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Policies for Heterogeneous Population

Individuals are heterogeneous

I so are their responses to treatments

When designing policies (i.e., treatment allocations), important to
reflect this heterogeneity

⇒ individualized policies

Policy design depends on policymaker’s specific objective

I utilitarian (i.e., sum or mean) (Manski 04)

vs.

I non-utilitarian (e.g., prioritarian, maximin)
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Exploring Non-Utilitarian Paradigm

There may be settings where utilitarian goal is less sensible

I especially when target population exhibits skewed
heterogeneity (e.g., outliers)

I possibility of non-utilitarian welfare (Manski 04)

The purpose of this paper: To explore objectives of (non-utilitarian)
policymaker who concerns...

I distribution (e.g., tails) of treatment effects

I vote shares



Preliminaries

Observables:

I Y : outcome; D: binary treatment; X : covariates

Unobservables:

I Yd (for d = 1, 0): potential outcomes

Policy:

I δ : X → A ⊆ [0, 1] is a treatment allocation rule based on X
• e.g., A = {0, 1} corresponds to the deterministic rule

• e.g., A = [0, 1] corresponds to the stochastic rule

I D: (potentially constrained) space of δ

A policymaker (PM) wants to choose δ ∈ D that optimizes a
certain welfare criterion
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Review: Mean (Utilitarian) Welfare
Utilitarian PM is interested in optimal policy δ∗ATE that satisfies

δ∗ATE ∈ arg max
δ∈D

E [δ(X )Y1 + (1− δ(X ))Y0]

I with deterministic rule, the criterion can be written as E [Yδ(X )]

Because

E [δ(X )Y1 + (1− δ(X ))Y0] = E [Y0 + δ(X )(Y1 − Y0)]

= E [Y0] + E [δ(X )E [Y1 − Y0|X ]],

δ∗ATE ∈ arg max
δ∈D

E [δ(X )E [Y1 − Y0|X ]]

I conditional ATE as “welfare gain”

I subject to constraints, δ∗ATE maximizes the average of
conditional ATE selected (or weighted) by δ



Review: Mean (Utilitarian) Welfare
Utilitarian PM is interested in optimal policy δ∗ATE that satisfies

δ∗ATE ∈ arg max
δ∈D

E [δ(X )Y1 + (1− δ(X ))Y0]

I with deterministic rule, the criterion can be written as E [Yδ(X )]

Because

E [δ(X )Y1 + (1− δ(X ))Y0] = E [Y0 + δ(X )(Y1 − Y0)]

= E [Y0] + E [δ(X )E [Y1 − Y0|X ]],

δ∗ATE ∈ arg max
δ∈D

E [δ(X )E [Y1 − Y0|X ]]

I conditional ATE as “welfare gain”

I subject to constraints, δ∗ATE maximizes the average of
conditional ATE selected (or weighted) by δ



Review: Mean (Utilitarian) Welfare

δ∗ATE ∈ arg max
δ∈D

E [δ(X )E [Y1 − Y0|X ]]

I with no constraint, δ∗ATE (x) =
1{E [Y1 − Y0|X = x ] ≥ 0}

I can be sensitive to outliers

I e.g., given X = x , few
individuals with high Y1 − Y0
can make E [Y1−Y0|X = x ] > 0

I suggests to treat all individuals
with X = x even though the
treatment harms the majority

Y1 − Y0|X = x
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E [Y1 − Y0|X = x ] = 1/10
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This Paper: Quantile of Treatment Effects as Welfare Gain

We propose

δ∗ ≡ δ∗QoTE ∈ arg max
δ∈D

E [δ(X )Qτ (Y1 − Y0|X )]

I Qτ (Y1 − Y0|X ) is τ -quantile of Y1 − Y0 (QoTE) given X

I δ∗ maximizes the average of conditional QoTE selected (or
weighted) by δ

I with no constraint, δ∗(x) = 1{Qτ (Y1 − Y0|X = x) ≥ 0}

I τ (i.e., rank in individual TEs) represents a reference group
chosen by the PM
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This Paper: Quantile of Treatment Effects as Welfare Gain

