensen's inequality. Hence, θ_0 is the unique maximizer of $Q_0(\cdot)$.

For any $\omega > 0$, let $N(\omega, \Theta_n, d_c)$ be the covering numbers without bracketing of Θ_n with respect to the pseudo-metric d_c . We now establish the uniform convergence of $Q_n(\cdot)$ to Q_0 over the sieve space.

Lemma B.2. Suppose that Assumptions 1–5, 7 are satisfied. If Assumptions 8 through 13 hold, then $\sup_{\theta \in \Theta_n} |Q_n(\theta) - Q_0(\theta)| \xrightarrow{p} 0$ for all $n \ge 1$.

Proof. We verify Condition 3.5M in Chen (2007). Let B stand for a generic constant and it can be different in each place. By Assumptions 9 and 10, the first condition in Condition 3.5M is satisfied. Let $n \ge 1$ be a natural number and $\theta, \tilde{\theta} \in \Theta_n$. Define $R_1(\theta) = F_{\epsilon}(X'\beta + \delta_1), R_0(\theta) = F_{\epsilon}(X'\beta),$ and $S(\theta) = F_{\nu}(X'\alpha + Z'\gamma)$. Similarly, we define $R_1(\tilde{\theta}) = \tilde{F}_{\epsilon}(X'\tilde{\beta} + \tilde{\delta}_1), R_0(\tilde{\theta}) = \tilde{F}_{\epsilon}(X'\tilde{\beta}),$ and $S(\tilde{\theta}) = \tilde{F}_{\nu}(X'\tilde{\alpha} + Z'\gamma)$. For the simplicity of the notations, we write $R_j = R_j(\theta), \tilde{R}_j = R_j(\tilde{\theta}),$ $S=S(\theta),$ and $\tilde{S}=S(\tilde{\theta})$ for all j=0,1. Observe that

$$\begin{aligned} p_{11,XZ}(\theta) - p_{11,XZ}(\tilde{\theta}) &|= |C(R_1, S; \rho) - C(\tilde{R}_1, \tilde{S}; \tilde{\rho})| \\ &\leq |C(R_1, S; \rho) - C(\tilde{R}_1, \tilde{S}; \rho)| + |C(\tilde{R}_1, \tilde{S}; \rho) - C(\tilde{R}_1, \tilde{S}; \tilde{\rho})| \\ &\leq |R_1 - \tilde{R}_1| + |S - \tilde{S}| + |C_\rho(\tilde{R}_1, \tilde{S}; \hat{\rho})| |\rho - \tilde{\rho}| \\ &\leq |R_1 - \tilde{R}_1| + |S - \tilde{S}| + B|\rho - \tilde{\rho}|, \end{aligned}$$

where $C_{\rho}(\cdot, \cdot; \cdot)$ is the partial derivative of $C(\cdot, \cdot; \cdot)$ with respect to ρ and $\hat{\rho}$ is between ρ and $\tilde{\rho}$ and $B < \infty$. Note that the last inequality holds due to a generic property of copulas (see, e.g. Theorem 2.2.4 in Nelsen (1999)) and the mean value theorem. We also have

$$\begin{aligned} |R_{1} - \tilde{R}_{1}| &= \left| F_{\epsilon}(X'\beta + \delta_{1}) - \tilde{F}_{\epsilon}(X'\tilde{\beta} + \tilde{\delta}_{1}) \right| \\ &\leq \left| F_{\epsilon}(X'\beta + \delta_{1}) - F_{\epsilon}(X'\tilde{\beta} + \tilde{\delta}_{1}) \right| + \left| F_{\epsilon}(X'\tilde{\beta} + \tilde{\delta}_{1}) - \tilde{F}_{\epsilon}(X'\tilde{\beta} + \tilde{\delta}_{1}) \right| \\ &\leq \left| f_{\epsilon}(X'\hat{\beta} + \hat{\delta}_{1}) \right| \cdot \left| X'(\beta - \tilde{\beta}) + (\delta_{1} - \tilde{\delta}_{1}) \right| + \int_{0}^{G(X'\tilde{\beta} + \tilde{\delta}_{1})} \left| h_{\epsilon}(t) - \tilde{h}_{\epsilon}(t) \right| dt \\ &\leq \sup_{x \in \mathbb{R}} |h_{\epsilon}(G(x))g(x)| \times ||(X', 1)'||_{E} \cdot ||\psi - \tilde{\psi}||_{E} + ||h_{\epsilon} - \tilde{h}_{\epsilon}||_{\infty} \\ &\leq B \times ||(X', 1)'||_{E} \times ||(\beta', \delta_{1})' - (\tilde{\beta}', \tilde{\delta}_{1})'||_{E} + ||h_{\epsilon} - \tilde{h}_{\epsilon}||_{\infty}, \end{aligned}$$
(B.8)

for some constant $B < \infty$. Similarly, we can show that

$$|R_0 - \tilde{R}_0| \le B \times ||X||_E \times ||\beta - \tilde{\beta}||_E + ||h_\epsilon - \tilde{h}_\epsilon||_\infty$$
(B.9)

and

$$|S - \tilde{S}| \le B \times ||(X', Z')'||_E \times ||(\alpha', \gamma')' - (\tilde{\alpha}', \tilde{\gamma}')'||_E + ||h_{\nu} - \tilde{h}_{\nu}||_{\infty}.$$
 (B.10)

Note that, for any comparable subvectors ψ_s and $\tilde{\psi}_s$ of ψ and $\tilde{\psi}$, respectively, we have $||\psi_s - \tilde{\psi}_s||_E \le ||\psi - \tilde{\psi}||_E$ and that, for any subvector W_s of W, we have $||W_S||_E \le ||W||_E$ a.s. Thus we have

$$\begin{aligned} |p_{11,XZ}(\theta) - p_{11,XZ}(\tilde{\theta})| &\leq B ||(X',1)'||_E \cdot ||\psi - \tilde{\psi}||_E + ||h_{\epsilon} - \tilde{h}_{\epsilon}||_{\infty} \\ &\leq B ||(X',1)'||_E d_c(\theta,\tilde{\theta}). \end{aligned}$$

Consequently, it follows that

$$\begin{split} |p_{10,XZ}(\theta) - p_{10,XZ}(\tilde{\theta})| &\leq |R_0 - \tilde{R}_0| + |C(R_0,S;\rho) - C(\tilde{R}_0,\tilde{S};\tilde{\rho})| \\ &\leq 2|R_0 - \tilde{R}_0| + |S - \tilde{S}| + B|\rho - \tilde{\rho}| \\ &\leq B\{||X||_E||\beta - \tilde{\beta}||_E + ||(X',Z')'||_E||(\alpha',\gamma')' - (\tilde{\alpha}',\tilde{\gamma}')'||_E \\ &+ ||h_\epsilon - \tilde{h}_\epsilon||_\infty + ||h_\nu - \tilde{h}_\nu||_\infty + |\rho - \tilde{\rho}| \} \\ &\leq B \cdot ||(X',Z',1)'||_E d_c(\theta,\tilde{\theta}), \\ |p_{01,XZ}(\theta) - p_{01,XZ}(\tilde{\theta})| &\leq 2|S - \tilde{S}| + |R_1 - \tilde{R}_1| + B|\rho - \tilde{\rho}| \\ &\leq B||(X',Z',1)'||_E d_c(\theta,\tilde{\theta}), \\ |p_{00,XZ}(\theta) - p_{00,XZ}(\tilde{\theta})| &\leq |p_{11,XZ}(\theta) - p_{11,XZ}(\tilde{\theta})| + |p_{10,XZ}(\theta) - p_{10,XZ}(\tilde{\theta})| + |p_{01,XZ}(\theta) - p_{01,XZ}(\tilde{\theta})| \\ &\leq B||(X',Z',1)'||_E d_c(\theta,\tilde{\theta}). \end{split}$$

In all, we have

$$|l(\theta, W_i) - l(\tilde{\theta}, W_i)| \leq \sum_{y,d=0,1} \mathbf{1}_{yd}(Y_i, D_i) \cdot \left| \log p_{yd}(X_i, Z_i; \theta) - \log p_{yd}(X_i, Z_i; \tilde{\theta}) \right|$$

$$\leq \frac{1}{\underline{p}(X_i, Z_i)} \sum_{y,d=0,1} \mathbf{1}_{yd}(Y_i, D_i) \left| p_{yd}(X_i, Z_i; \theta) - p_{yd}(X_i, Z_i; \tilde{\theta}) \right|$$

$$\leq \frac{B}{\underline{p}(X_i, Z_i)} ||(X'_i, Z'_i, 1)'||_E d_c(\theta, \tilde{\theta})$$

$$\equiv U(W_i) d_c(\theta, \tilde{\theta}),$$
(B.11)

where $E[U(W_i)^2] < \infty$ by Assumptions 9 and 10. This results in

$$\sup_{\theta,\tilde{\theta}\in\Theta_n, d_c(\theta,\tilde{\theta})\leq\epsilon_0} \left| l(\theta, W_i) - l(\tilde{\theta}, W_i) \right| \leq U(W_i)\epsilon_0$$
(B.12)

and thus the second condition in Condition 3.5M is satisfied with s = 1.

For the last condition in Condition 3.5M, note that for any $\omega > 0$, we have

$$N(\omega, \Theta_n, d_c) \le N(\frac{\omega}{2}, \Psi, ||\cdot||_E) \cdot N(\frac{\omega}{4}, \mathcal{H}_{\epsilon n}, ||\cdot||_{\infty}) \cdot N(\frac{\omega}{4}, \mathcal{H}_{\nu n}, ||\cdot||_{\infty}).$$

By Lemma 2.5 in van de Geer (2000), we have $\log N\left(\frac{\omega}{4}, \mathcal{H}_{\epsilon n}, ||\cdot||_{\infty}\right) \leq k_n \log\left(1 + \frac{32R}{\omega}\right)$ under Assumption 12-(i); and hence

$$\log N(\omega, \Theta_n, d_c) \le const. \times k_n \times \log\left(1 + \frac{32R}{\omega}\right) = o(n)$$

if $k_n/n \to 0$. Since the condition $k_n/n = o(1)$ is imposed by Assumption 12-(i), the last condition

in Condition 3.5M is also satisfied. In all, we have the uniform convergence of Q_n to Q_0 over Θ_k .

To finish proving Theorem 4.1, we verify the conditions in Proposition B.1. By Lemmas B.1 and B.2, the conditions (i) and (v) in Proposition B.1 are satisfied. Using (B.11) and Jensen's inequality, we can see that, for any $\theta, \tilde{\theta} \in \Theta$,

$$|Q_0(\theta) - Q_0(\tilde{\theta})| \le E|l(\theta, W_i) - l(\tilde{\theta}, W_i)| \le E[U(W_i)]d_c(\theta, \tilde{\theta}) = B \cdot d_c(\theta, \tilde{\theta})$$

for some $B < \infty$. Thus, $Q_0(\cdot)$ is continuous with respect to d_c . Note that since the parameter space of the finite-dimensional parameter ψ , Ψ , is assumed to be compact in Assumption 8, the original parameter space Θ is compact under the d_c , by Theorems 1 and 2 in Freyberger and Masten (2015), and thus the conditions (ii) and (iii) are satisfied with the specified parameter space and the norm. Since the condition (iv) is directly imposed, we have $d(\hat{\theta}_n, \theta_0) = o_p(1)$ by Proposition B.1.

B.4 Proof of Theorem 4.2

To establish the convergence rate with respect to the norm $|| \cdot ||_2$, we consider the following assumption:

Assumption B.1. Let $K(\theta_0, \theta) \equiv E[l(\theta_0, W_i) - l(\theta, W_i)]$. Then, there exist $B_1, B_2 > 0$ such that

$$B_1 K(\theta_0, \theta) \le ||\theta - \theta_0||_2^2 \le B_2 K(\theta_0, \theta)$$

for all $\theta \in \Theta_n$ with $d_c(\theta, \theta_0) = o(1)$.

Assumption B.1 implies that the L^2 -norm $||\cdot||_2$ and the square-root of the KL divergence are equivalent.

We derive the convergence rate of the sieve M-estimator with respect to the norm $|| \cdot ||_2$ by checking the conditions in Theorem 3.2 in Chen (2007). Since $\{W_i\}_{i=1}^n$ is assumed to be i.i.d by Assumption 10, Condition 3.6 in Chen (2007) is satisfied. For Condition 3.7 in Chen (2007), we note that for a small $\epsilon_1 > 0$ and for any $\theta \in \Theta_n$ such that $||\theta - \theta_0||_2 \le \epsilon_1$, we have

$$\begin{aligned} Var\left(l(\theta, W_{i}) - l(\theta_{0}, W_{i})\right) &\leq E\left[l(\theta, W_{i}) - l(\theta_{0}, W_{i})\right]^{2} \\ &\leq E\left[\frac{1}{\underline{p}(X_{i}, Z_{i})^{2}} \sum_{y, d = 0, 1} \mathbf{1}_{yd}(Y_{i}, D_{i})|p_{yd}(X_{i}, Z_{i}; \theta) - p_{yd}(X_{i}, Z_{i}; \theta_{0})|^{2}\right] \\ &\leq E\left[\frac{1}{\underline{p}(X_{i}, Z_{i})^{2}} \sum_{y, d \in \{0, 1\}} |p_{yd}(X_{i}, Z_{i}; \theta) - p_{yd}(X_{i}, Z_{i}; \theta_{0})|^{2}\right].\end{aligned}$$

By the same logic in (B.11), we have

$$Var\left(l(\theta, W_i) - l(\theta_0, W_i)\right) \le E\left[U(W_i)^2\right] d_c(\theta, \theta_0)^2.$$

Note that

$$d_{c}(\theta,\theta_{0})^{2} = (||\psi - \psi_{0}||_{E} + ||h_{\epsilon} - h_{\epsilon 0}||_{\infty} + ||h_{\nu} - h_{\nu 0}||_{\infty})^{2}$$

$$\leq 4(||\psi - \psi_{0}||_{E}^{2} + ||h_{\epsilon} - h_{\epsilon 0}||_{\infty}^{2} + ||h_{\nu} - h_{\nu 0}||_{\infty}^{2}).$$

By Lemma 2 in Chen and Shen (1998), we have

$$||h_j - h_{j0}||_{\infty}^2 \le ||h_j - h_{j0}||_2^{\frac{4p}{2p+1}}$$
(B.13)

for all $j \in \{\epsilon, \nu\}$. Since $\frac{4p}{2p+1} > 1$ under Assumption 11, we can show that

$$\sup_{\{\theta \in \Theta_n : ||\theta - \theta_0||_2 \le \epsilon_1\}} Var\left(l(\theta, W_i) - l(\theta_0, W_i)\right) \le B_1 \epsilon_1^2$$

with $\epsilon_1 \leq 1$ and some constant B_1 , and thus Condition 3.7 in Chen (2007) is satisfied.

