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Individuals are heterogeneous
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When designing policies (i.e., treatment allocations), important to
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= individualized policies



Policies for Heterogeneous Population

Individuals are heterogeneous
> so are their responses to treatments

When designing policies (i.e., treatment allocations), important to
reflect this heterogeneity

= individualized policies
Policy design depends on policymaker's specific objective
» utilitarian (i.e., sum or mean) (Manski 04)
VS.

» non-utilitarian (e.g., prioritarian, maximin)



Exploring Non-Utilitarian Paradigm

There may be settings where utilitarian goal is less sensible

» especially when target population exhibits skewed
heterogeneity (e.g., outliers)

» possibility of non-utilitarian welfare (Manski 04)

The purpose of this paper: To explore objectives of (non-utilitarian)
policymaker who concerns...

» distribution (e.g., tails) of treatment effects

» vote shares



Preliminaries

Observables:

> Y': outcome; D: binary treatment; X: covariates
Unobservables:

» Yy (for d = 1,0): potential outcomes
Policy:

> 0: X - AC[0,1] is a treatment allocation rule based on X
e eg., A={0,1} corresponds to the deterministic rule

e eg., A=[0,1] corresponds to the stochastic rule

» D: (potentially constrained) space of §
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Observables:

> Y': outcome; D: binary treatment; X: covariates
Unobservables:

» Yy (for d = 1,0): potential outcomes
Policy:

> 0: X - AC[0,1] is a treatment allocation rule based on X
e eg., A={0,1} corresponds to the deterministic rule

e eg., A=[0,1] corresponds to the stochastic rule
» D: (potentially constrained) space of §

A policymaker (PM) wants to choose § € D that optimizes a
certain welfare criterion
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Utilitarian PM is interested in optimal policy §7,¢ that satisfies

Oare € argmax E[3(X) Y1 + (1 — 6(X)) Y]

» with deterministic rule, the criterion can be written as E[Y;(x)]



Review: Mean (Utilitarian) Welfare
Utilitarian PM is interested in optimal policy §7,¢ that satisfies

Oare € argmax E[3(X) Y1 + (1 — 6(X)) Y]

» with deterministic rule, the criterion can be written as E[Y;(x)]

Because

E[6(X) Y1+ (1= 6(X))Yo] = E[Yo + 6(X)(Y1 — Y0)]
= E[Yo] + E[6(X)E[Y1 — Yo|X]],

dare € argmax E[3(X)E[Y1 — YolX]]
€
» conditional ATE as “welfare gain”

> subject to constraints, 6, maximizes the average of
conditional ATE selected (or weighted) by ¢
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Review: Mean (Utilitarian) Welfare

OATE € arg max E[6(X)E[Y1 — Yo|X]]

> with no constraint, 037£(x) =
].{E[Yl - Yo‘X = X] Z O}

> can be sensitive to outliers

> eg., given X = x, few
individuals with high Y1 — Yy
can make E[Y; — Yp|X =x] >0

E[Yl — Y()’X :X] = 1/10



Review: Mean (Utilitarian) Welfare

527-1:— € arg rgml%( E[(S(X)E[Yl — Yo’X]] Y1 — Y0|X =X
€
v
5

> with no constraint, 037£(x) =

1EY: — Yo|X =x] > 0} *1
> can be sensitive to outliers 1
> eg., given X = x, few -1

individuals with high Y1 — Yy -1

can make E[Y; — Yp|X =x] >0 —2

—2
> suggests to treat all individuals 5

with X = x even though the
treatment harms the majority E[Y1 — Yo|X = x] = 1/10
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We propose

0% = 0goTe € arg max E[5(X)Q-(Y1 — Yo|X)]

> Q- (Y1 — Yo|X) is T-quantile of Y1 — Yy (QoTE) given X

> 0* maximizes the average of conditional QoTE selected (or
weighted) by 0

» with no constraint, §*(x) = 1{Q, (Y1 — Yo|X = x) > 0}

» 7 (i.e., rank in individual TEs) represents a reference group
chosen by the PM
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This Paper: Quantile of Treatment Effects as Welfare Gain

0" € argmax E[5(X) Q- (Y1 — Yo|X)]