δ∗ ∈ arg max
δ∈D

E [δ(X )Qτ (Y1 − Y0|X )]

I decision less sensitive to outliers
• “within-group fairness”

(Leqi & Kennedy 21)

τ is chosen by the PM to set a
reference group

small τ : prudent PM

large τ : negligent PM

Y1 − Y0|X = x

7
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This Paper: Quantile of Treatment Effects as Welfare Gain

δ∗ ∈ arg max
δ∈D

E [δ(X )Qτ (Y1 − Y0|X )]

I decision less sensitive to outliers
• “within-group fairness”

(Leqi & Kennedy 21)

I τ is chosen by the PM to set a
reference group

small τ : prudent PM

large τ : negligent PM

Y1 − Y0|X = x

7
5
−1
−1
−1
−1
−1
−2
−2
−2

Q0.5(Y1 − Y0|X = x) = −1



This Paper: Quantile of Treatment Effects as Welfare Gain

δ∗ ∈ arg max
δ∈D

E [δ(X )Qτ (Y1 − Y0|X )]

I decision less sensitive to outliers
• “within-group fairness”

(Leqi & Kennedy 21)

I τ is chosen by the PM to set a
reference group

• large τ : negligent PM

small τ : negligent PM

Y1 − Y0|X = x

7
5
−1
−1
−1
−1
−1
−2
−2
−2

Q0.9(Y1 − Y0|X = x) = 5



This Paper: Quantile of Treatment Effects as Welfare Gain

δ∗ ∈ arg max
δ∈D

E [δ(X )Qτ (Y1 − Y0|X )]

I decision less sensitive to outliers
• “within-group fairness”

(Leqi & Kennedy 21)

I τ is chosen by the PM to set a
reference group

• large τ : negligent PM

• small τ : prudent PM

Y1 − Y0|X = x

7
5
−1
−1
−1
−1
−1
−2
−2
−2

Q0.2(Y1 − Y0|X = x) = −2
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Alternatives in Literature: Quantile Welfare

Wang, Zhou, Song & Sherwood 18: Quantile of Yδ(X ), focusing on
deterministic regime

δ∗? ∈ arg max
δ∈D

Qτ (Yδ(X ))

I no closed-form solution for optimal policy δ∗?
• interpretation of welfare gain is elusive

I lack of “across-group fairness” (Leqi & Kennedy 21):
• decision for one group is influenced by TEs of other groups



Alternatives in Literature: Quantile Welfare
Leqi & Kennedy 21: Average of conditional quantile, focusing on
deterministic regime

δ∗QTE ∈ arg max
δ∈D

E [Qτ (Yδ(X )|X )]

But because

E [Qτ (Yδ(X )|X )] = E [δ(X )Qτ (Y1|X ) + (1− δ(X ))Qτ (Y0|X )]

= E [Qτ (Y0|X )] + E [δ(X ){Qτ (Y1|X )− Qτ (Y0|X )}],

δ∗QTE ∈ arg max
δ∈D

E [δ(X ){Qτ (Y1|X )− Qτ (Y0|X )}]

I δ∗QTE maximizes the average of conditional QTE selected by δ

I with no constraint,
δ∗QTE (x) = 1{Qτ (Y1|X = x)− Qτ (Y0|X = x) ≥ 0}
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Alternatives in Literature: Quantile Welfare

δ∗QTE ∈ arg max
δ∈D

E [Qτ (Yδ(X )|X )]

I with no constraint, δ∗QTE (x)
= 1{Qτ (Y1|X = x)
−Qτ (Y0|X = x) ≥ 0}

I QTE is difference of Qτ ’s of
potentially different individuals

• hard to justify esp. in making
individualized decision

• hard to define prudence or
negligence
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This Paper: Quantile of Treatment Effects as Welfare Gain

δ∗ ∈ arg max
δ∈D

E [δ(X )Qτ (Y1 − Y0|X )]