We recall equation (B.11) to verify Condition 3.8 in Chen (2007). Let $\epsilon_2 > 0$ be given and consider

$$\begin{aligned} |l(\theta, W_{i}) - l(\theta_{0}, W_{i})| &\leq U(W_{i})d_{c}(\theta, \theta_{0}) \\ &= U(W_{i}) \left\{ ||\psi - \psi_{0}||_{E} + ||h_{\epsilon} - h_{\epsilon 0}||_{\infty} + ||h_{\nu} - h_{\nu 0}||_{\infty} \right\} \\ &\leq U(W_{i}) \left\{ ||\psi - \psi_{0}||_{E} + ||h_{\epsilon} - h_{\epsilon 0}||_{2}^{\frac{2p}{2p+1}} + ||h_{\nu} - h_{\nu 0}||_{2}^{\frac{2p}{2p+1}} \right\} \\ &\leq U(W_{i}) \left\{ ||\psi - \psi_{0}||_{E}^{\frac{2p+1}{2p}} + ||h_{\epsilon} - h_{\epsilon 0}||_{2} + ||h_{\nu} - h_{\nu 0}||_{2} \right\}^{\frac{2p}{2p+1}} \\ &\leq U(W_{i}) \left\{ ||\psi - \psi_{0}||_{E} \times (\sup_{\psi \in \Psi} ||\psi||_{E} + ||\psi_{0}||_{E})^{\frac{1}{2p}} + ||h_{\epsilon} - h_{\epsilon 0}||_{2} + ||h_{\nu} - h_{\nu 0}||_{2} \right\}^{\frac{2p}{2p+1}} \\ &\leq \tilde{U}(W_{i}) \left\{ ||\psi - \psi_{0}||_{E} + ||h_{\epsilon} - h_{\epsilon 0}||_{2} + ||h_{\nu} - h_{\nu 0}||_{2} \right\}^{\frac{2p}{2p+1}}, \quad (B.14) \end{aligned}$$

where $\tilde{U}(W_i) = \max\{1, (\sup_{\psi \in \Psi} ||\psi||_E + ||\psi_0||_E)^{\frac{1}{2p}}\} \times U(W_i)$. Since the parameter space for ψ , Ψ , is compact under Assumption 8, $E[\tilde{U}(W_i)^2] < \infty$. Thus, we have

$$\sup_{\{\theta \in \Theta_n : ||\theta - \theta_0||_2 \le \epsilon_2\}} |l(\theta, W_i) - l(\theta_0, W_i)| \le \epsilon_2^{\frac{2p}{2p+1}} \tilde{U}(W_i)$$

with $E[\tilde{U}_i(W_i)^2] < \infty$ and this implies that, under Assumption 11, Condition 3.8 in Chen (2007)

is satisfied with $s = \frac{2p}{2p+1} \in (0,2)$ and $\gamma = 2$.

Let $\mathcal{L}_n \equiv \{l(\theta_0, W_i) - l(\theta, W_i) : \theta \in \Theta_n, ||\theta - \theta_0||_2 \le \epsilon_2\}$. For given $\omega > 0$, let $N_{[]}(\omega, \mathcal{L}_n, || \cdot ||_{L^2})$ be the covering number with bracketing of \mathcal{L}_n with respect to the norm $|| \cdot ||_{L^2}$. We now need to calculate κ_n which is defined as

$$\kappa_n \equiv \inf \left\{ \kappa \in (0,1) : \frac{1}{\sqrt{n}\kappa^2} \int_{b\kappa^2}^{\kappa} \sqrt{H_{[]}(\omega, \mathcal{L}_n, ||\cdot||_{L^2})} d\omega \le const. \right\},\$$

where, for $f \in \mathcal{L}_n$, $||f(\theta, W_i)||_{L^2}^2 \equiv E[f(\theta, W_i)^2]$ is the L^2 -norm on \mathcal{L}_n and $H_{[]}(\omega, \mathcal{L}_n, || \cdot ||_{L^2})$ is the L_2 -metric entropy with bracketing of the class \mathcal{L}_n (see van der Vaart and Wellner (1996) or van de Geer (2000) for the definition of L_2 -metric entropy with bracketing). Let $B_0 = E[U(W_i)^2]$, where $U(W_i)$ is the same to the one in (B.11). By Theorem 2.7.11 in van der Vaart and Wellner (1996) and equation (B.11), we can show that

$$N_{[]}(\omega, \mathcal{L}_{n}, || \cdot ||_{L^{2}}) \leq N\left(\frac{\omega}{2B_{0}}, \Theta_{n}, d_{c}\right)$$
$$\leq N\left(\frac{\omega}{4B_{0}}, \Psi, || \cdot ||_{E}\right) \cdot N\left(\frac{\omega}{8B_{0}}, \mathcal{H}_{\epsilon n}, || \cdot ||_{\infty}\right) \cdot N\left(\frac{\omega}{8B_{0}}, \mathcal{H}_{\nu n}, || \cdot ||_{\infty}\right),$$

and this leads to

$$H_{[]}(\omega, \mathcal{L}_n, ||\cdot||_{L^2}) = \log\left(N_{[]}(\omega, \mathcal{L}_n, ||\cdot||_{L^2})\right) \le const. \times k_n \times \log(1 + \frac{64B_0R}{\omega}).$$

In all, κ_n solves

$$\frac{1}{\sqrt{n}\kappa_n^2} \int_{b\kappa_n^2}^{\kappa_n} \sqrt{H_{[]}(\omega, \mathcal{L}_n, ||\cdot||_{L^2})} d\omega \leq \frac{const.}{\sqrt{n}\kappa_n^2} \int_{b\kappa_n^2}^{\kappa_n} \sqrt{k_n \cdot \log(1 + \frac{64B_0R}{\omega})} d\omega \\
\leq \frac{const.}{\sqrt{n}\kappa_n^2} \sqrt{k_n} \int_{b\kappa_n^2}^{\kappa_n} \sqrt{\frac{1}{\omega}} d\omega \leq const. \times \frac{1}{\sqrt{n}\kappa_n^2} \sqrt{k_n} \kappa_n \leq const.,$$

and thus $\kappa_n \propto \sqrt{\frac{k_n}{n}}$. Lastly, since $||\theta_0 - \pi_n \theta_0||_2 \leq ||\theta_0 - \pi_n \theta_0||_c = O(k_n^{-p})$ by Lorentz (1966), we have

$$||\hat{\theta}_n - \theta_0||_2 = O_p\left(\max\left\{\sqrt{\frac{k_n}{n}}, k_n^{-p}\right\}\right)$$

by Theorem 3.2 in Chen (2007). By choosing $k_n \propto n^{\frac{1}{2p+1}}$, we have

$$||\hat{\theta}_n - \theta_0||_2 = O_p\left(n^{-\frac{p}{2p+1}}\right).$$

B.5 Proof of Proposition 4.1

We first provide some technical assumptions for the asymptotic normality. Let $\mu_n(g) = \frac{1}{n} \sum_{i=1}^n \{g(W_i) - E[g(W_i)]\}$ be the empirical process indexed by g. Let the convergence rate of the sieve estimator be δ_n (i.e., $||\hat{\theta}_n - \theta_0|| = O_p(\delta_n)$).

Assumption B.2. There exist $\xi_1 > 0$ and $\xi_2 > 0$ with $2\xi_1 + \xi_2 < 1$ and a constant K, such that $(\delta_n)^{3-(2\xi_1+\xi_2)} = o(n^{-1})$. In addition, the following hold for all $\tilde{\theta} \in \Theta_n$ with $||\tilde{\theta} - \theta_0|| \leq \delta_n$, and all $v \in \mathbb{V}$ with $||v|| \leq \delta_n$:

$$\begin{array}{l} (i) \left| E \left[\frac{\partial^2 l(\tilde{\theta}, W)}{\partial \psi \partial \psi'} - \frac{\partial^2 l(\theta_0, W)}{\partial \psi \partial \psi'} \right] \right| < K \left\| \tilde{\theta} - \theta_0 \right\|^{1-\xi_2}; \\ (ii) \left| E \left[\sum_{j \in \{\epsilon, \nu\}} \left\{ \frac{\partial^2 l(\tilde{\theta}, W)}{\partial \psi \partial h_j} [v_j] - \frac{\partial^2 l(\theta_0, W)}{\partial \psi \partial h_j} [v_j] \right\} \right] \right| \le K \|v\|^{1-\xi_1} \left\| \tilde{\theta} - \theta_0 \right\|^{1-\xi_2}; \\ (iii) \left| E \left[\sum_{i,j \in \{\epsilon, \nu\}} \left\{ \frac{\partial^2 l(\tilde{\theta}, W)}{\partial h_i \partial h_j} [v, v] - \frac{\partial^2 l(\theta_0, W)}{\partial h_i \partial h_j} [v, v] \right\} \right] \right| \le K \|v\|^{2(1-\xi_1)} \|\tilde{\theta} - \theta_0\|^{1-\xi_2} \end{aligned}$$

Assumption B.3. The following hold:

(i)
$$\sup_{\theta \in \Theta_n : ||\theta - \theta_0|| = O(\delta_n)} \mu_n \left(\frac{\partial l(\theta, W)}{\partial \psi'} - \frac{\partial l(\theta_0, W)}{\partial \psi'} \right) = o_p \left(n^{-\frac{1}{2}} \right);$$

(ii) For all $j \in \{\epsilon, \nu\}$, $\sup_{\theta \in \Theta_n : ||\theta - \theta_0|| = O(\delta_n)} \mu_n \left(\frac{\partial l(\theta, W)}{\partial h_j} [\pi_n v_j^*] - \frac{\partial l(\theta_0, W)}{\partial h_j} [\pi_n v_j^*] \right) = o_p \left(n^{-\frac{1}{2}} \right).$

Assumptions B.2 and B.3 are modifications of Assumptions 5 and 6 in CFT06, which are needed to control for the second-order expansion of the log-likelihood function $l(\theta, W)$. Under Assumption 14, these conditions require that the unknown marginal density functions be sufficiently smooth. For example, the sieve estimator needs to converge at a faster rate than $1/(3 - (2\xi_1 + \xi_2))$ to satisfy $(\delta_n)^{3-(2\xi_1 + \xi_2)} = o(n^{-1})$. Usually, the convergence rate depends positively on the smoothness parameter p in Assumption 11 and thus the class of models should be restricted to that in which the density functions are sufficiently smooth.

Note that since the sieve ML estimator $\hat{\theta}_n$ is consistent with respect to the pseudo-metric d_c by Theorem 4.1, it is consistent with respect to the norm $||\cdot||_2$ and thus with respect to the Fisher norm by equation (B.3). We also point out that $||\hat{\theta}_n - \theta_0|| = O_p(n^{-\frac{p}{2p+1}})$ by equation (B.3) and Theorem 4.2 under the given set of Assumptions. We follow the proof of Theorem 1 in CFT06. Assumptions 1 and 2 in CFT06 are implied by Assumption 1-5, 7-9, and 14. The first two parts in Assumption 15 correspond to Assumption 3 in CFT06. Since p > 1/2 by Assumption 11, $||\hat{\theta}_n - \theta_0|| = o_p(n^{-1/4})$ by Theorem 4.2 and this implies that $||\hat{\theta}_n - \theta_0|| \times ||\pi_n v^* - v^*|| = o(n^{-1/2})$ under Assumption 16. In addition, since $w > 1 + \frac{1}{2p}$, $\delta_n^w = o(n^{-1/2})$ by that $||\hat{\theta}_n - \theta_0|| = O_p(n^{-\frac{p}{2p+1}})$. Hence, Assumptions 3 and 4 in CFT06 are satisfied.

Define $r[\theta, \theta_0, W_i] \equiv l(\theta, W_i) - l(\theta_0, Z_i) - \frac{\partial l(\theta_0, W_i)}{\partial \theta'} [\theta - \theta_0]$ and $\xi_0 = 2\xi_1 + \xi_2$. Let ζ_n be a

positive sequence with $\zeta_n = o(n^{-1/2})$ and $(\delta_n)^{3-(2\xi_1+\xi_2)} = \zeta_n o(n^{-1/2})$. Then we have

$$0 \leq \frac{1}{n} \sum_{i=1}^{n} l(\hat{\theta}_{n}, W_{i}) - l(\hat{\theta}_{n} \pm \zeta_{n} \pi_{n} v^{*}, W_{i}) \leq \mp \zeta_{n} \frac{1}{n} \sum_{i=1}^{n} \frac{\partial l(\theta_{0}, W_{i})}{\partial \theta'} [\pi_{n} v^{*}] \\ + \mu_{n} (r[\hat{\theta}_{n}, \theta_{0}, W_{i}] - r[\hat{\theta}_{n} \pm \zeta_{n} \pi_{n} v^{*}, \theta_{0}, W_{i}]) + E[r[\hat{\theta}_{n}, \theta_{0}, W_{i}] - r[\hat{\theta}_{n} \pm \zeta_{n} \pi_{n} v^{*}, \theta_{0}, W_{i}]].$$
(B.15)

We first note that, by Assumption 16,

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\frac{\partial l(\theta_{0},W_{i})}{\partial \theta'}[\pi_{n}v^{*}-v^{*}]\right]^{2} \leq \frac{1}{n}E\left[\left\{\frac{\partial l(\theta_{0},W_{i})}{\partial \theta'}[\pi_{n}v^{*}-v^{*}]\right\}^{2}\right]$$
$$=\frac{1}{n}||\pi_{n}v^{*}-v^{*}||^{2}=o(n^{-1}), \tag{B.16}$$

and hence $\frac{1}{n} \sum_{i=1}^{n} \frac{\partial l(\theta_0, W_i)}{\partial \theta'} [\pi_n v^* - v^*] = o_p(n^{-1/2}).$

Observe that, by the mean value theorem,

$$E[r[\theta, \theta_0, W_i]] = E\left[l(\theta, W_i) - l(\theta_0, W_i) - \frac{\partial l(\theta_0, W_i)}{\partial \theta'}[\theta - \theta_0]\right]$$

= $E\left[\frac{1}{2}\frac{\partial^2 l(\theta_0, W_i)}{\partial \theta \partial \theta'}[\theta - \theta_0, \theta - \theta_0]\right]$
+ $\frac{1}{2}E\left[\frac{\partial^2 l(\tilde{\theta}, W_i)}{\partial \theta \partial \theta'}[\theta - \theta_0, \theta - \theta_0] - \frac{\partial^2 l(\theta_0, W_i)}{\partial \theta \partial \theta'}[\theta - \theta_0, \theta - \theta_0]\right],$ (B.17)

where $\theta, \tilde{\theta} \in \Theta_n$ and $\tilde{\theta}$ is between θ and θ_0 . In addition, for any $v = (v'_{\psi}, v_{\epsilon}, v_{\nu})' \in \mathbb{V}$ and $\tilde{\theta} \in \Theta_n$ with $||\tilde{\theta} - \theta_0|| = O(\delta_n)$, we have

$$\begin{split} E\left[\frac{\partial^2 l(\tilde{\theta}, W_i)}{\partial \theta \partial \theta'}[v, v] - \frac{\partial^2 l(\theta_0, W_i)}{\partial \theta \partial \theta'}[v, v]\right] &= v_{\psi}' E\left[\frac{\partial^2 l(\tilde{\theta}, W_i)}{\partial \psi \partial \psi'} - \frac{\partial^2 l(\theta_0, W_i)}{\partial \psi \partial \psi'}\right] v_{\psi} \\ &+ \sum_{j \in \{\epsilon, \nu\}} 2v_{\theta}' E\left[\frac{\partial^2 l(\tilde{\theta}, W_i)}{\partial \psi \partial h_j}[v_j] - \frac{\partial^2 l(\theta_0, W_i)}{\partial \psi \partial h_j}[v_j]\right] \\ &+ \sum_{k \in \{\epsilon, \nu\}} \sum_{j \in \{\epsilon, \nu\}} E\left[\frac{\partial^2 l(\tilde{\theta}, W_i)}{\partial h_k \partial h_j}[v_k, v_j] - \frac{\partial^2 l(\theta_0, W_i)}{\partial h_k \partial h_j}[v_k, v_j]\right], \end{split}$$

and this term can be controlled under Assumption B.2 in the same way of CFT06. This leads us to that

$$E[r[\hat{\theta}_n, \theta_0, W_i] - r[\hat{\theta}_n \pm \zeta_n \pi_n v^*, \theta_0, W_i]] = -\frac{1}{2} (||\hat{\theta}_n - \theta_0||^2 - ||\hat{\theta}_n \pm \zeta_n \pi_n v^* - \theta_0||) + \zeta_n o(n^{-1/2})$$