» decision less sensitive to outliers
e “within-group fairness”
(Leqi & Kennedy 21)
» 7 is chosen by the PM to set a
reference group
e large 7: negligent PM

e small 7: prudent PM

Y1 — YolX = x

Qo2(Y1 — Yol X =x) = -2



This Paper: Quantile of Treatment Effects as Welfare Gain

0" € arg max E[6(X)Q-(Y1 — Yol X)] 7

)
2
> decision less sensitive to outliers )
e “within-group fairness” 2

(Leqi & Kennedy 21) 1

1

1

» 7 is chosen by the PM to set a
reference group

e large 7: negligent PM

e small 7: prudent PM —2

Qo2(Y1— Yol X =x) =1



Alternatives in Literature: Quantile Welfare

Wang, Zhou, Song & Sherwood 18: Quantile of Yj(xy, focusing on
deterministic regime

07 € argmax Q- (Yi(x))

» no closed-form solution for optimal policy §5
e interpretation of welfare gain is elusive

» lack of “across-group fairness”’ (Leqi & Kennedy 21):
e decision for one group is influenced by TEs of other groups
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Alternatives in Literature: Quantile Welfare

Leqgi & Kennedy 21: Average of conditional quantile, focusing on
deterministic regime

Ogre € arg max E[Q-(Ys(x) | X)]

But because

E[Q-(Ys0) | X)] = E[6(X)Qr(Y1]X) + (1 = 6(X)) Q-(Yo|X)]
= E[Q-(Yo|X)] + E[6(X){Q-(Y1|X) — Q-(Yo[ X)}],

So7E € arg max ERB(XH{Q-(Y1]X) — Q-(Yo|X)}]

> d57e maximizes the average of conditional QTE selected by §

» with no constraint,
Sre(x) = Q- (Y1]X = x) — Q,(YolX = x) > 0}



Alternatives in Literature: Quantile Welfare

Sgre € argmax E[Q-(Ys(x)| X)]

> with no constraint, 65 7£(x)
= 1{Q;(Y1|X =x)
—Q:(Yo|X = x) > 0}



Alternatives in Literature: Quantile Welfare

Sgre € argmax E[Q-(Ys(x)| X)]

> with no constraint, 65 7£(x)
— 1{Q, (VX = x)
—Q:(Yo|X =x) > 0}
» QTE is difference of Q,'s of
potentially different individuals
e hard to justify esp. in making
individualized decision

¢ hard to define prudence or
negligence

YilX =x Yo|X =x

I—‘!—‘O!—‘I\.)U'I!—‘I\ll\.)

OHOOIWO!—‘I\)O

Qos(Y1) — Qos(Yo) =1
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This Paper: Quantile of Treatment Effects as Welfare Gain

0" € argmax E[0(X)Q-(Y1 — Yo|X)]
0eD

» still, the notion of welfare level is unclear
Another interpretation of §*(x) = 1{Q;(Y1 — Yo|X = x) > 0}:
» suppose individuals who benefit from treatment vote for it
» with 7 = 0.5, 6* is a policy that obeys majority vote:
Qos(Y1 — Yol|X) >0
& Fy,_yvx(0) <1/2
& P[> Y|X]>1)/2
=4 P[Yl > Yo’X] > P[Yl < Y0|X]

» consistent with a PM who has political incentive and whose
decision is influenced by vote shares



This Paper: Quantile of Treatment Effects as Welfare Gain

> can be generalized by considering Qp5_n/2(Y1 — Y0|X) >0,
which is equivalent to

P[Yl > Y0|X] > P[Yl < Y()|X] + «

where o > 0 is vote share margin
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We propose an optimal policy robust to model ambiguity:

*
6mmw

€argmax min _E[6(X)Q-(Y1 — Yo|X)]

0eD FYleO\Xe]:

» F = F(P) is the identified set of Fy, vy, x given data P



Optimal Policies Robust to Model Ambiguity

QoTE is generally not point-identified even under unconfoundedness

We propose an optimal policy robust to model ambiguity:

*
6mmw

i E[6(X)Q- (Y1 — Yol X
€T £ Tyer OO Vo)
» F = F(P) is the identified set of Fy, vy, x given data P
Alternatively,

8k €argmin_ max  E[{6T(X) — 6(X)} Q-(Y1 — Yo|X)]