I still, the notion of welfare level is unclear

Another interpretation of δ∗(x) = 1{Qτ (Y1 − Y0|X = x) ≥ 0}:

I suppose individuals who benefit from treatment vote for it

I with τ = 0.5, δ∗ is a policy that obeys majority vote:

Q0.5(Y1 − Y0|X ) ≥ 0
⇔ FY1−Y0|X (0) ≤ 1/2

⇔ P[Y1 ≥ Y0|X ] ≥ 1/2
⇔ P[Y1 ≥ Y0|X ] ≥ P[Y1 < Y0|X ]

I consistent with a PM who has political incentive and whose
decision is influenced by vote shares
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This Paper: Quantile of Treatment Effects as Welfare Gain

I can be generalized by considering Q0.5−α/2(Y1 − Y0|X ) ≥ 0,
which is equivalent to

P[Y1 ≥ Y0|X ] ≥ P[Y1 < Y0|X ] + α

where α ≥ 0 is vote share margin



Optimal Policies Robust to Model Ambiguity

QoTE is generally not point-identified even under unconfoundedness

We propose an optimal policy robust to model ambiguity:

δ∗mmw ∈ arg max
δ∈D

min
FY1,Y0|X∈F

E [δ(X )Qτ (Y1 − Y0|X )]

I F ≡ F(P) is the identified set of FY1,Y0|X given data P

Alternatively,

δ∗mmr ∈ arg min
δ∈D

max
FY1,Y0|X∈F

E [{δ†(X )− δ(X )}Qτ (Y1 − Y0|X )]

I δ† = 1{Qτ (Y1−Y0|·) ≥ 0} ∈ arg maxδ E [δ(X )Qτ (Y1−Y0|X )]
is the first-best policy
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Optimal Policies Robust to Model Ambiguity

Define the identified interval for Qτ (Y1 − Y0|X = x):

[QL
τ (x),QU

τ (x)] = {Qτ (Y1 − Y0|X = x) : FY1,Y0|X ∈ F}

Assumption REC: The identified set Q(P) of Qτ (Y1 − Y0|X ) is
rectangular, i.e.,

Q(P) ≡ {Qτ (Y1 − Y0|X = ·) : Qτ (Y1 − Y0|X = x) ∈ [QL
τ (x),QU

τ (x)]}

I allows to interchange the max/min over F with the
expectation over X (Kasy 16, D’Adamo 23) REC



Optimal Policies Robust to Model Ambiguity

Under REC, we can show

δ∗mmw ∈ arg max
δ∈D

E [δ(X )QL
τ (X )]

and

δ∗mmr ∈ arg max
δ∈D

E [δ(X )Λ(X )]

where

Λ(x) = QU
τ (x) · 1{QU

τ (x) ≥ 0}+ QL
τ (x) · 1{QL

τ (x) ≤ 0}
= QU

τ (x) · 1{QL
τ (x) ≥ 0}+ QL

τ (x) · 1{QU
τ (x) ≤ 0}

+
(
|QU
τ (x)| − |QL

τ (x)|
)
· 1{QL

τ (x) < 0 < QU
τ (x)}
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Possible Identifying Assumptions
Let Qτ (x) ≡ Qτ (Y1 − Y0|X = x) for simplicity

Informativeness of the bounds is useful

[QL
τ (x),QU

τ (x)] = {Qτ (x) : FY1,Y0|X ∈ F}

We provide a range of identifying assumptions that the researcher
may want to impose

I to shrink F and thus [QL
τ (x),QU

τ (x)],

I sometimes to a singleton

First, to identify the marginal distribution of Yd :

Assumption CI (Conditional Independence): Yd ⊥ D|X for
d ∈ {0, 1}.

I Alternatively, panel quantile regression models can be used to
identify Qτ (Yd |X ) (Chernozhukov, Fernandez-Val, Hahn & Newey 13)



Possible Identifying Assumptions
Let Qτ (x) ≡ Qτ (Y1 − Y0|X = x) for simplicity

Informativeness of the bounds is useful

[QL
τ (x),QU

τ (x)] = {Qτ (x) : FY1,Y0|X ∈ F}

We provide a range of identifying assumptions that the researcher
may want to impose

I to shrink F and thus [QL
τ (x),QU

τ (x)],

I sometimes to a singleton

First, to identify the marginal distribution of Yd :

Assumption CI (Conditional Independence): Yd ⊥ D|X for
d ∈ {0, 1}.