= $\pm \zeta_n \times \langle \hat{\theta}_n - \theta_0, v^* \rangle + \zeta_n o(n^{-1/2})$ (B.18)

because we have $\langle \hat{\theta}_n - \theta_0, \pi_n v^* - v^* \rangle = o_p(n^{-1/2})$ and $||\pi_n v^*||^2 \to ||v^*||^2 < \infty$. We also have that

 $\mu_n \left(r[\hat{\theta}_n, \theta_0, W_i] - r[\hat{\theta}_n \pm \zeta_n \pi_n v^*, \theta_0, W_i] \right)$ $= \mu_n \left(l(\hat{\theta}_n, W_i) - l(\hat{\theta}_n \pm \zeta_n \pi_n v^*, W_i) - \frac{\partial l(\theta_0, W_i)}{\partial \theta'} [\mp \zeta_n \pi_n v^*] \right)$ $= \mp \zeta_n \cdot \mu_n \left(\frac{\partial l(\tilde{\theta}, W_i)}{\partial \theta'} [\pi_n v^*] - \frac{\partial l(\theta_0, W_i)}{\partial \theta'} [\pi_n v^*] \right),$

where $\tilde{\theta} \in \Theta_n$ is between $\hat{\theta}_n$ and $\hat{\theta}_n \pm \zeta_n \pi_n v^*$. By Assumption B.3, we have

$$\mu_n \left(r[\hat{\theta}_n, \theta_0, W_i] - r[\hat{\theta}_n \pm \zeta_n \pi_n v^*, \theta_0, W_i] \right) = o_p(\zeta_n n^{-1/2}).$$
(B.19)

Combining equations (B.15) through (B.19) with the fact that $E\left[\frac{\partial l(\theta_0, W_i)}{\partial \theta'}[v^*]\right] = 0$, we have

$$0 \leq \frac{1}{n} \sum_{i=1}^{n} l(\hat{\theta}_n, W_i) - l(\hat{\theta}_n \pm \zeta_n \pi_n v^*, W_i)$$

= $\mp \zeta_n \cdot \mu_n \left(\frac{\partial l(\theta_0, W_i)}{\partial \theta'} [v^*] \right) \pm \zeta_n < \hat{\theta}_n - \theta_0, v^* > + \zeta_n \cdot o_p(n^{-1/2}).$

and this results in that

$$\sqrt{n} < \hat{\theta}_n - \theta_0, v^* > = \sqrt{n}\mu_n \left(\frac{\partial l(\theta_0, W_i)}{\partial \theta'}[v^*]\right) + o_p(1) \stackrel{d}{\to} \mathcal{N}\left(0, ||v^*||^2\right).$$

By Assumption 15, we have

$$\sqrt{n}\left(T(\hat{\theta}_n) - T(\theta_0)\right) = \sqrt{n} < \hat{\theta}_n - \theta_0, v^* > \stackrel{d}{\to} \mathcal{N}\left(0, ||v^*||^2\right)$$

by the same way in CFT06.

B.6 Proof of Theorem 4.3

Define

$$\mathcal{S}_{\psi_0}^{'} \equiv \frac{\partial l(\theta_0, W)}{\partial \psi^{'}} - \left\{ \frac{\partial l(\theta_0, W)}{\partial h_{\epsilon}} [b_{\epsilon}^*] + \frac{\partial l(\theta_0, W)}{\partial h_{\nu}} [b_{\nu}^*] \right\},\tag{B.20}$$

where $b_{\epsilon}^* = (b_{\epsilon 1}^*, ..., b_{\epsilon d_{\psi}}^*) \in \Pi_{k=1}^{d_{\psi}}(\mathcal{H}_{\epsilon} - \{h_{\epsilon 0}\})$ and $b_{\nu}^* = (b_{\nu 1}^*, ..., b_{\nu d_{\psi}}^*) \in \Pi_{k=1}^{d_{\psi}}(\mathcal{H}_{\nu} - \{h_{\nu 0}\})$ are the solutions to the following optimization problems for $k = 1, 2, ..., d_{\psi}$:

$$\inf_{(b_{\epsilon k}, b_{\nu k}) \in \bar{\mathbb{V}}_{\epsilon} \times \bar{\mathbb{V}}_{\nu}} E\left[\left(\frac{\partial l(\theta_0, W)}{\partial \theta_k} - \left\{ \frac{\partial l(\theta_0, W)}{\partial h_{\epsilon}} [b_{\epsilon k}] + \frac{\partial l(\theta_0, W)}{\partial h_{\nu}} [b_{\nu k}] \right\} \right)^2 \right].$$

We consider the following assumption to establish the asymptotic normality for ψ_0 .

Assumption B.4. $\mathcal{I}_*(\psi_0) \equiv E[\mathcal{S}_{\psi_0}\mathcal{S}'_{\psi_0}]$ is non-singular.

To prove Theorem 4.3, take any arbitrary $\lambda \in \mathbb{R}^{d_{\psi}} - \{0\}$ with $|\lambda| \in (0, \infty)$ and let $T : \Theta \to \mathbb{R}$ be a functional of the form $T(\theta) = \lambda' \psi$. Then, for any $v \in \mathbb{V}$, we have $\frac{\partial T(\theta_0)}{\partial \theta}[v] = \lambda' v_{\psi}$ and there exist a small $\eta > 0$ such that $||v|| \leq \eta$ and a constant $\tilde{c} > 0$ such that

$$\left| T(\theta_0 + v) - T(\theta_0) - \frac{\partial T(\theta_0)}{\partial \theta} \right| \le \tilde{c} ||v||^w$$
(B.21)

with $w = \infty$. Therefore, Assumption 15-(i) is satisfied with $w = \infty$ in this case. In addition, we have

$$\sup_{v \in \mathbb{V}: ||v|| > 0} \frac{|\lambda' v_{\psi}|^2}{||v||^2} = \sup_{v \in \mathbb{V}: ||v|| > 0} \frac{|\lambda' v_{\psi}|^2}{E\left[\left(\frac{\partial l(\theta_0, W)}{\partial \psi'} v_{\psi} + \sum_{j \in \{\epsilon, \nu\}} \frac{\partial l(\theta_0, W)}{\partial h_j} [v_j]\right)^2\right]} \\ = \lambda' E[\mathcal{S}_{\psi_0} \mathcal{S}'_{\psi_0}]^{-1} \lambda = \lambda' \mathcal{I}_*(\theta_0)^{-1} \lambda.$$

Note that the Riesz representer v^* exists if and only if $\lambda' E[S_{\psi_0}S'_{\psi_0}]^{-1}\lambda$ is finite. Since Assumption B.4 implies that $\lambda' E[S_{\psi_0}S'_{\psi_0}]^{-1}\lambda$ is finite, Assumption 15-(ii) holds. Hence, by Proposition 4.1, we have

$$\sqrt{n}\left(\lambda'\hat{\psi}_n-\lambda'\psi_0\right)\stackrel{d}{\to}\mathcal{N}\left(0,\lambda'\mathcal{I}_*(\psi_0)^{-1}\lambda\right).$$

Since λ was arbitrary, we obtain the result by Cramér-Wold device.

B.7 Hölder ball

Suppose that $h \in \Lambda^p_R([0,1])$, where $p = m + \zeta$, $m \ge 0$ is an integer and $\zeta \in (0,1]$ is the Hölder exponent. We want to show that $h^2 \in \Lambda^p_{\tilde{R}}([0,1])$, where $\tilde{R} = R^2 2^{m+1}$. Recall that \mathcal{D} is the differential operator. We note that $||h||_{\infty} \le R$ and thus $\sup_x |\mathcal{D}^{\omega}h(x)| \le R$ for all $\omega \le m$. By Leibniz's formula, we have

$$\left|\mathcal{D}^{\omega}h^{2}(x)\right| = \left|\sum_{\iota \leq \omega} \binom{\omega}{\iota} \mathcal{D}^{\iota}h\mathcal{D}^{\omega-\iota}h\right| \leq R^{2}\sum_{\iota \leq \omega} \binom{\omega}{\iota} = R^{2}2^{\omega} \leq K^{2}2^{m} < \infty$$

for all $\omega \leq m$. Observe that, by Leibniz's formula, for any $x, y \in [0, 1]$ with $x \neq y$,

$$\begin{split} \left| \mathcal{D}^{m}h^{2}(x) - \mathcal{D}^{m}h^{2}(y) \right| &= \left| \sum_{\omega \leq m} \binom{m}{\omega} \mathcal{D}^{\omega}h(x)\mathcal{D}^{m-\omega}h(x) - \sum_{\omega \leq m} \binom{m}{\omega} \mathcal{D}^{\omega}h(y)\mathcal{D}^{m-\omega}h(y) \right| \\ &\leq \left| \sum_{\omega \leq m} \binom{m}{\omega} \mathcal{D}^{\omega}h(x)\mathcal{D}^{m-\omega}h(x) - \sum_{\omega \leq m} \binom{m}{\omega} \mathcal{D}^{\omega}h(y)\mathcal{D}^{m-\omega}h(x) \right| \\ &+ \left| \sum_{\omega \leq m} \binom{m}{\omega} \mathcal{D}^{\omega}h(y)\mathcal{D}^{m-\omega}h(x) - \sum_{\omega \leq m} \binom{m}{\omega} \mathcal{D}^{\omega}h(y)\mathcal{D}^{m-\omega}h(y) \right| \\ &\leq 2 \times \left\{ \sup_{\omega \leq m} \sup_{x} |\mathcal{D}^{\omega}h(x)| \right\} \times \left| \sum_{\omega \leq m} \binom{m}{\omega} \left\{ \mathcal{D}^{\omega}h(x) - \mathcal{D}^{\omega}h(y) \right\} \right| \\ &\leq 2R \sum_{\omega \leq m} \binom{m}{\omega} |\mathcal{D}^{\omega}h(x) - \mathcal{D}^{\omega}h(y)| \,. \end{split}$$

We also have that, for all $\omega < m$,

$$\frac{|\mathcal{D}^{\omega}h(x) - D^{\omega}h(y)|}{|x - y|^{\zeta}} = \frac{|\mathcal{D}^{\omega}h(x) - \mathcal{D}^{\omega}h(y)|}{|x - y|}|x - y|^{1 - \zeta} = |\mathcal{D}^{\omega + 1}h(\tilde{x})||x - y|^{1 - \zeta} \le R,$$

where \tilde{x} is between x and y. Note that $\zeta \in (0, 1]$ and thus $|x - y|^{1 - \zeta} \leq 1$ for all $x, y \in [0, 1]$. Since $h \in \Lambda^p_R([0, 1])$, we have $\frac{|\mathcal{D}^m h(x) - \mathcal{D}^m h(y)|}{|x - y|^{\zeta}} \leq R$. Hence,

$$\frac{|\mathcal{D}^m h^2(x) - \mathcal{D}^m h^2(y)|}{|x - y|^{\zeta}} \le 2R \sum_{\omega \le m} \binom{m}{\omega} \frac{|\mathcal{D}^\omega h(x) - \mathcal{D}^\omega h(y)|}{|x - y|^{\zeta}} \le 2R^2 \sum_{\omega \le m} \binom{m}{\omega} = R^2 2^{m+1} < \infty,$$

and this implies that $h^2 \in \Lambda^p_{\tilde{R}}([0,1])$ with $\tilde{R} = R^2 2^{m+1}$.

C Additional Simulation Results

C.1 A Larger Sample Size

Tables C.1 and C.2 show the simulation results with a larger sample size (n = 1000). We can see that the main findings in the main text remain the same even with this larger sample size.

C.2 Copula and Marginal Misspecification

We consider the simulation results when both the copula and the marginal distributions are misspecified, reported in Tables C.3-C.6 and C.7-C.10. If both the copula and the marginal

distributions are misspecified, the performance of the parametric ML estimators are comparable to, or slightly worse than that under marginal misspecification. Consider, for example, the case where the true copula function is the Frank copula and the sample size is 500. The estimators of ψ under both the copula and marginal misspecification (Table C.4) have slightly larger root mean squared errors (RMSEs) than the corresponding estimators under the marginal misspecification (Table 2). On the other hand, the performance of the estimators of the ATE varies across copula specifications. In particular, when the true data generating process (DGP) is based on the Gumbel copula, the copula and marginal misspecification has a significant effect on the performance of the parametric estimators of the ATE. The RMSEs of the estimators of the ATE under the copula and marginal misspecification (Table C.6) are larger than those under the marginal misspecification (Table 2). Specifically, the RMSE of the parametric estimator of the ATE under the marginal misspecification is 0.1637 (Table 2), whereas the RMSEs of the corresponding estimators under both the copula and marginal misspecification are 0.1835, 0.2178, and 0.2732 when the Gaussian, Frank, and Clayton copulas are used, respectively (Table C.6). On the other hand, there is no clear evidence that the performance of the sieve ML estimators under both the copula and marginal misspecification is worse than that under misspecification of the marginal distributions. For example, when the true copula belongs to the Frank family but the copula is specified as the Gaussian or Gumbel copula, we can see that the RMSEs of the sieve ML estimators of the finitedimensional parameters other than γ and the ATE under the copula and marginal misspecification (Table C.4) are lower than those under the marginal misspecification (Table 2). In contrast, we can see from the same tables that the Clayton copula specification draws the opposite conclusion when the true copula is the Frank. In general, no matter whether the copula is misspecified, we find that the sieve ML estimators outperform the parametric estimators in terms of the RMSE when the marginal distributions are misspecified.

C.3 Unknown Marginal Density Functions with Fat Tails

We examine the finite sample performance of the sieve ML estimator of θ_0 when the unknown marginal density functions $f_{\epsilon 0}$ and $f_{\nu 0}$ have fat tails. We consider the t distribution with 3 degree of freedom as the true marginal distributions. While the marginal distributions in the parametric models are specified by normal distributions, we consider two specifications for the semiparametric models. These specifications differ in the choice of G: we choose the standard normal distribution and the distribution function of t(3) for G in the first and second specifications, respectively. All simulation results are obtained with 500 observations and 2000 simulation iterations.

Table C.11 presents simulation results. While the parametric estimates have larger standard deviations, the biases of the semiparametric estimates are larger than those of the parametric estimates. However, the resulting RMSEs of the semiparametric estimates are slightly larger

than those of the parametric estimates. This is because the semiparametric specification does not satisfy the assumptions required for the asymptotic theory.

Table C.12 shows simulation results where G is the distribution function of t(3). The performance of semiparametric estimator is comparable to that of parametric estimator in terms of the RMSE. The biases of semiparametric estimates in Table C.12 are much smaller than those in Table C.11, and the standard deviations of semiparametric estimates are very similar to those of parametric estimates.

The simulation results in Tables C.11 and C.12 suggest that if a researcher has a prior belief about the tail behavior of the unknown marginal density functions, it should be reflected in the choice of G for semiparametric models. If it is believed that the marginal density functions have fat tails, one may choose a distribution function with fat tails for G, such as the distribution function of t(3).

C.4 Different Degrees of Dependence

Tables C.13 through C.18 provide simulation results across various degrees of dependence between ϵ and ν . The dependence measure is unified into the Spearman's ρ , and we consider cases of $\rho_{sp} \in \{-0.5, 0.2, 0.7\}$.⁴ We find that regardless of degrees of dependence, the results in our main paper remains the same: (i) the performance of the semiparametric estimator is comparable to that of the parametric estimator under correct specification, (ii) the semiparametric estimators outperform the parametric estimators under misspecification of the marginals.