(SED FY17YO|X€‘F

> 0f = 1{Q(Y1— Yo|) > 0} € argmaxs E[5(X)Q-(Y1 — Yo|X)]
is the first-best policy



Optimal Policies Robust to Model Ambiguity

Define the identified interval for Q-(Y1 — Yo|X = x):
[QF(x), Q7 (x)] = {Q-(Y1 = YolX = x) : Fy, yo|x € F}

Assumption REC: The identified set Q(P) of Q- (Y1 — Yo|X) is
rectangular, i.e.,

Q(P) ={ Q@ (Y1 = Yo[X =) : Qr(Y1 — YoIX = x) € [Q7(x), @7 (x)]}

» allows to interchange the max/min over F with the
expectation over X (Kasy 16, D'Adamo 23)



Optimal Policies Robust to Model Ambiguity

Under REC, we can show

Ormmis € arg max E[5(X) Qr(X)]
and
Ommr € arg max E [5(X)A(X)]
where
N(x) =

QY(x) - {QU(x) = 0} + QH(x) - 1{QE(x) < 0}
QY(x) - L{QH(x) = 0} + QH(x) - 1{Q(x) < 0}
+ (1QY(0] = 1QH()1) - H{QHx) < 0 < Q¥(x)}
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Possible Identifying Assumptions
Let Q-(x) = Q-(Y1 — Yo|X = x) for simplicity

Informativeness of the bounds is useful

[QF(x), Q7 (x)] = {Q-(x) : Fyy, yoix € F}

We provide a range of identifying assumptions that the researcher
may want to impose
» to shrink F and thus [QL(x), QY (x)],

> sometimes to a singleton

First, to identify the marginal distribution of Yj:

Assumption Cl (Conditional Independence): Yy L D|X for
d € {0,1}.

» Alternatively, panel quantile regression models can be used to
identify Q(Yqy|X) (Chernozhukov, Fernandez-Val, Hahn & Newey 13)
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» Makarov 81, Williamson & Downs 90
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Possible Identifying Assumptions
No-assumption bounds on Q;(x) (besides Cl):

» Makarov 81, Williamson & Downs 90
» may be uninformative

Assumption S| (Stochastic Increasing): For given x € X,
P[Yl < y1|Y0 = -,X = X] and P[Yo < yo|Y1 = -,X = X] are
nonincreasing.

» S| + Cl produce informative bounds
» Frandsen & Lefgren 21

Assumption SD (Stochastic Dominance): For given x € X,
(i) PlYa <ylD=1,X=x] < P[Yy<y|D=0,X=x];
or (i) PIYi < y|D=d, X =x] < P[Yo < y|D=d, X = x].

» SD(i) or SD(ii), without Cl or with instruments

» Blundell, Gosling, Ichimura & Meghir 07, Lee 23



Possible Identifying Assumptions

Here are assumptions for point identification of Q,(x)

Assumption CI2 (Joint Conditional Independence):
(Y1, Yo) L D|X.

Assumption DC (Deconvolution): Y; — Yy L Yp|X.
» CI2 + DC point-identify Q-(x) (Heckman & Smith 95)



Possible Identifying Assumptions

Here are assumptions for point identification of Q,(x)

Assumption CI2 (Joint Conditional Independence):
(Y1, Yo) L D|X.

Assumption DC (Deconvolution): Y; — Yy L Yp|X.

» CI2 + DC point-identify Q-(x) (Heckman & Smith 95)
Assumption RY (Roy Model): (i) D = 1{Y1 > Yo}; (ii) large
support of elements of X; (iii) additive errors in Yy-equations.

Assumption RY2 (Extended Roy Model):
(i) D=1{Y1 > h(Yo, X, 2Z)}; (ii) strict monotonicity of h;
(iii) (Yo, Y1) L Z|X.

» RY or RY2 point-identifies QT(X) (Heckman & Smith 95, Lee &
Park 22)



Possible Identifying Assumptions

Assumption Rl (Rank Invariance): (i) Yy = mg(X, Uyg);
(ii) mg(x, -) is strictly increasing; (i) Ui|x=x = Uo|x=x-

» Heckman, Smith & Clements 97, Chernozhukov & Hansen 05

» generalized version in Heckman, Smith & Clements 97
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Possible Identifying Assumptions
Assumption Rl (Rank Invariance): (i) Yy = mg(X, Uyg);
(ii) mg(x, -) is strictly increasing; (i) Ui|x=x = Uo|x=x-
» Heckman, Smith & Clements 97, Chernozhukov & Hansen 05

» generalized version in Heckman, Smith & Clements 97

Assumption RY (Mutual Independence): Y; L Yy|X, C for
some variable C.