I Alternatively, panel quantile regression models can be used to
identify Qτ (Yd |X ) (Chernozhukov, Fernandez-Val, Hahn & Newey 13)



Possible Identifying Assumptions
Let Qτ (x) ≡ Qτ (Y1 − Y0|X = x) for simplicity

Informativeness of the bounds is useful

[QL
τ (x),QU

τ (x)] = {Qτ (x) : FY1,Y0|X ∈ F}

We provide a range of identifying assumptions that the researcher
may want to impose

I to shrink F and thus [QL
τ (x),QU

τ (x)],

I sometimes to a singleton

First, to identify the marginal distribution of Yd :

Assumption CI (Conditional Independence): Yd ⊥ D|X for
d ∈ {0, 1}.

I Alternatively, panel quantile regression models can be used to
identify Qτ (Yd |X ) (Chernozhukov, Fernandez-Val, Hahn & Newey 13)



Possible Identifying Assumptions
No-assumption bounds on Qτ (x) (besides CI):

I Makarov 81, Williamson & Downs 90

I may be uninformative

Assumption SI (Stochastic Increasing): For given x ∈ X ,
P[Y1 ≤ y1|Y0 = ·,X = x ] and P[Y0 ≤ y0|Y1 = ·,X = x ] are
nonincreasing.

I SI + CI produce informative bounds

I Frandsen & Lefgren 21

Assumption SD (Stochastic Dominance): For given x ∈ X ,
(i) P[Yd ≤ y |D = 1,X = x ] ≤ P[Yd ≤ y |D = 0,X = x ];
or (ii) P[Y1 ≤ y |D = d ,X = x ] ≤ P[Y0 ≤ y |D = d ,X = x ].

I SD(i) or SD(ii), without CI or with instruments

I Blundell, Gosling, Ichimura & Meghir 07, Lee 23
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Possible Identifying Assumptions

Here are assumptions for point identification of Qτ (x)

Assumption CI2 (Joint Conditional Independence):
(Y1,Y0) ⊥ D|X .

Assumption DC (Deconvolution): Y1 − Y0 ⊥ Y0|X .

I CI2 + DC point-identify Qτ (x) (Heckman & Smith 95)

Assumption RY (Roy Model): (i) D = 1{Y1 ≥ Y0}; (ii) large
support of elements of X ; (iii) additive errors in Yd -equations.

Assumption RY2 (Extended Roy Model):
(i) D = 1{Y1 ≥ h(Y0,X ,Z )}; (ii) strict monotonicity of h;
(iii) (Y0,Y1) ⊥ Z |X .

I RY or RY2 point-identifies Qτ (x) (Heckman & Smith 95, Lee &
Park 22)
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Possible Identifying Assumptions

Assumption RI (Rank Invariance): (i) Yd = md(X ,Ud);
(ii) md(x , ·) is strictly increasing; (iii) U1|X=x = U0|X=x .

I Heckman, Smith & Clements 97, Chernozhukov & Hansen 05

I generalized version in Heckman, Smith & Clements 97

Assumption RY (Mutual Independence): Y1 ⊥ Y0|X ,C for
some variable C .

I RY + CI point-identify Qτ (x)

I relates to factor models (Abbring & Heckman 07)

Assumption SYM (Symmetric Distribution): The distribution
of Y1 − Y0|X is symmetric.