C.5 Coverage Probabilities of Bootstrap Confidence Intervals

We conduct simulations to investigate coverage probabilities of bootstrap confidence intervals (CIs). We consider the following design:

$$Y_i = \mathbf{1}\{-X_{1i} + X_{2i}\beta + D_i\delta \ge \epsilon_i\}, \quad D_i = \mathbf{1}\{-X_{1i} + X_{2i}\alpha + Z_i\gamma \ge \nu_i\},$$

where $(\alpha, \gamma, \beta, \delta) = (0.5, 0.8, 0.8, 1.1)$ and (ϵ, ν) are generated from the Gaussian copula and normal marginals with $\rho_{sp} = 0.5$. (X_{1i}, X_{2i}, Z_i) is drawn from a multivariate normal distribution. Note that the coefficients on X_{1i} are fixed for scale normalization. The sample size, number of bootstrap iterations, and number of simulations are 500, 200, and 200, respectively. We consider two types of CIs: (i) CIs using the normal approximation, (ii) the percentile bootstrap CIs.

Table C.19 presents the coverage probabilities of both CIs. We find that the bootstrap percentile CIs performs better than the CIs based on the normal approximation and that their coverage probabilities are close to the nominal level (95%).

⁴Note that we only consider the Gaussian and Frank copulas for $\rho_{sp} = -0.5$ as the Clayton or the Gumbel copula does not allow for negative dependence.

Parametri	ic Estima	ation, Ga	aussian C	opula	Semiparame	etric Esti	mation,	Gaussian	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.3643	True Values	0.8000	1.1000	0.5000	0.3643
Estimate	0.8025	1.1165	0.4996	0.3632	Estimate	0.8026	1.1205	0.5031	0.3596
S.D	0.0654	0.2737	0.1081	0.0656	S.D	0.0655	0.2939	0.1092	0.0668
Bias	0.0025	0.0165	-0.0004	-0.0011	Bias	0.0026	0.0205	0.0031	-0.0048
RMSE	0.0655	0.2742	0.1081	0.0656	RMSE	0.0655	0.2946	0.1092	0.0670
Paramet	ric Estir	nation, I	Frank Cop	pula	Semiparan	netric Es	timation	, Frank C	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.3643	True Values	0.8000	1.1000	0.5000	0.3643
Estimate	0.8017	1.1188	0.5010	0.3635	Estimate	0.8007	1.1164	0.5042	0.3594
S.D	0.0658	0.2605	0.1023	0.0620	S.D	0.0652	0.2663	0.1066	0.0652
Bias	0.0017	0.0188	0.0010	-0.0009	Bias	0.0007	0.0164	0.0042	-0.0049
RMSE	0.0658	0.2612	0.1023	0.0620	RMSE	0.0652	0.2668	0.1067	0.0653
Damamatin	in Dation	ation O		1		· ·	• . •	CI I	<u>a</u> 1
Parametr	ic Estim	ation, C	layton Co	opula	Semiparam	etric Est	imation,	Clayton	Copula
Parametr	$\frac{10 \text{ Estim}}{\gamma}$	$\frac{\delta_1}{\delta_1}$	ρ_{sp}	ATE	Semiparam	$\frac{\text{etric Est}}{\gamma}$	$\frac{1}{\delta_1}$	Clayton ρ_{sp}	$\begin{array}{c} \text{Copula} \\ ATE \end{array}$
True Values	$\frac{\gamma}{0.8000}$	$\frac{\delta_1}{1.1000}$	$\frac{\rho_{sp}}{0.5000}$	ATE 0.3643	Semiparame True Values	$\frac{\gamma}{0.8000}$	$\frac{\delta_1}{1.1000}$	$\frac{\rho_{sp}}{0.5000}$	$\begin{array}{c} \text{Copula} \\ \hline ATE \\ \hline 0.3643 \end{array}$
True Values Estimate	$\begin{array}{c} \gamma \\ \hline 0.8000 \\ \hline 0.8030 \end{array}$	δ_1 1.1000 1.1055	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.5007 \end{array}$	ATE 0.3643 0.3621	Semiparame True Values Estimate	$\begin{array}{c} \gamma\\ \hline \gamma\\ \hline 0.8000\\ \hline 0.8029 \end{array}$	δ_1 1.1000 1.1100	Clayton ρ_{sp} 0.5000 0.5035	Copula ATE 0.3643 0.3572
True Values Estimate S.D	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8030 \\ 0.0658 \end{array}$	$ \frac{\delta_1}{1.1000} \\ 1.1055 \\ 0.2329 $	ρ_{sp} 0.5000 0.5007 0.0958	ATE 0.3643 0.3621 0.0566	Semiparame True Values Estimate S.D	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8029 \\ 0.0659 \end{array}$	$ \frac{\delta_1}{1.1000} \\ 0.2524 $	$\begin{tabular}{c} Clayton \\ \hline ρ_{sp} \\ \hline 0.5000 \\ \hline 0.5035 \\ \hline 0.0964 \\ \hline \end{tabular}$	Copula ATE 0.3643 0.3572 0.0560
True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8030 \\ \hline 0.0658 \\ 0.0030 \end{array}$	$ \begin{array}{r} \delta_1 \\ \hline 1.1000 \\ 1.1055 \\ 0.2329 \\ 0.0055 \end{array} $	ρ_{sp} 0.5000 0.5007 0.0958 0.0007 0.0007	ATE 0.3643 0.3621 0.0566 -0.0023	Semiparame True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8029 \\ 0.0659 \\ 0.0029 \end{array}$	$ \frac{\delta_1}{1.1000} \\ 1.1100 \\ 0.2524 \\ 0.0100 $	$\begin{tabular}{l} Clayton \\ \hline ρ_{sp} \\ \hline 0.5000 \\ \hline 0.5035 \\ \hline 0.0964 \\ \hline 0.0035 \\ \hline \end{tabular}$	Copula ATE 0.3643 0.3572 0.0560 -0.0071
True Values Estimate S.D Bias RMSE	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8030 \\ 0.0658 \\ 0.0030 \\ 0.0659 \end{array}$	$\begin{array}{c} \delta_1 \\ \hline 1.1000 \\ 1.1055 \\ \hline 0.2329 \\ \hline 0.0055 \\ \hline 0.2330 \end{array}$	ρ_{sp} 0.5000 0.5007 0.0958 0.0007 0.0958	$\begin{array}{c} ATE \\ \hline 0.3643 \\ \hline 0.3621 \\ \hline 0.0566 \\ \hline -0.0023 \\ \hline 0.0567 \end{array}$	Semiparamo True Values Estimate S.D Bias RMSE	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8029 \\ 0.0659 \\ 0.0029 \\ 0.0660 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{l} Clayton \\ \hline ρ_{sp} \\ \hline 0.5000 \\ \hline 0.5035 \\ \hline 0.0964 \\ \hline 0.0035 \\ \hline 0.0965 \\ \hline \end{tabular}$	ATE 0.3643 0.3572 0.0560 -0.0071 0.0565
True Values Estimate S.D Bias RMSE Parametr	$\begin{array}{c} \gamma \\ \hline 0.8000 \\ 0.8030 \\ 0.0658 \\ 0.0030 \\ 0.0659 \\ \text{ic Estim} \end{array}$	$\begin{array}{c} \text{ation, C} \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1055 \\ \hline 0.2329 \\ \hline 0.0055 \\ \hline 0.2330 \\ \hline \text{ation, G} \end{array}$	ρ_{sp} 0.5000 0.5007 0.0958 0.0007 0.0958 0.0958 umbel Co Co Co	ATE 0.3643 0.3621 0.0566 -0.0023 0.0567	Semiparamo True Values Estimate S.D Bias RMSE Semiparamo	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8029 \\ 0.0659 \\ 0.0029 \\ 0.0660 \\ \text{etric Est} \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ρ_{sp} 0.5000 0.5035 0.0964 0.0035 0.0965 Gumbel	Copula ATE 0.3643 0.3572 0.0560 -0.0071 0.0565 Copula
True Values Estimate S.D Bias RMSE Parametr	$\begin{array}{c} \gamma \\ \hline 0.8000 \\ \hline 0.8030 \\ \hline 0.0658 \\ \hline 0.0030 \\ \hline 0.0659 \\ \hline \text{ic Estim} \\ \gamma \end{array}$	$\begin{array}{c} \text{ation, C} \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1055 \\ \hline 0.2329 \\ \hline 0.0055 \\ \hline 0.2330 \\ \hline \text{ation, G} \\ \hline \delta_1 \end{array}$	ρ_{sp} 0.5000 0.5007 0.0958 0.0007 0.0958 umbel Co ρ_{sp}	ATE 0.3643 0.3621 0.0566 -0.0023 0.0567 opula ATE	Semiparame True Values Estimate S.D Bias RMSE Semiparame	$\begin{array}{c} \gamma \\ \hline 0.8000 \\ 0.8029 \\ 0.0659 \\ 0.0029 \\ 0.0660 \\ \hline \text{etric Est} \\ \gamma \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ρ_{sp} 0.5000 0.5035 0.0964 0.0035 0.0965 Gumbel ρ_{sp}	Copula ATE 0.3643 0.3572 0.0560 -0.0071 0.0565 Copula ATE
True Values Estimate S.D Bias RMSE Parametr True Values	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8030 \\ 0.0658 \\ 0.0030 \\ 0.0659 \\ \text{ic Estim} \\ \hline \gamma \\ 0.8000 \end{array}$	$\begin{array}{c} \text{ation, C} \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1055 \\ \hline 0.2329 \\ \hline 0.0055 \\ \hline 0.2330 \\ \hline 0.2330 \\ \hline ation, G \\ \hline \delta_1 \\ \hline 1.1000 \end{array}$	ρ_{sp} 0.5000 0.5007 0.0958 0.0007 0.0958 umbel Co ρ_{sp} 0.5000	$\begin{array}{c} ATE \\ 0.3643 \\ 0.3621 \\ 0.0566 \\ -0.0023 \\ 0.0567 \\ 0.0567 \\ 0.0164 \\ 0.3643 \end{array}$	Semiparame True Values Estimate S.D Bias RMSE Semiparame True Values	etric Est γ 0.8000 0.8029 0.0659 0.0029 0.0660 etric Est γ 0.8000	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ρ_{sp} 0.5000 0.5035 0.0964 0.0035 0.0965 Gumbel ρ_{sp} 0.5000	Copula ATE 0.3643 0.3572 0.0560 -0.0071 0.0565 Copula ATE 0.3643
True Values Estimate S.D Bias RMSE Parametr True Values Estimate	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8030 \\ 0.0658 \\ 0.0030 \\ 0.0659 \\ \text{ic Estim} \\ \hline \gamma \\ 0.8000 \\ 0.8022 \end{array}$	$\begin{array}{c} \text{ation, C} \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1055 \\ \hline 0.2329 \\ \hline 0.0055 \\ \hline 0.2330 \\ \hline ation, G \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1192 \end{array}$	ρ_{sp} 0.5000 0.5007 0.0958 0.0007 0.0958 umbel Co ρ_{sp} 0.5000 0.4963	ATE 0.3643 0.3621 0.0566 -0.0023 0.0567 opula ATE 0.3643 0.3643	Semiparame True Values Estimate S.D Bias RMSE Semiparame True Values Estimate	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8029 \\ 0.0659 \\ 0.0029 \\ 0.0660 \\ \text{etric Est} \\ \hline \gamma \\ 0.8000 \\ 0.8025 \end{array}$	$\begin{array}{c} \text{imation,}\\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1100 \\ \hline 0.2524 \\ \hline 0.0100 \\ \hline 0.2526 \\ \hline \text{imation,} \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1240 \end{array}$	ρ_{sp} 0.5000 0.5035 0.0964 0.0035 0.0965 Gumbel ρ_{sp} 0.5000 0.4986	Copula ATE 0.3643 0.3572 0.0560 -0.0071 0.0565 Copula ATE 0.3643 0.3643 0.3643
True Values Estimate S.D Bias RMSE Parametr True Values Estimate S.D	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8030 \\ 0.0658 \\ 0.0030 \\ 0.0659 \\ \text{ic Estim} \\ \hline \gamma \\ 0.8000 \\ 0.8022 \\ 0.0668 \end{array}$	$\begin{array}{c} \text{ation, C} \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1055 \\ \hline 0.2329 \\ \hline 0.0055 \\ \hline 0.2330 \\ \hline ation, G \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1192 \\ \hline 0.2655 \end{array}$	ρ_{sp} 0.5000 0.5007 0.0958 0.0007 0.0958 umbel Co ρ_{sp} 0.5000 0.4963 0.1057	$\begin{array}{c} ATE \\ 0.3643 \\ 0.3621 \\ 0.0566 \\ -0.0023 \\ 0.0567 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Semiparame True Values Estimate S.D Bias RMSE Semiparame True Values Estimate S.D	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8029 \\ 0.0659 \\ 0.0029 \\ 0.0660 \\ e tric Est \\ \hline \gamma \\ 0.8000 \\ 0.8025 \\ 0.0665 \\ \end{array}$	$\begin{array}{c} \text{imation,}\\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1100 \\ \hline 0.2524 \\ \hline 0.0100 \\ \hline 0.2526 \\ \hline \text{imation,} \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1240 \\ \hline 0.2818 \end{array}$	ρ_{sp} 0.5000 0.5035 0.0964 0.0035 0.0965 Gumbel ρ_{sp} 0.5000 0.4986 0.1086	Copula ATE 0.3643 0.3572 0.0560 -0.0071 0.0565 Copula ATE 0.3643 0.3643 0.3626 0.0684
True Values Estimate S.D Bias RMSE Parametr True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8030 \\ 0.0658 \\ 0.0030 \\ 0.0659 \\ \text{ic Estim} \\ \hline \gamma \\ 0.8000 \\ 0.8022 \\ 0.0668 \\ 0.0022 \\ \end{array}$	$\begin{array}{c} \text{ation, C} \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1055 \\ \hline 0.2329 \\ \hline 0.0055 \\ \hline 0.2330 \\ \hline ation, G \\ \hline \delta_1 \\ \hline 1.1000 \\ \hline 1.1192 \\ \hline 0.2655 \\ \hline 0.0192 \\ \end{array}$	ρ_{sp} 0.5000 0.5007 0.0958 0.0007 0.0958 umbel Co ρ_{sp} 0.5000 0.4963 0.1057 -0.0037	$\begin{array}{c} ATE \\ 0.3643 \\ 0.3621 \\ 0.0566 \\ -0.0023 \\ 0.0567 \\ 0.0567 \\ 0.012 \\ 0.0567 \\ 0.0001 \\$	Semiparamo True Values Estimate S.D Bias RMSE Semiparamo True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ \hline \gamma \\ 0.8000 \\ 0.8029 \\ 0.0659 \\ 0.0029 \\ 0.0660 \\ \hline \text{etric Est} \\ \hline \gamma \\ 0.8000 \\ 0.8025 \\ 0.0665 \\ 0.0025 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c } \hline P_{sp} \\ \hline 0.5000 \\ \hline 0.5035 \\ \hline 0.0964 \\ \hline 0.0035 \\ \hline 0.0965 \\ \hline 0.1086 \\ \hline 0.1086 \\ \hline -0.0014 \\ \hline \end{tabular}$	Copula ATE 0.3643 0.3572 0.0560 -0.0071 0.0565 Copula ATE 0.3643 0.3643 0.3643 0.3626 0.0684 -0.0017

Table C.1: Correct Specification $\left(n=1,000\right)$ (True marginal: normal)