» RY + ClI point-identify Q;(x)

> relates to factor models (Abbring & Heckman 07)

Assumption SYM (Symmetric Distribution): The distribution
of Y1 — Yp|X is symmetric.

> Then Qos(Y1 — Yo|X) = E[Y1 — Yo|X], which is
point-identified under Cl



Calculating Bounds on Q;(x)
Let C(u, v|X) be the copula for (U, V) = (Fy,(Y1), Fy,(Y0))
conditional on X

Then, by Sklar's Theorem,

P[Y1 — Yo < t|X] = P[F Fol (V) < t|X]

Y|X( U) - Yol X

— [1lFoheto) = Frl(v) < BaC(uvix)



Calculating Bounds on Q;(x)

Let C(u, v|X) be the copula for (U, V) = (Fy,(Y1), Fy,(Y0))
conditional on X

Then, by Sklar's Theorem,
PY1 = Yo < t|X] = P[Fy, [ (U) = Fylx (V) < t]X]
— [ A (0) = Filelv) < )dC(u,vIX)

Therefore, with A = Y] — Yo,

Fax(t) = C(.’i_p;)ec/l{Fy ' (0) = Flx(v) < £1dC(u, v|X)

(0= _sip [ 1R - Fil(v) < ehactuvix)

where C is the class of copulas restricted by identifying assumptions



Calculating Bounds on Q;(x)

For T-quantile Q-(x) for A|X = x, we can obtain its lower and
upper bounds as

QLX) = Fx'(7)
QU(X) = FER(7)

In practice, we need to approximate C(u, v|x) to transform above
optimization into linear programs

» two approaches



Calculating Bounds on Q;(x): Approach |

For Makarov bounds, consider (suppressing X)

= min ZZ L{Fy (r(i) = Fy (r()) < the(i.f)
1i=1
J kK
FR(t) = ggéﬁzzl{Fﬁl(r(i)) vo (r()) < the(i,))
j=1i=1
where 01
() = =5
and

k
Zc(s,j)zl/k,forjzl...k

k
> cliys)=1/kfori=1...k



Calculating Bounds on Q;(x): Approach |

Additionally, e.g., Assumption S| imposes

i i k=1y k
{{Z c(s.4) =) cls,j+ 1)} }
s=1 i=1

s=1 j=1

. j k=1 k
{{Zc(i,s)>2c(i+1,s)} }
s=1 s=1 i=j j=1



Calculating Bounds on Q;(x): Approach Il

Alternatively, we can approximate C(u, v|x) using Bernstein copula
Cg(u, v|x) (Sancetta & Satchell 04)

Finally, Fy,x(y) and Fy,x(y) can be estimated using standard
nonparametric or parametric methods



Theoretical Properties of Estimated Policy
Recall Q-(X) = Q-(Y1 — Yo|X) and our objective function is
V(6) = E[6(X)Q-(X)]
The regret of this “classification” is

R(8) = V(67) = V(8) = E[1Q-(X)[1{8(X) # sign(Q-(X))}]

> sign(q) = 1 when g > 0 and sign(q) = 0 when g <0



Theoretical Properties of Estimated Policy
Recall @,(X) = Q-(Y1 — Yo|X) and our objective function is
V(8) = E[6(X)Q-(X)]

The regret of this “classification” is

R(8) = V(67) = V(8) = E[1Q-(X)[1{8(X) # sign(Q-(X))}]

> sign(q) = 1 when g > 0 and sign(q) = 0 when g <0

R(9) is not identified, thus we define maximum regret as

R(0) = sup ETIQ-(X)[1{5(X) # sign(Q-(X))}]
Q- (-)E[QL(-),QY ()]

Focus on the case where D is unrestricted
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» EST is implied by consistency of l:_yd‘x and consistency of the
copula approximation



Theoretical Properties of Estimated Policy
Assumption EST: Fgllx(T) is bounded a.s. and

» EST is implied by consistency of l:_yd‘x and consistency of the
copula approximation

Theorem 1 (Regret Bounds)
Suppose EST holds. Then,

PN = A L U
R(§5tochy < R(§stochy < E[%l{Q#(X)<O<QH(X)}}+op(1),

where the ratio = 0 when its denominator = 0, and

R(§9eterm) < R(§9te™) < E[min(max(QU(X),0),max(— QL(X),0))]+0p(1).