I Then Q0.5(Y1 − Y0|X ) = E [Y1 − Y0|X ], which is
point-identified under CI
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Calculating Bounds on Qτ(x)

Let C (u, v |X ) be the copula for (U,V ) ≡ (FY1(Y1),FY0(Y0))
conditional on X

Then, by Sklar’s Theorem,

P[Y1 − Y0 ≤ t|X ] = P[F−1
Y1|X (U)− F−1

Y0|X (V ) ≤ t|X ]

=

∫
1{F−1

Y1|X (u)− F−1
Y0|X (v) ≤ t}dC (u, v |X )

Therefore, with ∆ ≡ Y1 − Y0,

F L
∆|X (t) = inf

C(·,·|X )∈C

∫
1{F−1

Y1|X (u)− F−1
Y0|X (v) ≤ t}dC (u, v |X )

FU
∆|X (t) = sup

C(·,·|X )∈C

∫
1{F−1

Y1|X (u)− F−1
Y0|X (v) ≤ t}dC (u, v |X )

where C is the class of copulas restricted by identifying assumptions
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Calculating Bounds on Qτ(x)

For τ -quantile Qτ (x) for ∆|X = x , we can obtain its lower and
upper bounds as

QL
τ (X ) = FU,−1

∆|X (τ)

QU
τ (X ) = F L,−1

∆|X (τ)

In practice, we need to approximate C (u, v |x) to transform above
optimization into linear programs

I two approaches



Calculating Bounds on Qτ(x): Approach I
For Makarov bounds, consider (suppressing X )

F L
∆(t) = min

c(·,·)

k∑
j=1

k∑
i=1

1{F−1
Y1

(r(i))− F−1
Y0

(r(j)) ≤ t}c(i , j)

FU
∆ (t) = max

c(·,·)

k∑
j=1

k∑
i=1

1{F−1
Y1

(r(i))− F−1
Y0

(r(j)) ≤ t}c(i , j)

where
r(i) =

2i − 1
2k

and
k∑

s=1

c(s, j) = 1/k, for j = 1 . . . k

k∑
s=1

c(i , s) = 1/k, for i = 1 . . . k



Calculating Bounds on Qτ(x): Approach I

Additionally, e.g., Assumption SI imposes
{

i∑
s=1

c(s, j) ≥
i∑

s=1

c(s, j + 1)

}k−1

j=1


k

i=1
{

i∑
s=1

c(i , s) ≥
j∑

s=1

c(i + 1, s)

}k−1

i=j


k

j=1



Calculating Bounds on Qτ(x): Approach II

Alternatively, we can approximate C (u, v |x) using Bernstein copula
CB(u, v |x) (Sancetta & Satchell 04)

Finally, FY1|X (y) and FY0|X (y) can be estimated using standard
nonparametric or parametric methods



Theoretical Properties of Estimated Policy

Recall Qτ (X ) ≡ Qτ (Y1 − Y0|X ) and our objective function is

V (δ) ≡ E [δ(X )Qτ (X )]

The regret of this “classification” is

R(δ) ≡ V (δ†)− V (δ) = E [|Qτ (X )|1{δ(X ) 6= sign(Qτ (X ))}]

I sign(q) = 1 when q ≥ 0 and sign(q) = 0 when q < 0

R(δ) is not identified, thus we define maximum regret as

R̄(δ) ≡ sup
Qτ (·)∈[QL

τ (·),QU
τ (·)]

E [|Qτ (X )|1{δ(X ) 6= sign(Qτ (X ))}]

Focus on the case where D is unrestricted
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Theoretical Properties of Estimated Policy
Assumption EST: F−1

∆|X (τ) is bounded a.s. and

Q̂L
τ (X )− QL

τ (X ) = op(1),

Q̂U
τ (X )− QU

τ (X ) = op(1).