Parametr	ic Estima	tion, Gau	ıssian Co	pula	Semiparame	tric Esti	mation,	Gaussian	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.7941	1.0549	0.4496	0.2447	Estimate	0.8641	1.3030	0.4778	0.1262
S.D	0.0911	0.4256	0.1156	0.0807	S.D	0.0778	0.2576	0.0721	0.0463
Bias	-0.0059	-0.0451	-0.0504	0.1381	Bias	0.0641	0.2030	-0.0222	0.0195
RMSE	0.0913	0.4279	0.1261	0.1599	RMSE	0.1008	0.3279	0.0755	0.0502
Paramet	tric Estin	nation, Fr	ank Cop	ula	Semiparan	netric Es	timation	, Frank C	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8044	1.3066	0.3940	0.2919	Estimate	0.8525	1.2802	0.4777	0.1291
S.D	0.0899	0.3876	0.0966	0.0684	S.D	0.0837	0.2577	0.0690	0.0500
Bias	0.0044	0.2066	-0.1060	0.1853	Bias	0.0525	0.1802	-0.0223	0.0225
RMSE	0.0901	0.4392	0.1434	0.1975	RMSE	0.0988	0.3145	0.0725	0.0549
Parameti	ric Estima	ation, Cla	ayton Coj	pula	Semiparame	etric Est	imation,	Clayton	Copula
				I					
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	$\frac{\gamma}{0.8000}$	$\frac{\delta_1}{1.1000}$	$\frac{\rho_{sp}}{0.5000}$	ATE 0.1066	True Values	$\frac{\gamma}{0.8000}$	$\frac{\delta_1}{1.1000}$	$\frac{\rho_{sp}}{0.5000}$	<i>ATE</i> 0.1066
True Values Estimate	$\gamma \\ 0.8000 \\ 0.8065$	δ_1 1.1000 1.1207	$\rho_{sp} = 0.5000 = 0.4240$	ATE 0.1066 0.2553	True Values Estimate	$\gamma \\ 0.8000 \\ 0.8547$	δ_1 1.1000 1.2669	$\rho_{sp} = 0.5000 = 0.4851$	ATE 0.1066 0.1219
True Values Estimate S.D	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8065 \\ 0.0906 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1207}{0.3704} \\ \end{array}$	$ ho_{sp}$ 0.5000 0.4240 0.1047	ATE 0.1066 0.2553 0.0677	True Values Estimate S.D	$\gamma \\ 0.8000 \\ 0.8547 \\ 0.0801$		$ ho_{sp}$ 0.5000 0.4851 0.0706	ATE 0.1066 0.1219 0.0456
True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8065 \\ 0.0906 \\ 0.0065 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1207}{0.3704} \\ 0.0207$	$ ho_{sp}$ 0.5000 0.4240 0.1047 -0.0761	ATE 0.1066 0.2553 0.0677 0.1487	True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8547 \\ 0.0801 \\ 0.0547 \end{array}$	$\begin{array}{c} \delta_1 \\ \hline 1.1000 \\ \hline 1.2669 \\ \hline 0.2622 \\ \hline 0.1669 \end{array}$	$ ho_{sp}$ 0.5000 0.4851 0.0706 -0.0150	ATE 0.1066 0.1219 0.0456 0.0153
True Values Estimate S.D Bias RMSE	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8065 \\ 0.0906 \\ 0.0065 \\ 0.0908 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1207}{0.3704} \\ 0.0207 \\ 0.3710 \\ \end{array}$	$ ho_{sp}$ 0.5000 0.4240 0.1047 -0.0761 0.1294	$\begin{array}{c} ATE \\ 0.1066 \\ 0.2553 \\ 0.0677 \\ 0.1487 \\ 0.1634 \end{array}$	True Values Estimate S.D Bias RMSE	γ 0.8000 0.8547 0.0801 0.0547 0.0969	δ_1 1.1000 1.2669 0.2622 0.1669 0.3108	$ ho_{sp}$ 0.5000 0.4851 0.0706 -0.0150 0.0722	ATE 0.1066 0.1219 0.0456 0.0153 0.0481
True Values Estimate S.D Bias RMSE Parametr	$\begin{array}{c} \gamma \\ \hline 0.8000 \\ \hline 0.8065 \\ \hline 0.0906 \\ \hline 0.0065 \\ \hline 0.0908 \\ \hline \text{ric Estimation} \end{array}$	$ \frac{\delta_1}{1.1000} \\ 1.1207 \\ 0.3704 \\ 0.0207 \\ 0.3710 \\ ation, Gu $	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4240 \\ 0.1047 \\ -0.0761 \\ 0.1294 \\ \text{mbel Cop} \end{array}$	ATE 0.1066 0.2553 0.0677 0.1487 0.1634 pula	True Values Estimate S.D Bias RMSE Semiparame	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8547 \\ 0.0801 \\ 0.0547 \\ 0.0969 \\ \text{etric Est.} \end{array}$	$\begin{array}{c} \delta_1 \\ \hline 1.1000 \\ 1.2669 \\ \hline 0.2622 \\ \hline 0.1669 \\ \hline 0.3108 \\ \hline \mathrm{imation}, \end{array}$	$ ho_{sp}$ 0.5000 0.4851 0.0706 -0.0150 0.0722 Gumbel	ATE 0.1066 0.1219 0.0456 0.0153 0.0481 Copula
True Values Estimate S.D Bias RMSE Parametr	$\begin{array}{c} \gamma \\ \hline 0.8000 \\ \hline 0.8065 \\ \hline 0.0906 \\ \hline 0.0065 \\ \hline 0.0908 \\ \hline \text{ric Estima} \\ \hline \gamma \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1207}{0.3704} \\ 0.0207 \\ 0.3710 \\ \text{ation, Gu} \\ \delta_1$	$\begin{array}{c} \rho_{sp} \\ \hline 0.5000 \\ \hline 0.4240 \\ \hline 0.1047 \\ \hline -0.0761 \\ \hline 0.1294 \\ \hline \text{mbel Cop} \\ \hline \rho_{sp} \end{array}$	ATE 0.1066 0.2553 0.0677 0.1487 0.1634 pula ATE	True Values Estimate S.D Bias RMSE Semiparame	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8547 \\ 0.0801 \\ 0.0547 \\ 0.0969 \\ \hline \rho \\ etric \ Est \\ \gamma \end{array}$	$\begin{array}{c} \delta_1 \\ \hline 1.1000 \\ \hline 1.2669 \\ \hline 0.2622 \\ \hline 0.1669 \\ \hline 0.3108 \\ \hline \text{imation}, \\ \hline \delta_1 \end{array}$	$ ho_{sp}$ 0.5000 0.4851 0.0706 -0.0150 0.0722 Gumbel $ ho_{sp}$	ATE 0.1066 0.1219 0.0456 0.0153 0.0481 Copula ATE
True Values Estimate S.D Bias RMSE Parametr True Values	$\begin{array}{c} \gamma \\ \hline 0.8000 \\ \hline 0.8065 \\ \hline 0.0906 \\ \hline 0.0065 \\ \hline 0.0908 \\ \hline \text{cic Estima} \\ \hline \gamma \\ \hline 0.8000 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1207}{0.3704} \\ \frac{0.0207}{0.3710} \\ \frac{\delta_1}{1.1000} \\ \frac{\delta_1}{0.0000} \\ \frac{\delta_1}{0.0000} \\ \frac{\delta_1}{0.00000} \\ \frac{\delta_1}{0.00000000000000000000000000000000000$	$\begin{array}{c} \rho_{sp} \\ \hline 0.5000 \\ \hline 0.4240 \\ \hline 0.1047 \\ \hline -0.0761 \\ \hline 0.1294 \\ \hline mbel \ Cop \\ \hline \rho_{sp} \\ \hline 0.5000 \end{array}$	ATE 0.1066 0.2553 0.0677 0.1487 0.1634 pula ATE 0.1066	True Values Estimate S.D Bias RMSE Semiparame True Values	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8547 \\ 0.0801 \\ 0.0547 \\ 0.0969 \\ etric Est \\ \gamma \\ 0.8000 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.2669}{0.2622} \\ 0.1669 \\ 0.3108 \\ \frac{\delta_1}{1.1000} \\ $	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4851 \\ 0.0706 \\ -0.0150 \\ 0.0722 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} ATE \\ \hline 0.1066 \\ \hline 0.1219 \\ \hline 0.0456 \\ \hline 0.0153 \\ \hline 0.0481 \\ \hline Copula \\ \hline ATE \\ \hline 0.1066 \\ \hline \end{array}$
True Values Estimate S.D Bias RMSE Parametr True Values Estimate	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8065 \\ 0.0906 \\ 0.0065 \\ 0.0908 \\ \hline \text{cic Estima} \\ \gamma \\ 0.8000 \\ 0.7849 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1207}{0.3704} \\ \frac{0.0207}{0.3710} \\ \frac{\delta_1}{1.1000} \\ \frac{1.0104}{0.000} \\ \frac{\delta_1}{0.000} \\$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4240 \\ 0.1047 \\ -0.0761 \\ 0.1294 \\ \text{mbel Cop} \\ \rho_{sp} \\ 0.5000 \\ 0.4606 \end{array}$	ATE 0.1066 0.2553 0.0677 0.1487 0.1634 pula ATE 0.1066 0.2391	True Values Estimate S.D Bias RMSE Semiparame True Values Estimate	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8547 \\ 0.0801 \\ 0.0547 \\ 0.0969 \\ etric Est \\ \hline \gamma \\ 0.8000 \\ 0.8618 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.2669}{0.2622} \\ 0.1669 \\ 0.3108 \\ \frac{\delta_1}{1.1000} \\ 1.2980 \\ \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4851 \\ 0.0706 \\ -0.0150 \\ 0.0722 \\ \text{Gumbel} \\ \hline \rho_{sp} \\ 0.5000 \\ 0.4791 \end{array}$	$\begin{array}{c} ATE \\ 0.1066 \\ 0.1219 \\ 0.0456 \\ 0.0153 \\ 0.0481 \\ Copula \\ ATE \\ 0.1066 \\ 0.1268 \end{array}$
True Values Estimate S.D Bias RMSE Parametr True Values Estimate S.D	$\begin{array}{c} \gamma \\ \hline 0.8000 \\ \hline 0.8065 \\ \hline 0.0906 \\ \hline 0.0065 \\ \hline 0.0908 \\ \hline \text{cic Estim:} \\ \hline \gamma \\ \hline 0.8000 \\ \hline 0.7849 \\ \hline 0.0893 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1207}{0.3704} \\ \frac{0.0207}{0.3710} \\ \frac{\delta_1}{1.1000} \\ \frac{1.0104}{0.3566} \\ \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4240 \\ 0.1047 \\ -0.0761 \\ 0.1294 \\ \text{mbel Cop} \\ \rho_{sp} \\ 0.5000 \\ 0.4606 \\ 0.0950 \end{array}$	ATE 0.1066 0.2553 0.0677 0.1487 0.1634 pula ATE 0.1066 0.2391 0.0695	True Values Estimate S.D Bias RMSE Semiparame True Values Estimate S.D	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8547 \\ 0.0801 \\ 0.0547 \\ 0.0969 \\ \hline \ \ $	$\begin{array}{c} \delta_1 \\ 1.1000 \\ 1.2669 \\ 0.2622 \\ 0.1669 \\ 0.3108 \\ \text{imation,} \\ \delta_1 \\ 1.1000 \\ 1.2980 \\ 0.2516 \end{array}$	$ ho_{sp}$ 0.5000 0.4851 0.0706 -0.0150 0.0722 Gumbel $ ho_{sp}$ 0.5000 0.4791 0.0684	$\begin{array}{c} ATE \\ 0.1066 \\ 0.1219 \\ 0.0456 \\ 0.0153 \\ 0.0481 \\ \hline Copula \\ ATE \\ 0.1066 \\ 0.1268 \\ 0.0463 \\ \hline \end{array}$
True Values Estimate S.D Bias RMSE Parametr Parametr True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ \hline 0.8000 \\ \hline 0.8065 \\ \hline 0.0906 \\ \hline 0.0065 \\ \hline 0.0908 \\ \hline \text{cic Estima} \\ \hline \gamma \\ \hline 0.8000 \\ \hline 0.7849 \\ \hline 0.0893 \\ \hline -0.0151 \end{array}$	$\frac{\delta_1}{1.1000} \\ 1.1207 \\ 0.3704 \\ 0.0207 \\ 0.3710 \\ ation, Gu \\ \delta_1 \\ 1.1000 \\ 1.0104 \\ 0.3566 \\ -0.0896 \\ \hline$	$\begin{array}{c} \rho_{sp} \\ \hline 0.5000 \\ \hline 0.4240 \\ \hline 0.1047 \\ \hline -0.0761 \\ \hline 0.1294 \\ \hline mbel \ Cop \\ \hline \rho_{sp} \\ \hline 0.5000 \\ \hline 0.4606 \\ \hline 0.0950 \\ \hline -0.0393 \end{array}$	ATE 0.1066 0.2553 0.0677 0.1487 0.1634 pula ATE 0.1066 0.2391 0.0695 0.1325	True Values Estimate S.D Bias RMSE Semiparame True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8547 \\ 0.0801 \\ 0.0547 \\ 0.0969 \\ etric Est \\ \hline \gamma \\ 0.8000 \\ 0.8618 \\ 0.0781 \\ 0.0618 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.2669}{0.2622} \\ 0.1669 \\ 0.3108 \\ \frac{\delta_1}{1.1000} \\ 1.2980 \\ 0.2516 \\ 0.1980 \\ 0.1980 \\ 0.2516 \\ 0.2516 \\ 0.1980 \\ 0.2516 \\ 0$	$ ho_{sp}$ 0.5000 0.4851 0.0706 -0.0150 0.0722 Gumbel $ ho_{sp}$ 0.5000 0.4791 0.0684 -0.0208	$\begin{array}{c} ATE \\ 0.1066 \\ 0.1219 \\ 0.0456 \\ 0.0153 \\ 0.0481 \\ \hline Copula \\ ATE \\ 0.1066 \\ 0.1268 \\ 0.0463 \\ 0.0201 \\ \end{array}$

Table C.2: Misspecification of Marginals (n = 1,000) (True marginal: mixture of normals)

Parame	tric Estin	nation, Fi	ank Cop	ula	Semiparam	netric Est	timation	, Frank C	lopula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8140	1.3080	0.3775	0.2916	Estimate	0.8463	1.3514	0.4499	0.1351
S.D	0.1257	0.4899	0.1202	0.0862	S.D	0.1137	0.3502	0.0964	0.0686
Bias	0.0140	0.2080	-0.1225	0.1849	Bias	0.0463	0.2514	-0.0501	0.0285
RMSE	0.1265	0.5322	0.1716	0.2040	RMSE	0.1227	0.4311	0.1087	0.0743
Paramet	ric Estim	ation, Cla	ayton Cop	pula	Semiparame	etric Esti	imation,	Clayton	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8244	1.5699	0.3691	0.3176	Estimate	0.8534	1.4386	0.4945	0.1586
S.D	0.1271	0.6609	0.1697	0.0999	S.D	0.1128	0.3398	0.1044	0.0734
Bias	0.0244	0.4699	-0.1308	0.2110	Bias	0.0534	0.3386	-0.0054	0.0520
RMSE	0.1294	0.8109	0.2143	0.2335	RMSE	0.1248	0.4797	0.1046	0.0899
Paramet	ric Estim	ation, Gu	mbel Co	pula	Semiparame	etric Esti	mation,	Gumbel	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.7981	1.0706	0.4232	0.2448	Estimate	0.8546	1.2025	0.4697	0.1137
S.D	0.1281	0.5795	0.1519	0.1077	S.D	0.1118	0.3611	0.1027	0.0600
Bias	-0.0019	-0.0294	-0.0767	0.1382	Bias	0.0546	0.1025	-0.0302	0.0070
RMSE	0.1281	0.5802	0.1702	0.1752	RMSE	0.1244	0.3754	0.1070	0.0604

Table C.3: Copula and Marginals Misspecification 1 (n = 500) (True copula: Gaussian, true marginal: mixture of normals)