Theoretical Properties of Estimated Policy

Corollary 1 (Expected Regret Bounds)
Suppose EST holds. Then,

Epn [R(SS“’C")} < E{(())iwl{o (X)<0<QU(X)}]+0(1),

where the ratio = 0 when its denominator = 0, and

Epn [R(Sdeterm):| < E[mln (max(QY(X),0),max(—QL(X),0 )]+o(1).



Theoretical Properties of Estimated Policy

Corollary 1 (Expected Regret Bounds)
Suppose EST holds. Then,

Epn [R(S“OC")} < E{(())iwl{o (X)<0<QU(X)}]+0(1),

where the ratio = 0 when its denominator = 0, and
Epn [R(Sdeterm):| < E[mln (max(QY(X),0),max(—QL(X),0 )]+o(1).

Leading term in each bound reduces to zero when either...

» bounds on Q;(X) excludes zero a:s.

» or Q-(X) is point-identified
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Sometimes PM may be interested in parsimonious decision rules
> e.g., threshold policies with linear index

Our proposed method readily extends to the case of constrained D

5*

mmw

5*

mmr

€a Ax E[§(X)QL(X

rg max [6(X)Q%(X)]
€arg max E[5(X)[QY(X)- 1{ QY (X)>0}+QE(X)- 1{QF(X)<0}]]
We can consider convex relaxation by using hinge loss function
¢(t) = max(1 — t,0) and adding regularization

> e.g., the outcome weighted learning framework (Zhao et al. 12)

> consistency with hinge loss is proved even when the classifier's
prediction set is restricted (Kitagawa et al., 2021)



Classification Method with Constrained Policy Class
Sometimes PM may be interested in parsimonious decision rules
> e.g., threshold policies with linear index
Our proposed method readily extends to the case of constrained D
Oy € arg MaxX E[B(X)QF(X)]
Ommr € g max E[5(X)[QY(X)- 1{ QY (X)>0}+QE(X)- 1{QF(X)<0}]]
We can consider convex relaxation by using hinge loss function
¢(t) = max(1 — t,0) and adding regularization
> e.g., the outcome weighted learning framework (Zhao et al. 12)

> consistency with hinge loss is proved even when the classifier's
prediction set is restricted (Kitagawa et al., 2021)

Then bound on R and thus bound on R can be obtained



Numerical Illustrations

Q: How policies differ across PM's criteria esp. when the QoTE is
partially identified?



Numerical Illustrations
Q: How policies differ across PM's criteria esp. when the QoTE is
partially identified?
Data-generating process:

» Draw (Y1, Yo) (or (log Y1,log Yp)) from N(u, ) with
= (11, o)’ and

Y — o1 £104/0001
£104/0001 00

» Draw D from Bernoulli(0.5)
> Generate Y =DY1 +(1—-D)Yp
Note: Y1|Yo ~ N(u1 + p100120, (1 — p?01)) where Zy = YOJ;O“O

» thus S| holds when p19 > 0 (similarly for log-normal case)



Numerical Illustrations

When D is unrestricted, the true optimal policies are:

> 0 =1{Q (Y1 — Yo) >0}

° eg, Q(Y1— o) =y — o+ ®71(7)\/02 + 03 — 2p100100
dore = H{Q (Y1) — Q-(Yo) > 0}

* eg, (Y1) = Q(Y0) = 1 — po + ¢~ (1) (o1 — 00)
Sare = H{E[Y1 — Yo] > 0}

° eg., E[Y1— Yol =11 — to

v

v

v

they are first best for both deterministic and stochastic policies

v

under normality and SI, if 0 < 7 < 0.5, we have...
* Q:(Y1—Y) < Q(Y1) — Q-(Yo) and

° Q.(Y1—Yo) < E(V1) — E(Y0)

For brevity, let Q; = Q-(Y1 — Yo)



Numerical Illustrations

Unlike 6"6‘?”:- and &g, recall obtaining 0* = 5*QoTE involves model
uncertainty:

» for deterministic policy:

QY| > QL) ifQLt<0< QY
Smr =4 1 if Q>0
0 if QY <0

» for stochastic policy:

Bernoulli < QU@QL) if QTL <0< QTU

0 if QU <0

In simulation, QL and QU are calculated under...