I EST is implied by consistency of F̂Yd |X and consistency of the
copula approximation

Theorem 1 (Regret Bounds)
Suppose EST holds. Then,

R(δ̂stoch) ≤ R̄(δ̂stoch) ≤ E

[
QL
τ (X )QU

τ (X )

QL
τ (X )−QU

τ (X )
1{QL

τ (X )<0<QU
τ (X )}

]
+op(1),

where the ratio = 0 when its denominator = 0, and

R(δ̂determ) ≤ R̄(δ̂determ) ≤ E[min(max(QU
τ (X ),0),max(−QL

τ (X ),0))]+op(1).
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Theoretical Properties of Estimated Policy

Corollary 1 (Expected Regret Bounds)
Suppose EST holds. Then,

EPn

[
R(δ̂stoch)

]
≤ E

[
QL
τ (X )QU

τ (X )

QL
τ (X )−QU

τ (X )
1{QL

τ (X )<0<QU
τ (X )}

]
+o(1),

where the ratio = 0 when its denominator = 0, and

EPn

[
R(δ̂determ)

]
≤ E[min(max(QU

τ (X ),0),max(−QL
τ (X ),0))]+o(1).

Leading term in each bound reduces to zero when either...

I bounds on Qτ (X ) excludes zero a.s.

I or Qτ (X ) is point-identified
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Classification Method with Constrained Policy Class

Sometimes PM may be interested in parsimonious decision rules

I e.g., threshold policies with linear index

Our proposed method readily extends to the case of constrained D

δ∗mmw ∈ arg max
δ∈D

E [δ(X )QL
τ (X )]

δ∗mmr ∈ arg max
δ∈D

E [δ(X )[QU
τ (X )·1{QU

τ (X )≥0}+QL
τ (X )·1{QL

τ (X )≤0}]]

We can consider convex relaxation by using hinge loss function
φ(t) = max(1− t, 0) and adding regularization

I e.g., the outcome weighted learning framework (Zhao et al. 12)

I consistency with hinge loss is proved even when the classifier’s
prediction set is restricted (Kitagawa et al., 2021)

Then bound on R̄ and thus bound on R can be obtained
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Numerical Illustrations

Q: How policies differ across PM’s criteria esp. when the QoTE is
partially identified?

Data-generating process:

I Draw (Y1,Y0) (or (logY1, logY0)) from N(µ,Σ) with
µ = (µ1, µ0)′ and

Σ =

[
σ1 ρ10

√
σ0σ1

ρ10
√
σ0σ1 σ0

]
I Draw D from Bernoulli(0.5)

I Generate Y = DY1 + (1− D)Y0

Note: Y1|Y0 ∼ N(µ1 + ρ10σ1Z0, (1− ρ2σ1)) where Z0 = Y0−µ0
σ0

I thus SI holds when ρ10 ≥ 0 (similarly for log-normal case)
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Numerical Illustrations

When D is unrestricted, the true optimal policies are:

I δ∗ = 1{Qτ (Y1 − Y0) > 0}
• e.g., Qτ (Y1 − Y0) = µ1 − µ0 + Φ−1(τ)

√
σ2

1 + σ2
0 − 2ρ10σ1σ0

I δ∗QTE = 1{Qτ (Y1)− Qτ (Y0) > 0}
• e.g., Qτ (Y1)− Qτ (Y0) = µ1 − µ0 + Φ−1(τ)(σ1 − σ0)

I δ∗ATE = 1{E [Y1 − Y0] > 0}
• e.g., E [Y1 − Y0] = µ1 − µ0

I they are first best for both deterministic and stochastic policies

I under normality and SI, if 0 < τ < 0.5, we have...
• Qτ (Y1 − Y0) < Qτ (Y1)− Qτ (Y0) and

• Qτ (Y1 − Y0) < E (Y1)− E (Y0)

For brevity, let Qτ ≡ Qτ (Y1 − Y0)



Numerical Illustrations
Unlike δ∗QTE and δ∗ATE , recall obtaining δ

∗ ≡ δ∗QoTE involves model
uncertainty:

I for deterministic policy:

δ∗mmr =


1{|QU

τ | ≥ |QL
τ |} if QL

τ < 0 < QU
τ

1 if QL
τ ≥ 0

0 if QU
τ ≤ 0

I for stochastic policy:

δ∗mmr ∼


Bernoulli

(
QU

QU−QL

)
if QL

τ < 0 < QU
τ

1 if QL
τ ≥ 0

0 if QU
τ ≤ 0

In simulation, QL
τ and QU

τ are calculated under...