Parametri	ic Estima	tion, Ga	ussian Co	opula	Semiparame	tric Esti	mation,	Gaussian	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.7992	1.1673	0.4517	0.2527	Estimate	0.8500	1.1788	0.5173	0.1192
S.D	0.1342	0.6901	0.1680	0.1179	S.D	0.1158	0.3602	0.1000	0.0652
Bias	-0.0008	0.0673	-0.0483	0.1461	Bias	0.0500	0.0788	0.0173	0.0126
RMSE	0.1342	0.6934	0.1748	0.1877	RMSE	0.1262	0.3687	0.1015	0.0664
Parametr	ic Estima	ation, Cl	ayton Co	pula	Semiparame	etric Est	imation,	Clayton	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8235	1.6132	0.3870	0.3184	Estimate	0.8484	1.3679	0.5212	0.1548
S.D	0.1329	0.7039	0.1670	0.1018	S.D	0.1188	0.3416	0.1012	0.0755
Bias	0.0235	0.5132	-0.1130	0.2118	Bias	0.0484	0.2679	0.0212	0.0482
RMSE	0.1350	0.8711	0.2017	0.2350	RMSE	0.1283	0.4341	0.1034	0.0896
Parametr	ic Estima	ation, Gu	umbel Co	pula	Semiparame	etric Est	imation,	Gumbel	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8001	1.1697	0.4202	0.2564	Estimate	0.8485	1.1059	0.4997	0.1071
S.D	0.1347	0.6697	0.1608	0.1165	S.D	0.1161	0.3548	0.0997	0.0601
Bias	0.0001	0.0697	-0.0798	0.1498	Bias	0.0485	0.0059	-0.0003	0.0005
RMSE	0.1347	0.6733	0.1795	0.1897	RMSE	0.1258	0.3548	0.0997	0.0601

Table C.4: Copula and Marginals Misspecification 2 (n=500) (True copula: Frank, true marginal: mixture of normals)

Parametr	ic Estima	ation, Gau	ussian Co	pula	Semiparame	etric Esti	mation,	Gaussian	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.7986	1.0471	0.4017	0.2392	Estimate	0.8533	1.1780	0.4493	0.1076
S.D	0.1346	0.6366	0.1731	0.1181	S.D	0.1164	0.3438	0.1033	0.0569
Bias	-0.0014	-0.0529	-0.0983	0.1325	Bias	0.0533	0.0780	-0.0508	0.0009
RMSE	0.1346	0.6388	0.1991	0.1775	RMSE	0.1281	0.3525	0.1151	0.0569
Parame	tric Estin	nation, Fi	rank Cop	ula	Semiparan	netric Es	timation	, Frank C	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8083	1.1559	0.3611	0.2712	Estimate	0.8412	1.2404	0.4199	0.1160
S.D	0.1318	0.4453	0.1143	0.0856	S.D	0.1166	0.3408	0.0965	0.0611
Bias	0.0083	0.0559	-0.1389	0.1646	Bias	0.0412	0.1404	-0.0802	0.0094
RMSE	0.1321	0.4488	0.1799	0.1855	RMSE	0.1237	0.3686	0.1255	0.0619
Paramet	ric Estim	ation, Gu	mbel Co	pula	Semiparam	etric Est	imation,	Gumbel	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8046	1.1937	0.3316	0.2680	Estimate	0.8542	1.1610	0.4148	0.1046
S.D	0.1355	0.6663	0.1748	0.1220	S.D	0.1166	0.3283	0.1032	0.0557
Bias	0.0046	0.0937	-0.1684	0.1613	Bias	0.0542	0.0610	-0.0852	-0.0020
RMSE	0.1356	0.6728	0.2427	0.2022	RMSE	0.1285	0.3339	0.1339	0.0557

Table C.5: Copula and Marginals Misspecification 3 (n=500) (True copula: Clayton, true marginal: mixture of normals)

Parametri	ic Estima	tion, Ga	ussian Co	opula	Semiparame	tric Esti	mation,	Gaussian	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.7978	1.1488	0.4658	0.2523	Estimate	0.8609	1.3801	0.4957	0.1460
S.D	0.1304	0.6489	0.1598	0.1117	S.D	0.1132	0.3749	0.1052	0.0730
Bias	-0.0022	0.0488	-0.0342	0.1456	Bias	0.0609	0.2801	-0.0042	0.0393
RMSE	0.1304	0.6508	0.1634	0.1835	RMSE	0.1286	0.4679	0.1053	0.0829
Paramet	ric Estin	nation, F	rank Cop	ula	Semiparan	netric Es	timation	, Frank C	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8140	1.4128	0.3834	0.3064	Estimate	0.8532	1.4755	0.4543	0.1611
S.D	0.1290	0.5211	0.1184	0.0867	S.D	0.1177	0.3466	0.0969	0.0752
Bias	0.0140	0.3128	-0.1166	0.1998	Bias	0.0532	0.3755	-0.0457	0.0545
RMSE	0.1297	0.6078	0.1662	0.2178	RMSE	0.1292	0.5110	0.1072	0.0929
Parametr	ic Estima	ation, Cl	ayton Co	pula	Semiparame	etric Est	imation,	Clayton	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8276	1.8999	0.3208	0.3614	Estimate	0.8603	1.6010	0.4823	0.1960
S.D	0.1321	0.7365	0.1753	0.0986	S.D	0.1172	0.3103	0.1065	0.0799
Bias	0.0276	0.7999	-0.1791	0.2548	Bias	0.0603	0.5010	-0.0177	0.0894
RMSE	0.1350	1.0873	0.2506	0.2732	RMSE	0.1318	0.5893	0.1079	0.1199

Table C.6: Copula and Marginals Misspecification 4 (n=500) (True copula: Gumbel, true marginal: mixture of normals)

Parame	tric Estin	nation, Fr	ank Cop	ula	Semiparam	etric Est	timation	, Frank C	opula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8086	1.3159	0.3652	0.2975	Estimate	0.8549	1.3936	0.4376	0.1371
S.D	0.0897	0.3636	0.0927	0.0650	S.D	0.0830	0.2548	0.0689	0.0506
Bias	0.0086	0.2159	-0.1347	0.1909	Bias	0.0549	0.2936	-0.0623	0.0305
RMSE	0.0901	0.4229	0.1636	0.2017	RMSE	0.0995	0.3887	0.0929	0.0591
Parameti	ric Estim	ation, Cla	ayton Cop	oula	Semiparame	etric Esti	mation,	Clayton	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8193	1.5478	0.3661	0.3205	Estimate	0.8613	1.4684	0.4886	0.1574
S.D	0.0906	0.4574	0.1217	0.0705	S.D	0.0812	0.2351	0.0710	0.0514
Bias	0.0193	0.4478	-0.1338	0.2139	Bias	0.0613	0.3684	-0.0113	0.0508
RMSE	0.0927	0.6401	0.1809	0.2252	RMSE	0.1018	0.4370	0.0719	0.0722
Parameti	ric Estim	ation, Gu	mbel Cop	oula	Semiparame	etric Esti	mation,	Gumbel	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.7930	1.0391	0.4210	0.2453	Estimate	0.8620	1.2302	0.4574	0.1157
S.D	0.0911	0.4010	0.1070	0.0771	S.D	0.0790	0.2554	0.0709	0.0439
Bias	-0.0070	-0.0609	-0.0789	0.1386	Bias	0.0620	0.1302	-0.0426	0.0090
RMSE	0.0914	0.4056	0.1330	0.1586	RMSE	0.1004	0.2867	0.0827	0.0449

Table C.7: Copula and Marginals Misspecification 1 (n=1,000) (True copula: Gaussian, true marginal: mixture of normals)

Parametr	ic Estima	ation, Gai	ussian Co	pula	Semiparame	tric Esti	mation,	Gaussian	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.7935	1.0825	0.4653	0.2465	Estimate	0.8601	1.1832	0.5145	0.1196
S.D	0.0926	0.4333	0.1152	0.0803	S.D	0.0768	0.2641	0.0723	0.0450
Bias	-0.0065	-0.0175	-0.0347	0.1399	Bias	0.0601	0.0832	0.0145	0.0130
RMSE	0.0929	0.4336	0.1203	0.1613	RMSE	0.0976	0.2769	0.0738	0.0468
Parametr	ric Estim	ation, Cla	ayton Coj	oula	Semiparame	etric Est	imation,	Clayton	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8188	1.5580	0.3941	0.3173	Estimate	0.8583	1.3743	0.5200	0.1542
S.D	0.0919	0.4621	0.1194	0.0708	S.D	0.0794	0.2439	0.0718	0.0526
Bias	0.0188	0.4580	-0.1059	0.2106	Bias	0.0583	0.2743	0.0200	0.0476
RMSE	0.0938	0.6506	0.1595	0.2222	RMSE	0.0985	0.3671	0.0746	0.0709
Parametr	ric Estim	ation, Gu	mbel Co	oula	Semiparame	etric Est	imation,	Gumbel	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.7954	1.0843	0.4327	0.2496	Estimate	0.8596	1.1105	0.4959	0.1082
S.D	0.0927	0.4252	0.1119	0.0796	S.D	0.0765	0.2578	0.0708	0.0413
Bias	-0.0046	-0.0157	-0.0673	0.1429	Bias	0.0596	0.0105	-0.0041	0.0016
RMSE	0.0928	0.4255	0.1306	0.1636	RMSE	0.0970	0.2580	0.0709	0.0413

Table C.8: Copula and Marginals Misspecification 2 (n=1,000) (True copula: Frank, true marginal: mixture of normals)

Parametr	ic Estima	ation, Gai	ussian Co	pula	Semiparame	etric Esti	mation,	Gaussian	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.7928	0.9952	0.4102	0.2370	Estimate	0.8618	1.2015	0.4441	0.1097
S.D	0.0929	0.4262	0.1233	0.0837	S.D	0.0764	0.2527	0.0737	0.0411
Bias	-0.0072	-0.1048	-0.0898	0.1303	Bias	0.0618	0.1015	-0.0559	0.0030
RMSE	0.0932	0.4389	0.1525	0.1549	RMSE	0.0983	0.2723	0.0925	0.0412
Parame	tric Estin	nation, Fi	rank Cop	ula	Semiparan	netric Es	timation	, Frank C	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8048	1.1667	0.3480	0.2754	Estimate	0.8510	1.2695	0.4101	0.1152
S.D	0.0910	0.3362	0.0918	0.0649	S.D	0.0825	0.2578	0.0701	0.0453
Bias	0.0048	0.0667	-0.1520	0.1688	Bias	0.0510	0.1695	-0.0899	0.0086
RMSE	0.0911	0.3428	0.1776	0.1808	RMSE	0.0970	0.3085	0.1140	0.0461
Parametr	ric Estim	ation, Gu	mbel Co	pula	Semiparam	etric Est	imation,	Gumbel	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8046	1.1937	0.3316	0.2680	Estimate	0.8594	1.1883	0.4090	0.1054
S.D	0.1355	0.6663	0.1748	0.1220	S.D	0.0784	0.2373	0.0727	0.0412
Bias	0.0046	0.0937	-0.1684	0.1613	Bias	0.0594	0.0883	-0.0911	-0.0013
RMSE	0.1356	0.6728	0.2427	0.2022	RMSE	0.0984	0.2532	0.1165	0.0412

Table C.9: Copula and Marginals Misspecification 3 $\left(n=1,000\right)$ (True copula: Clayton, true marginal: mixture of normals)

Parametri	ic Estima	tion, Ga	ussian Co	opula	Semiparame	tric Esti	mation,	Gaussian	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.7905	1.1059	0.4669	0.2520	Estimate	0.8660	1.4046	0.4893	0.1428
S.D	0.0896	0.4412	0.1167	0.0815	S.D	0.0775	0.2644	0.0723	0.0508
Bias	-0.0095	0.0059	-0.0330	0.1454	Bias	0.0660	0.3046	-0.0107	0.0362
RMSE	0.0901	0.4412	0.1213	0.1667	RMSE	0.1018	0.4034	0.0730	0.0624
Paramet	ric Estin	nation, F	rank Cop	ula	Semiparan	netric Es	timation	, Frank C	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8123	1.4374	0.3701	0.3149	Estimate	0.8628	1.5142	0.4473	0.1582
S.D	0.0901	0.3917	0.0930	0.0651	S.D	0.0817	0.2377	0.0697	0.0545
Bias	0.0123	0.3374	-0.1299	0.2083	Bias	0.0628	0.4142	-0.0526	0.0515
RMSE	0.0910	0.5169	0.1597	0.2182	RMSE	0.1030	0.4776	0.0874	0.0750
Parametr	ic Estima	ation, Cl	ayton Co	pula	Semiparame	etric Est	imation,	Clayton	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.1066	True Values	0.8000	1.1000	0.5000	0.1066
Estimate	0.8228	1.8913	0.3197	0.3656	Estimate	0.8645	1.6249	0.4851	0.1894
S.D	0.0927	0.5234	0.1336	0.0714	S.D	0.0808	0.2084	0.0742	0.0550
Bias	0.0228	0.7913	-0.1803	0.2589	Bias	0.0645	0.5249	-0.0149	0.0828
RMSE	0.0955	0.9488	0.2244	0.2686	RMSE	0.1034	0.5648	0.0757	0.0994

Table C.10: Copula and Marginals Misspecification 4 (n=1,000) (True copula: Gumbel, true DGP marginal: mixture of normals)

Parametr	ic Estim	ation, Ga	ussian Co	opula	Semiparame	tric Estir	$nation^{\dagger},$	Gaussian	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.5000	0.3242	True Values	0.8000	1.1000	0.5000	0.3242
Estimate	0.8060	1.1937	0.4938	0.3098	Estimate	0.7288	0.8480	0.5762	0.2499
S.D	0.1119	0.5749	0.1647	0.1068	S.D	0.1037	0.3832	0.1339	0.1085
Bias	0.0060	0.0937	-0.0062	-0.0143	Bias	-0.0712	-0.2520	0.0763	-0.0742
RMSE	0.0125	0.3306	0.0271	0.0116	RMSE	0.0108	0.1468	0.0179	0.0173
Parame	tric Estii	mation, F	rank Cop	oula	Semiparan	netric Est	imation [†]	, Frank (Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.3242	True Values	0.8000	1.1000	0.5000	0.3242
Estimate	0.8080	1.0964	0.5164	0.2919	Estimate	0.7370	0.8618	0.5763	0.2459
S.D	0.1139	0.4602	0.1347	0.0922	S.D	0.1030	0.3226	0.1041	0.0884
Bias	0.0080	-0.0036	0.0164	-0.0323	Bias	-0.0630	-0.2382	0.0763	-0.0783
RMSE	0.0130	0.2118	0.0181	0.0096	RMSE	0.0106	0.1041	0.0108	0.0139
Parametr	ric Estim	nation, Cl	layton Co	opula	Semiparame	etric Esti	$mation^{\dagger},$	Clayton	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.3242	True Values	0.8000	1.1000	0.5000	0.3242
Estimate	0.8000	1.0202	0.5386	0.2786	Estimate	0.7330	0.8446	0.5689	0.2547
S.D	0.1145	0.4385	0.1357	0.0946	S.D	0.1044	0.3479	0.1250	0.0989
Bias	0.0000	-0.0798	0.0385	-0.0456	Bias	-0.0670	-0.2554	0.0689	-0.0695
RMSE	0.0131	0.1923	0.0184	0.0110	RMSE	0.0109	0.1210	0.0156	0.0146
Parametr	ric Estim	nation, G	umbel Co	opula	Semiparame	etric Esti	mation [†] ,	Gumbel	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.3242	True Values	0.8000	1.1000	0.5000	0.3242
Estimate	0.8098	1.2599	0.4767	0.3205	Estimate	0.7344	0.8905	0.5628	0.2559
S.D	0.1153	0.6137	0.1732	0.1140	S.D	0.1045	0.4106	0.1461	0.1144
Bias	0.0098	0.1599	-0.0233	-0.0037	Bias	-0.0656	-0.2095	0.0628	-0.0682
RMSE	0.0133	0.3767	0.0300	0.0130	RMSE	0.0109	0.1686	0.0213	0.0177

Table C.11: Misspecification of Marginals (n = 500) (True Marginal: t(3))

†: The semiparametric models are specified with $G = \Phi$, where $\Phi(\cdot)$ is the standard normal distribution function.