> no assumption (i.e., Makarov bounds) or Assumption SI



Numerical Illustrations

For 8%,mr 057 and 67, we estimate 5%, S*QTE and 8%,

> by estimating QY, QL, Q,(Yy), and E[Yy] (d = 0,1) using
the generated experimental data

For TE € {QoTE, QTE,ATE}, (recalling 0* = 05,7¢)
> misclassification error: Epa[1{d7¢ # 6%¢}]
> regret: Epa[| TE|- 1{07¢ # 0%¢}]

We focus on 7 = 0.25



Numerical Results: Correct Classification Rate (n = 50)

55/ ,stoch 5stoch 55! ,determ 5determ 5QTE 6ATE

Subgroup 1 (0 is not contained)

o* 100% 100% 100% 100% 33.5% | 93%
Sore 0% 0% 0% 0% | 66.5% | 7%
Shre | 100% | 100% | 100% | 100% | 33.5% | 93%
Subgroup 2 (0 is not contained)

o* 92% 90% 90.5% 94% 1% 17%
Sore 8% 10% | 9.5% 6% 99% | 83%
Sire 8% 10% | 9.5% 6% | 99% | 83%




Numerical Results: Correct Classification Rate (n = 50)

SSl,stoch 5stoch 55/,determ 5determ 5QTE 6ATE

Subgroup 3 (0 is contained)

o* 79% 51% 84% 62% 99.5% 100%
dore 79% 51% 84% 62% | 99.5% | 100%
Sie | 79% | 51% 84% 62% | 99.5% | 100%

Subgroup 4 (0 is contained)

0" 26% 49.5% 14.5% 44% 1.5% 0.5%
dQrE 74% | 50.5% | 855% | 56% | 98.5% | 99.5%
Sire | 74% | 505% | 855% | 56% | 98.5% | 99.5%

Subgroup 5 (0 is contained, Sl false)

o* 82% 81% 83% 93.5% | 66.5% 4%
Shre | 82% | 81% 83% | 93.5% | 66.5% | 4%
Sie | 18% | 19% 17% | 6.5% | 33.5% | 96%

Subgroup 6 (0 is contained, Sl false)

o* 43% 61.5% 40% 61% 24% 0%

Shre | 57% | 385% | 60% 39% | 76% | 100%

P 57% 38.5% 60% 39% 76% 100%
ATE




Numerical Results: Correct Classification Rate (n = 50)

551 ,stoch 5stoch 55! ,determ 6determ 6QTE 5ATE

Subgroup 8 (log normal, Sl excludes 0)
73% 100% | 76.5%

& 95.5% | 68% | 95.5%
Sy | 95.5% | 68% | 95.5% | 73% | 100% | 76.5%
23.5%

Sire | 45% | 32% | 45% | 28% | 0%




Numerical Results: Correct Classification Rate (n = 1000)

6SI,stoch 5stoch §Sl,determ 5determ 5QTE EATE

Subgroup 1 (0 is not contained)

5 100% | 100% | 100% | 100% | 0% | 100%
Sqre 0% 0% 0% 0% | 100% | 0%

Lyt 100% 100% 100% 100% 0% 100%
Subgroup 2 (0 is not contained)
o* 100% 99% 100% 100% 0% 0%
eyrs 0% 1% 0% 0% | 100% | 100%
Shre 0% 1% 0% 0% | 100% | 100%




Numerical Results: Correct Classification Rate (n = 1000)

35/ ,stoch Sstoch SSI ,determ Sdeterm

SQ TE SATE

Subgroup 3 (0 is contained)

5* 89% | 59% | 100% | 95% | 100% | 100%
Sore | 89% | 59% | 100% 95% | 100% | 100%
Sire | 89% | 59% | 100% | 95% | 100% | 100%