I no assumption (i.e., Makarov bounds) or Assumption SI



Numerical Illustrations

For δ∗mmr , δ
∗
QTE and δ∗ATE , we estimate δ̂∗, δ̂∗QTE and δ̂∗ATE

I by estimating QU
τ , Q

L
τ , Qτ (Yd), and E [Yd ] (d = 0, 1) using

the generated experimental data

For TE ∈ {QoTE ,QTE ,ATE}, (recalling δ∗ ≡ δ∗QoTE )

I misclassification error: EPn [1{δ̂TE 6= δ∗TE}]

I regret: EPn [|TE | · 1{δ̂TE 6= δ∗TE}]

We focus on τ = 0.25



Numerical Results: Correct Classification Rate (n = 50)

δ̂SI ,stoch δ̂stoch δ̂SI ,determ δ̂determ δ̂QTE δ̂ATE

Subgroup 1 (0 is not contained)

δ∗ 100% 100% 100% 100% 33.5% 93%

δ∗QTE 0% 0% 0% 0% 66.5% 7%

δ∗ATE 100% 100% 100% 100% 33.5% 93%

Subgroup 2 (0 is not contained)

δ∗ 92% 90% 90.5% 94% 1% 17%

δ∗QTE 8% 10% 9.5% 6% 99% 83%

δ∗ATE 8% 10% 9.5% 6% 99% 83%



Numerical Results: Correct Classification Rate (n = 50)
δ̂SI ,stoch δ̂stoch δ̂SI ,determ δ̂determ δ̂QTE δ̂ATE

Subgroup 3 (0 is contained)

δ∗ 79% 51% 84% 62% 99.5% 100%

δ∗QTE 79% 51% 84% 62% 99.5% 100%

δ∗ATE 79% 51% 84% 62% 99.5% 100%

Subgroup 4 (0 is contained)

δ∗ 26% 49.5% 14.5% 44% 1.5% 0.5%

δ∗QTE 74% 50.5% 85.5% 56% 98.5% 99.5%

δ∗ATE 74% 50.5% 85.5% 56% 98.5% 99.5%

Subgroup 5 (0 is contained, SI false)

δ∗ 82% 81% 83% 93.5% 66.5% 4%

δ∗QTE 82% 81% 83% 93.5% 66.5% 4%

δ∗ATE 18% 19% 17% 6.5% 33.5% 96%

Subgroup 6 (0 is contained, SI false)

δ∗ 43% 61.5% 40% 61% 24% 0%

δ∗QTE 57% 38.5% 60% 39% 76% 100%

δ∗ATE 57% 38.5% 60% 39% 76% 100%



Numerical Results: Correct Classification Rate (n = 50)

δ̂SI ,stoch δ̂stoch δ̂SI ,determ δ̂determ δ̂QTE δ̂ATE

Subgroup 8 (log normal, SI excludes 0)

δ∗ 95.5% 68% 95.5% 73% 100% 76.5%

δ∗QTE 95.5% 68% 95.5% 73% 100% 76.5%

δ∗ATE 4.5% 32% 4.5% 28% 0% 23.5%



Numerical Results: Correct Classification Rate (n = 1000)

δ̂SI ,stoch δ̂stoch δ̂SI ,determ δ̂determ δ̂QTE δ̂ATE

Subgroup 1 (0 is not contained)

δ∗ 100% 100% 100% 100% 0% 100%

δ∗QTE 0% 0% 0% 0% 100% 0%

δ∗ATE 100% 100% 100% 100% 0% 100%

Subgroup 2 (0 is not contained)

δ∗ 100% 99% 100% 100% 0% 0%

δ∗QTE 0% 1% 0% 0% 100% 100%

δ∗ATE 0% 1% 0% 0% 100% 100%



Numerical Results: Correct Classification Rate (n = 1000)
δ̂SI ,stoch δ̂stoch δ̂SI ,determ δ̂determ δ̂QTE δ̂ATE

Subgroup 3 (0 is contained)