Parametr	ic Estima	ation, Ga	ussian Co	opula	Semiparame	tric Esti	$mation^{\dagger},$	Gaussia	n Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.3242	True Values	0.8000	1.1000	0.5000	0.3242
Estimate	0.8124	1.1948	0.4913	0.3098	Estimate	0.8098	1.1957	0.4930	0.3252
S.D	0.1149	0.5540	0.1626	0.1068	S.D	0.1146	0.5905	0.1639	0.1107
Bias	0.0124	0.0948	-0.0086	-0.0143	Bias	0.0098	0.0957	-0.0069	0.0010
RMSE	0.0132	0.3069	0.0264	0.0116	RMSE	0.0131	0.3487	0.0269	0.0123
Parame	tric Estir	nation, F	rank Cop	oula	Semiparan	netric Es	timation	†, Frank	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.5000	0.3242	True Values	0.8000	1.1000	0.5000	0.3242
Estimate	0.8063	1.0832	0.5246	0.2873	Estimate	0.8087	1.1877	0.4953	0.3257
S.D	0.1152	0.4741	0.1354	0.0941	S.D	0.1153	0.5132	0.1397	0.0971
Bias	0.0063	-0.0168	0.0246	-0.0369	Bias	0.0087	0.0877	-0.0047	0.0015
RMSE	0.0133	0.2247	0.0183	0.0102	RMSE	0.0133	0.2633	0.0195	0.0094
Paramet	ric Estim	ation, Cl	ayton Co	pula	Semiparame	etric Est	imation†	, Clayton	Copula
			0	-	· ·			, 0	*
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	$\frac{\gamma}{0.8000}$	$\frac{\delta_1}{1.1000}$	$\frac{\rho_{sp}}{0.5000}$	ATE 0.3242	True Values	γ 0.8000	$\frac{\delta_1}{1.1000}$	$\frac{\rho_{sp}}{0.5000}$	ATE 0.3242
True Values Estimate	$egin{array}{c} \gamma \\ 0.8000 \\ 0.8067 \end{array}$	δ_1 1.1000 1.0312	ρ_{sp} 0.5000 0.5354	ATE 0.3242 0.2797	True Values Estimate	$\gamma \\ 0.8000 \\ 0.8117$	δ_1 1.1000 1.1871	ρ_{sp} 0.5000 0.4972	ATE 0.3242 0.3172
True Values Estimate S.D	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8067 \\ 0.1161 \end{array}$	δ_1 1.1000 1.0312 0.4525	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.5354 \\ 0.1365 \end{array}$	ATE 0.3242 0.2797 0.0950	True Values Estimate S.D	$\gamma \\ 0.8000 \\ 0.8117 \\ 0.1163$	δ_1 1.1000 1.1871 0.5845	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4972 \\ 0.1500 \end{array}$	ATE 0.3242 0.3172 0.0998
True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8067 \\ 0.1161 \\ 0.0067 \end{array}$	δ_1 1.1000 1.0312 0.4525 -0.0688	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.5354 \\ 0.1365 \\ 0.0354 \end{array}$	ATE 0.3242 0.2797 0.0950 -0.0445	True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8117 \\ 0.1163 \\ 0.0117 \end{array}$	δ_1 1.1000 1.1871 0.5845 0.0871	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4972 \\ 0.1500 \\ -0.0028 \end{array}$	ATE 0.3242 0.3172 0.0998 -0.0070
True Values Estimate S.D Bias RMSE	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8067 \\ 0.1161 \\ 0.0067 \\ 0.0135 \end{array}$	$\begin{array}{c} \delta_1 \\ 1.1000 \\ 1.0312 \\ 0.4525 \\ -0.0688 \\ 0.2048 \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.5354 \\ 0.1365 \\ 0.0354 \\ 0.0186 \end{array}$	ATE 0.3242 0.2797 0.0950 -0.0445 0.0110	True Values Estimate S.D Bias RMSE	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8117 \\ 0.1163 \\ 0.0117 \\ 0.0135 \end{array}$	$\begin{array}{c} \delta_1 \\ 1.1000 \\ 1.1871 \\ 0.5845 \\ 0.0871 \\ 0.3416 \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4972 \\ 0.1500 \\ -0.0028 \\ 0.0225 \end{array}$	ATE 0.3242 0.3172 0.0998 -0.0070 0.0100
True Values Estimate S.D Bias RMSE Parametr	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8067 \\ 0.1161 \\ 0.0067 \\ 0.0135 \\ \text{ric Estim} \end{array}$	$\begin{array}{c} \delta_1 \\ 1.1000 \\ 1.0312 \\ 0.4525 \\ -0.0688 \\ 0.2048 \\ \text{ation, G} \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.5354 \\ 0.1365 \\ 0.0354 \\ 0.0186 \\ \text{imbel Co} \end{array}$	ATE 0.3242 0.2797 0.0950 -0.0445 0.0110 pula	True Values Estimate S.D Bias RMSE Semiparame	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8117 \\ 0.1163 \\ 0.0117 \\ 0.0135 \\ \text{etric Est.} \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1871}{0.5845} \\ \frac{0.0871}{0.3416} \\ \text{imation}^{\dagger}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4972 \\ 0.1500 \\ -0.0028 \\ 0.0225 \\ \text{, Gumbel} \end{array}$	ATE 0.3242 0.3172 0.0998 -0.0070 0.0100 . Copula
True Values Estimate S.D Bias RMSE Parametr	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8067 \\ 0.1161 \\ 0.0067 \\ 0.0135 \\ \hline \text{cic Estim} \\ \gamma \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.0312}{0.4525} \\ \frac{-0.0688}{0.2048} \\ \frac{0.2048}{\delta_1} \\ \frac{\delta_1}{\delta_1}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.5354 \\ 0.1365 \\ 0.0354 \\ 0.0186 \\ \text{umbel Co} \\ \rho_{sp} \end{array}$	ATE 0.3242 0.2797 0.0950 -0.0445 0.0110 pula ATE	True Values Estimate S.D Bias RMSE Semiparame	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8117 \\ 0.1163 \\ 0.0117 \\ 0.0135 \\ \hline \gamma \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1871}{0.5845} \\ \frac{0.0871}{0.3416} \\ \frac{0.3416}{\delta_1} \\ \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4972 \\ 0.1500 \\ -0.0028 \\ 0.0225 \\ \text{, Gumbel} \\ \rho_{sp} \end{array}$	ATE 0.3242 0.3172 0.0998 -0.0070 0.0100 Copula ATE
True Values Estimate S.D Bias RMSE Parametr True Values	$\begin{array}{c} \gamma \\ \hline 0.8000 \\ \hline 0.8067 \\ \hline 0.1161 \\ \hline 0.0067 \\ \hline 0.0135 \\ \hline \text{cic Estim} \\ \hline \gamma \\ \hline 0.8000 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.0312}{0.4525} \\ \frac{-0.0688}{0.2048} \\ \frac{\delta_1}{\delta_1} \\ \frac{\delta_1}{1.1000}$	$\frac{\rho_{sp}}{0.5000}$ 0.5354 0.1365 0.0354 0.0186 umbel Co $\frac{\rho_{sp}}{0.5000}$	$\begin{array}{c} ATE \\ 0.3242 \\ 0.2797 \\ 0.0950 \\ -0.0445 \\ 0.0110 \\ 0.0110 \\ 0.012 \\ ATE \\ 0.3242 \\ \end{array}$	True Values Estimate S.D Bias RMSE Semiparame True Values	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8117 \\ 0.1163 \\ 0.0117 \\ 0.0135 \\ \hline \gamma \\ 0.8000 \end{array}$	$\frac{\delta_1}{1.1000} \\ 1.1871 \\ 0.5845 \\ 0.0871 \\ 0.3416 \\ \text{imation} \\ \frac{\delta_1}{1.1000} \\ \end{array}$	$\begin{array}{c} \rho_{sp} \\ \hline \rho_{sp} \\ 0.5000 \\ 0.4972 \\ 0.1500 \\ \hline -0.0028 \\ 0.0225 \\ , \ \text{Gumbel} \\ \hline \rho_{sp} \\ 0.5000 \end{array}$	ATE 0.3242 0.3172 0.0998 -0.0070 0.0100 Copula ATE 0.3242
True Values Estimate S.D Bias RMSE Parametr True Values Estimate	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8067 \\ 0.1161 \\ 0.0067 \\ 0.0135 \\ \hline \text{cic Estim} \\ \gamma \\ 0.8000 \\ 0.8101 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.0312}{0.4525} \\ \frac{0.4525}{-0.0688} \\ 0.2048 \\ \frac{0.2048}{\delta_1} \\ \frac{\delta_1}{1.1000} \\ 1.2629 \\ \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.5354 \\ 0.1365 \\ 0.0354 \\ 0.0186 \\ \text{imbel Co} \\ \rho_{sp} \\ 0.5000 \\ 0.4780 \end{array}$	ATE 0.3242 0.2797 0.0950 -0.0445 0.0110 opula ATE 0.3242 0.3243	True Values Estimate S.D Bias RMSE Semiparame True Values Estimate	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8117 \\ 0.1163 \\ 0.0117 \\ 0.0135 \\ \text{etric Est} \\ \hline \gamma \\ 0.8000 \\ 0.8062 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1871}{0.5845} \\ \frac{0.0871}{0.3416} \\ \frac{\delta_1}{1.1000} \\ \frac{1.1713}{0.1713} \\ \frac{\delta_1}{0.1713} \\ \frac{\delta_1}{0.171$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4972 \\ 0.1500 \\ -0.0028 \\ 0.0225 \\ \text{, Gumbel} \\ \rho_{sp} \\ 0.5000 \\ 0.5024 \end{array}$	ATE 0.3242 0.3172 0.0998 -0.0070 0.0100 Copula ATE 0.3242 0.3242
True Values Estimate S.D Bias RMSE Parametr True Values Estimate S.D	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8067 \\ 0.1161 \\ 0.0067 \\ 0.0135 \\ \hline \text{cic Estim} \\ \gamma \\ 0.8000 \\ 0.8101 \\ 0.1153 \end{array}$	$\begin{array}{c} \delta_1 \\ 1.1000 \\ 1.0312 \\ 0.4525 \\ -0.0688 \\ 0.2048 \\ 1.2008 \\ 0.2048 \\ 1.1000 \\ 1.2629 \\ 0.5991 \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.5354 \\ 0.1365 \\ 0.0354 \\ 0.0186 \\ \text{imbel Co} \\ \rho_{sp} \\ 0.5000 \\ 0.4780 \\ 0.1711 \end{array}$	$\begin{array}{c} ATE \\ 0.3242 \\ 0.2797 \\ 0.0950 \\ -0.0445 \\ 0.0110 \\ pula \\ ATE \\ 0.3242 \\ 0.3213 \\ 0.1113 \end{array}$	True Values Estimate S.D Bias RMSE Semiparame True Values Estimate S.D	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8117 \\ 0.1163 \\ 0.0117 \\ 0.0135 \\ \hline \\ etric Est \\ \gamma \\ 0.8000 \\ 0.8062 \\ 0.1153 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1871}{0.5845} \\ \frac{0.0871}{0.3416} \\ \frac{\delta_1}{1.1000} \\ \frac{1.1713}{0.5477} \\ \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4972 \\ 0.1500 \\ -0.0028 \\ 0.0225 \\ \text{, Gumbel} \\ \rho_{sp} \\ 0.5000 \\ 0.5024 \\ 0.1561 \end{array}$	ATE 0.3242 0.3172 0.0998 -0.0070 0.0100 Copula ATE 0.3242 0.3172 0.0998 -0.0070 0.0100 Copula ATE 0.3242 0.3225 0.1103
True Values Estimate S.D Bias RMSE Parametr True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8067 \\ 0.1161 \\ 0.0067 \\ 0.0135 \\ \hline \text{cic Estim} \\ \hline \gamma \\ 0.8000 \\ 0.8101 \\ 0.1153 \\ 0.0101 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.0312}{0.4525} \\ \frac{-0.0688}{0.2048} \\ \frac{0.2048}{0.2048} \\ \frac{\delta_1}{1.1000} \\ \frac{1.2629}{0.5991} \\ 0.1629 \\ \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.5354 \\ 0.1365 \\ 0.0354 \\ 0.0186 \\ \text{imbel Co} \\ \rho_{sp} \\ 0.5000 \\ 0.4780 \\ 0.1711 \\ -0.0220 \end{array}$	$\begin{array}{c} ATE \\ 0.3242 \\ 0.2797 \\ 0.0950 \\ -0.0445 \\ 0.0110 \\ 0.0110 \\ 0.0110 \\ 0.01242 \\ 0.3242 \\ 0.3213 \\ 0.1113 \\ -0.0029 \\ \end{array}$	True Values Estimate S.D Bias RMSE Semiparame True Values Estimate S.D Bias	$\begin{array}{c} \gamma \\ 0.8000 \\ 0.8117 \\ 0.1163 \\ 0.0117 \\ 0.0135 \\ \hline \\ \mbox{etric Est.} \\ \gamma \\ 0.8000 \\ 0.8062 \\ 0.1153 \\ 0.0062 \end{array}$	$\frac{\delta_1}{1.1000} \\ \frac{1.1871}{0.5845} \\ \frac{0.0871}{0.3416} \\ \frac{0.3416}{1.1000} \\ \frac{\delta_1}{1.1000} \\ \frac{1.1713}{0.5477} \\ 0.0713 \\ \end{array}$	$\begin{array}{c} \rho_{sp} \\ 0.5000 \\ 0.4972 \\ 0.1500 \\ -0.0028 \\ 0.0225 \\ \text{, Gumbel} \\ \rho_{sp} \\ 0.5000 \\ 0.5024 \\ 0.1561 \\ 0.0024 \end{array}$	ATE 0.3242 0.3172 0.0998 -0.0070 0.0100 Copula ATE 0.3242 0.3245 0.1103 -0.0017

Table C.12: Misspecification of Marginals (n = 500) (True marginal: t(3))

†: The semiparametric models are specified with $G = F_{t_3}$, where F_{t_3} is the distribution function of t(3).