Subgroup 4 (0 is contained)

o* 21% 43% 0% 20% 0% 0%
Syre | 79% | 57% | 100% | 80% | 100% | 100%
Sre | 79% | 57% | 100% | 80% | 100% | 100%

Subgroup 5 (0 is contained, Sl false)

o* 92% 74% 100% 100% 100% 0%
So1E 92% 74% 100% 100% | 100% 0%
oy 8% 26% 0% 0% 0% 100%

Subgroup 6 (0 is contained, Sl false)
o* 34% 48% 6.5% 86% 0% 0%

Sore | 66% | 52% | 93.5% | 14% | 100% | 100%
Sire | 66% | 52% | 935% | 14% | 100% | 100%




Numerical Results: Correct Classification Rate (n = 1000)

551 ,stoch 5stoch 55/ ,determ 6determ 6QTE 5ATE

Subgroup 8 (log normal, Sl excludes 0)

& 100% | 60% | 100% 97% | 100% | 70.5%
S4re | 100% | 60% | 100% 97% | 100% | 70.5%
g 0% | 40% 0% 3% 0% | 29.5%




Application |: Allocations of Right Heart Catheterization

We consider the right heart catheterization (RHC) (e.g., Hirano &
Imbens 02)

» D: RHC (1 if received and 0 otherwise), a diagnostic
procedure for critically ill patients

> Y: number of days from admission to death within 30 days

Studies like Connors et al. 21 found that patient survival is lower with
RHC than without

> therefore, relevant policy question is to find patients for whom
allocating (or avoiding!) RHC is life-saving

In the dataset, 5735 patients are divided into a treatment group
(2184 patients) and a control group (3551 patients)

» X: age, sex, coma, DNR status, est’ed survival rate, ICU
mortality score



Application |

Allocations of Right Heart Catheterization

16:3412 age:79.12 sex;Female catl_coma:No
cat2_comaiNo dnr1:No surv2md1:0.34 aps1:76

10:168 age:74.4 sex;Female catl_coma:No
cat2_comaiNo dnrl:No surv2md1:0.52 aps1:67
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Application Il: Allocations of Job Training

We consider the National Job Training Partnership Act (JTPA)
Study (Bloom et al. 97, Abadie et al. 02, Kitagawa & Tetenov 18)

We use a subset that includes 9,223 adults; 6,133 received job
training, while 3,090 did not

» D: job training
> Y: 30-month earnings after job training

> X: sex, years of education, high school diploma, previous
earnings

Q: how do prudent/negligent policies look like, relative to e.g.
utilitarian policy?



Application Il: Allocations of Job Training

Figure: Bounds on the QoTE of Six Representative Workers (7 = 0.25)

recid:317237 sex:Male hs:Yes edu:12 prevearn:1.5

recid:310493 sex:Female hs:No edu:9 prevearn:1.14
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Application Il: Allocations of Job Training

piL piL . u:
S B L L
i : b s i
g ] ] ] ] ] 1
| i | | & i | | & i | |

median: female without 0.75 quantile: female without high_sch

(d) 0.25-QTE (e) 0.5-QTE (f) 0.75-QTE (g) ATE

Figure: Decisions for Female Workers Without High School Diploma



Concluding Remarks

The paper...

» proposes optimal allocation decisions

under welfare gain defined by quantile of treatment effects

v

v

that can also be motivated by vote shares;

v

considers ambiguity-robust decisions;

v

provides theoretical guarantee by calculating regret bounds;

> proposes a range of identifying assumptions

Extensions:

> interquartile range as equity target for an egalitarian PM
® Kitagawa & Tetenov 21

> E[Y1— Yo|Yo < c] as alternative prioritarian objective



Thank You! ®



Rectangular Identified Set

Consider X € {0,1}
REC imposes that

{(@(0), Q1)) : @ (x) € [QF(x), 7 (x)], x € {0,1}}
is rectangular
Then

min  E[6(X)Q-(X)] = min [p16(1)Q-(1) + pod(0) Q-(0)]

Fyi,voix
= p16(1) min Q-(1) + pod(0) min Q-(0)
= p18(1)Q7(1) + pod(0)Qr(0)
= E[6(X) min Q- (X)]