δ∗ 89% 59% 100% 95% 100% 100%

δ∗QTE 89% 59% 100% 95% 100% 100%

δ∗ATE 89% 59% 100% 95% 100% 100%

Subgroup 4 (0 is contained)

δ∗ 21% 43% 0% 20% 0% 0%

δ∗QTE 79% 57% 100% 80% 100% 100%

δ∗ATE 79% 57% 100% 80% 100% 100%

Subgroup 5 (0 is contained, SI false)

δ∗ 92% 74% 100% 100% 100% 0%

δ∗QTE 92% 74% 100% 100% 100% 0%

δ∗ATE 8% 26% 0% 0% 0% 100%

Subgroup 6 (0 is contained, SI false)

δ∗ 34% 48% 6.5% 86% 0% 0%

δ∗QTE 66% 52% 93.5% 14% 100% 100%

δ∗ATE 66% 52% 93.5% 14% 100% 100%



Numerical Results: Correct Classification Rate (n = 1000)

δ̂SI ,stoch δ̂stoch δ̂SI ,determ δ̂determ δ̂QTE δ̂ATE

Subgroup 8 (log normal, SI excludes 0)

δ∗ 100% 60% 100% 97% 100% 70.5%

δ∗QTE 100% 60% 100% 97% 100% 70.5%

δ∗ATE 0% 40% 0% 3% 0% 29.5%



Application I: Allocations of Right Heart Catheterization
We consider the right heart catheterization (RHC) (e.g., Hirano &
Imbens 02)

I D: RHC (1 if received and 0 otherwise), a diagnostic
procedure for critically ill patients

I Y : number of days from admission to death within 30 days

Studies like Connors et al. 21 found that patient survival is lower with
RHC than without

I therefore, relevant policy question is to find patients for whom
allocating (or avoiding!) RHC is life-saving

In the dataset, 5735 patients are divided into a treatment group
(2184 patients) and a control group (3551 patients)

I X: age, sex, coma, DNR status, est’ed survival rate, ICU
mortality score



Application I: Allocations of Right Heart Catheterization

Figure: Bounds on the QoTE of Six Representative Patients (τ = 0.25)



Application II: Allocations of Job Training

We consider the National Job Training Partnership Act (JTPA)
Study (Bloom et al. 97, Abadie et al. 02, Kitagawa & Tetenov 18)

We use a subset that includes 9,223 adults; 6,133 received job
training, while 3,090 did not

I D: job training

I Y : 30-month earnings after job training

I X : sex, years of education, high school diploma, previous
earnings

Q: how do prudent/negligent policies look like, relative to e.g.
utilitarian policy?



Application II: Allocations of Job Training

Figure: Bounds on the QoTE of Six Representative Workers (τ = 0.25)



Application II: Allocations of Job Training

(a) τ = 0.25 (b) τ = 0.5 (c) τ = 0.75

(d) 0.25-QTE (e) 0.5-QTE (f) 0.75-QTE (g) ATE

Figure: Decisions for Female Workers Without High School Diploma



Concluding Remarks

The paper...

I proposes optimal allocation decisions

I under welfare gain defined by quantile of treatment effects

I that can also be motivated by vote shares;

I considers ambiguity-robust decisions;

I provides theoretical guarantee by calculating regret bounds;

I proposes a range of identifying assumptions

Extensions:

I interquartile range as equity target for an egalitarian PM
• Kitagawa & Tetenov 21

I E [Y1 − Y0|Y0 < c] as alternative prioritarian objective



Thank You! ,



Rectangular Identified Set

Consider X ∈ {0, 1}

REC imposes that

{(Qτ (0),Qτ (1)) : Qτ (x) ∈ [QL
τ (x),QU

τ (x)], x ∈ {0, 1}}

is rectangular

Then

min
FY1,Y0|X

E [δ(X )Qτ (X )] = min [p1δ(1)Qτ (1) + p0δ(0)Qτ (0)]

= p1δ(1) minQτ (1) + p0δ(0) minQτ (0)

= p1δ(1)QL
τ (1) + p0δ(0)QL

τ (0)

= E [δ(X ) minQτ (X )]

Return