Parametric Estimation, Gaussian Copula			Semiparametric Estimation, Gaussian Copula							
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE	
True Values	0.8000	1.1000	0.2000	0.3643	True Values	0.8000	1.1000	0.2000	0.3643	
Estimate	0.8026	1.1342	0.2093	0.3643	Estimate	0.8026	1.1342	0.2093	0.3526	
S.D	0.0945	0.4199	0.1840	0.0963	S.D	0.0945	0.4199	0.1840	0.0952	
Bias	0.0026	0.0342	0.0093	0.0000	Bias	0.0026	0.0342	0.0093	-0.0117	
RMSE	0.0089	0.1763	0.0339	0.0093	RMSE	0.0089	0.1763	0.0339	0.0092	
Parametric Estimation, Frank Copula				Semiparan	netric Es	timation,	Frank C	Copula		
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE	
True Values	0.8000	1.1000	0.2000	0.3643	True Values	0.8000	1.1000	0.2000	0.3643	
Estimate	0.8037	1.0818	0.2216	0.3517	Estimate	0.8051	1.0905	0.2278	0.3448	
S.D	0.0974	0.3309	0.1468	0.0807	S.D	0.0981	0.3591	0.1443	0.0856	
Bias	0.0037	-0.0182	0.0215	-0.0126	Bias	0.0051	-0.0095	0.0277	-0.0195	
RMSE	0.0095	0.1095	0.0215	0.0067	RMSE	0.0096	0.1290	0.0208	0.0077	
Parametr	ic Estim	ation, Cl	ayton Co	opula	Semiparame	Semiparametric Estimation, Clayton Copula				
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE	
True Values	0.8000	1.1000	0.1999	0.3643	True Values	0.8000	1.1000	0.1999	0.3643	
Estimate	0.8036	1.0973	0.2138	0.3571	Estimate	0.8046	1.1040	0.2216	0.3492	
S.D	0.0934	0.3170	0.1498	0.0773	S.D	0.0936	0.3593	0.1533	0.0818	
Bias	0.0036	-0.0027	0.0139	-0.0072	Bias	0.0046	0.0040	0.0217	-0.0151	
RMSE	0.0087	0.1005	0.0224	0.0060	RMSE	0.0088	0.1291	0.0235	0.0069	
Parametr	ic Estim	ation, Gu	umbel Co	opula	Semiparame	etric Est	imation,	Gumbel	Copula	
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE	
True Values	0.8000	1.1000	0.2000	0.3643	True Values	0.8000	1.1000	0.2000	0.3643	
Estimate	0.8017	1.0886	0.2175	0.3524	Estimate	0.8033	1.1245	0.2170	0.3495	
S.D	0.0940	0.3640	0.1519	0.0867	S.D	0.0954	0.4176	0.1578	0.0927	
Bias	0.0017	-0.0114	0.0175	-0.0119	Bias	0.0033	0.0245	0.0170	-0.0149	
RMSE	0.0088	0.1325	0.0231	0.0077	RMSE	0.0091	0.1744	0.0249	0.0088	

Table C.13: Correct Specification $(n = 500, \rho_{sp} = 0.2)$ (True marginal: normal)

Table C.14: Misspecification of Marginals ($n = 500, \rho_{sp} = 0.2$) (True marginal: mixture of normals)

Parametric Estimation, Gaussian Copula			Semiparametric Estimation, Gaussian Copula						
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.2000	0.1066	True Values	0.8000	1.1000	0.2000	0.1066
Estimate	0.8038	0.9013	0.2088	0.2108	Estimate	0.8544	1.2755	0.1821	0.1256
S.D	0.1308	0.5666	0.1823	0.1137	S.D	0.1166	0.3865	0.1271	0.0638
Bias	0.0038	-0.1987	0.0088	0.1041	Bias	0.0544	0.1755	-0.0179	0.0190
RMSE	0.0171	0.3210	0.0332	0.0238	RMSE	0.0136	0.1494	0.0161	0.0044
Parame	Parametric Estimation, Frank Copula			Semiparan	netric Es	timation	, Frank C	Copula	
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	ρ_{sp}	ATE
True Values	0.8000	1.1000	0.2000	0.1066	True Values	0.8000	1.1000	0.2000	0.1066
Estimate	0.8056	1.0026	0.1732	0.2366	Estimate	0.8391	1.2759	0.1854	0.1218
S.D	0.1306	0.3979	0.1086	0.0781	S.D	0.1198	0.3588	0.0936	0.0573
Bias	0.0056	-0.0974	-0.0268	0.1299	Bias	0.0391	0.1759	-0.0146	0.0152
RMSE	0.0170	0.1583	0.0118	0.0230	RMSE	0.0143	0.1288	0.0088	0.0035
Parametr	ric Estim	ation, Cla	ayton Coj	pula	Semiparam	etric Est	imation,	Clayton	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.1999	0.1066	True Values	0.8000	1.1000	0.1999	0.1066
Estimate	0.8038	0.9008	0.1951	0.2144	Estimate	0.8459	1.2556	0.1878	0.1172
S.D	0.1310	0.4511	0.1508	0.0920	S.D	0.1185	0.3701	0.1214	0.0573
Bias	0.0038	-0.1992	-0.0048	0.1077	Bias	0.0459	0.1556	-0.0122	0.0105
RMSE	0.0172	0.2035	0.0228	0.0201	RMSE	0.0140	0.1370	0.0147	0.0034
Parametr	ric Estim	ation, Gu	mbel Co	pula	Semiparam	etric Est	imation,	Gumbel	Copula
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.2000	0.1066	True Values	0.8000	1.1000	0.2000	0.1066
Estimate	0.7925	0.7687	0.2430	0.1884	Estimate	0.8523	1.2767	0.1840	0.1245
S.D	0.1330	0.4382	0.1344	0.0939	S.D	0.1202	0.3913	0.1128	0.0629
Bias	-0.0075	-0.3313	0.0430	0.0817	Bias	0.0523	0.1767	-0.0160	0.0178
RMSE	0.0177	0.1920	0.0181	0.0155	RMSE	0.0144	0.1532	0.0127	0.0043

Parametric Estimation, Gaussian Copula			Semiparametric Estimation, Gaussian Copula							
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE	
True Values	0.8000	1.1000	0.7000	0.3643	True Values	0.8000	1.1000	0.7000	0.3643	
Estimate	0.8032	1.1403	0.6979	0.3660	Estimate	0.8038	1.1475	0.7059	0.3615	
S.D	0.0932	0.3663	0.1161	0.0860	S.D	0.0942	0.3909	0.1167	0.0928	
Bias	0.0032	0.0403	-0.0020	0.0016	Bias	0.0038	0.0475	0.0060	-0.0028	
RMSE	0.0087	0.1342	0.0135	0.0074	RMSE	0.0089	0.1528	0.0136	0.0086	
Parametric Estimation, Frank Copula				Semiparan	netric Es	timation	, Frank C	Copula		
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE	
True Values	0.8000	1.1000	0.7000	0.3643	True Values	0.8000	1.1000	0.7000	0.3643	
Estimate	0.8094	1.2165	0.6676	0.3858	Estimate	0.8097	1.2244	0.6738	0.3783	
S.D	0.0928	0.3185	0.0912	0.0675	S.D	0.0930	0.3138	0.0856	0.0748	
Bias	0.0094	0.1165	-0.0324	0.0214	Bias	0.0097	0.1244	-0.0262	0.0140	
RMSE	0.0086	0.1015	0.0083	0.0050	RMSE	0.0086	0.0985	0.0073	0.0058	
Parametr	ic Estim	ation, Cl	ayton Co	pula	Semiparam	Semiparametric Estimation, Clayton Copula				
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE	
True Values	0.8000	1.1000	0.7000	0.3643	True Values	0.8000	1.1000	0.7000	0.3643	
Estimate	0.8055	1.1382	0.6952	0.3666	Estimate	0.8065	1.1581	0.7002	0.3598	
S.D	0.0946	0.3188	0.0939	0.0709	S.D	0.0946	0.3441	0.0910	0.0750	
Bias	0.0055	0.0382	-0.0049	0.0023	Bias	0.0065	0.0581	0.0002	-0.0045	
RMSE	0.0090	0.1017	0.0088	0.0050	RMSE	0.0090	0.1184	0.0083	0.0057	
Parametr	ic Estim	ation, G	umbel Co	pula	Semiparametric Estimation, Gumbel Copula					
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE	
True Values	0.8000	1.1000	0.7000	0.3643	True Values	0.8000	1.1000	0.7000	0.3643	
Estimate	0.8036	1.1517	0.6945	0.3688	Estimate	0.8055	1.1806	0.6979	0.3702	
S.D	0.0937	0.3644	0.1185	0.0841	S.D	0.0942	0.3941	0.1197	0.0942	
Bias	0.0036	0.0517	-0.0055	0.0045	Bias	0.0055	0.0806	-0.0021	0.0058	
RMSE	0.0088	0.1328	0.0140	0.0071	RMSE	0.0089	0.1553	0.0143	0.0089	

Table C.15: Correct Specification (n = 500, $\rho_{sp} = 0.7$)(True marginal: normal)

Table C.16: Misspecification of Marginals ($n = 500, \rho_{sp} = 0.7$) (True marginal: mixture of normals)

Parametric Estimation, Gaussian Copula			Semiparametric Estimation, Gaussian Copula						
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.7000	0.1066	True Values	0.8000	1.1000	0.7000	0.1066
Estimate	0.7942	1.1740	0.6323	0.2582	Estimate	0.8565	1.2619	0.6932	0.1252
S.D	0.1276	0.6180	0.1331	0.1080	S.D	0.1084	0.3714	0.0835	0.0661
Bias	-0.0058	0.0740	-0.0676	0.1515	Bias	0.0565	0.1619	-0.0068	0.0186
RMSE	0.0163	0.3820	0.0177	0.0346	RMSE	0.0118	0.1379	0.0070	0.0047
Paramet	Parametric Estimation, Frank Copula				Semiparan	netric Es	timation	, Frank C	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.7000	0.1066	True Values	0.8000	1.1000	0.7000	0.1066
Estimate	0.8164	1.5022	0.5823	0.3157	Estimate	0.8566	1.3039	0.6787	0.1411
S.D	0.1237	0.5841	0.1151	0.0918	S.D	0.1094	0.3071	0.0619	0.0685
Bias	0.0164	0.4022	-0.1177	0.2091	Bias	0.0566	0.2039	-0.0212	0.0345
RMSE	0.0153	0.3412	0.0132	0.0521	RMSE	0.0120	0.0943	0.0038	0.0059
Parametr	ic Estima	ation, Cl	ayton Co	pula	Semiparame	etric Est	imation,	Clayton	Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.7000	0.1066	True Values	0.8000	1.1000	0.7000	0.1066
Estimate	0.8219	1.3357	0.6006	0.2820	Estimate	0.8569	1.2553	0.6888	0.1272
S.D	0.1297	0.5681	0.1200	0.0902	S.D	0.1109	0.3197	0.0714	0.0628
Bias	0.0219	0.2357	-0.0995	0.1754	Bias	0.0569	0.1553	-0.0113	0.0206
RMSE	0.0168	0.3227	0.0144	0.0389	RMSE	0.0123	0.1022	0.0051	0.0044
Parametr	ic Estima	ation, Gi	ımbel Co	pula	Semiparametric Estimation, Gumbel Copula				Copula
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	0.7000	0.1066	True Values	0.8000	1.1000	0.7000	0.1066
Estimate	0.7874	1.1463	0.6389	0.2567	Estimate	0.8556	1.2614	0.6953	0.1251
S.D	0.1235	0.5168	0.1135	0.0942	S.D	0.1081	0.3526	0.0810	0.0661
Bias	-0.0126	0.0463	-0.0611	0.1501	Bias	0.0556	0.1614	-0.0047	0.0184
RMSE	0.0152	0.2670	0.0129	0.0314	RMSE	0.0117	0.1243	0.0066	0.0047

Parametric Estimation, Gaussian Copula				Semiparametric Estimation, Gaussian Copula					
	γ	δ_1	ρ_{sp}	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	-0.5000	0.3643	True Values	0.8000	1.1000	-0.5000	0.3643
Estimate	0.8090	1.1134	-0.4912	0.3560	Estimate	0.8101	1.1164	-0.4822	0.3448
S.D	0.0970	0.4097	0.1727	0.0871	S.D	0.0974	0.4248	0.1708	0.0840
Bias	0.0090	0.0134	0.0088	-0.0084	Bias	0.0101	0.0164	0.0177	-0.0196
RMSE	0.0094	0.1678	0.0298	0.0077	RMSE	0.0095	0.1805	0.0292	0.0074
Paramet	ric Estir	nation, I	Frank Cop	oula	Semiparametric Estimation, Frank Copula				
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	-0.5000	0.3643	True Values	0.8000	1.1000	-0.5000	0.3643
Fetimato									
Estimate	0.8049	1.1135	-0.4887	0.3582	Estimate	0.8060	1.1335	-0.4855	0.3524
S.D	0.8049 0.0946	$1.1135 \\ 0.3451$	-0.4887 0.1389	0.3582 0.0733	Estimate S.D	0.8060 0.0943	$1.1335 \\ 0.3835$	-0.4855 0.1399	$\begin{array}{c} 0.3524 \\ 0.0745 \end{array}$
S.D Bias	$\begin{array}{c} 0.8049 \\ 0.0946 \\ 0.0049 \end{array}$	$ \begin{array}{r} 1.1135 \\ 0.3451 \\ 0.0135 \\ \end{array} $	-0.4887 0.1389 0.0113	0.3582 0.0733 -0.0062	Estimate S.D Bias	0.8060 0.0943 0.0060	1.13350.38350.0335	-0.4855 0.1399 0.0145	0.3524 0.0745 -0.0119

Table C.17: Correct Specification (n = 500, $\rho_{sp} = -0.5$)(True marginal: normal)

Table C.18: Misspecification of Marginals ($n = 500, \ \rho_{sp} = -0.5$) (True marginal: mixture of normals)

Parametric Estimation, Gaussian Copula				Semiparametric Estimation, Gaussian Copula					
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	-0.5000	0.1066	True Values	0.8000	1.1000	-0.5000	0.1066
Estimate	0.8385	0.3931	-0.3171	0.1028	Estimate	0.8389	1.2832	-0.5237	0.1168
S.D	0.1301	0.4122	0.1665	0.1052	S.D	0.1123	0.4094	0.1232	0.0627
Bias	0.0385	-0.7069	0.1829	-0.0038	Bias	0.0389	0.1832	-0.0238	0.0101
RMSE	0.0169	0.1699	0.0277	0.0111	RMSE	0.0126	0.1676	0.0152	0.0040
Paramet	tric Estin	mation, F	'rank Cop	oula	Semiparametric Estimation, Frank Copula				
	γ	δ_1	$ ho_{sp}$	ATE		γ	δ_1	$ ho_{sp}$	ATE
True Values	0.8000	1.1000	-0.5000	0.1066	True Values	0.8000	1.1000	-0.5000	0.1066
Estimate	0.8432	0.3734	-0.3450	0.1030	Estimate	0.8375	1.2838	-0.5234	0.1153
S.D	0.1373	0.3150	0.1032	0.0791	S.D	0.1153	0.3758	0.0917	0.0531
Bias	0.0432	-0.7266	0.1550	-0.0037	Bias	0.0375	0.1838	-0.0234	0.0087
RMSE	0.0189	0.0992	0.0106	0.0063	RMSE	0.0133	0.1412	0.0084	0.0029

	Normal Approximation	Bootstrap Percentile
ATE	0.9050	0.9300
α	0.9700	0.9500
γ	0.9600	0.9250
β	0.9400	0.9300
δ	0.8750	0.9200
ho	0.9000	0.9500

Table C.19: Coverage Probabilities of Bootstrap Confidence Intervals (Nominal Level = 0.95)

References

- Chen, X. (2007). Large sample sieve estimation of semi-nonparametric models. Handbook of Econometrics 6B, 5549–5632. B.3, 3, B.3, B.4, B.4, B.4
- Chen, X. and X. Shen (1998). Sieve extremum estimates for weakly dependent data. *Economet*rica 66(2), 289–314. B.4
- Freyberger, J. and M. Masten (2015). Compactness of infinite dimensional parameter spaces. Technical report, cemmap working paper, Centre for Microdata Methods and Practice. B.3
- Han, S. and S. Lee (2018). Estimation in a generalization of bivariate probit models with dummy endogenous regressors. *Available at SSRN 3233422*. (document)
- Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis. A.2
- Lorentz, G. (1966). Approximation of functions. Holt, Rinehart and Winston New York. B.4
- Nelsen, R. B. (1999). An introduction to copulas. Springer Verlag. B.3
- van de Geer, S. A. (2000). *Empirical Processes in M-estimation*, Volume 6. Cambridge university press. B.3, B.4
- van der Vaart, A. and J. Wellner (1996). Weak convergence and empirical processes. Springer, New York. B.4