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a b s t r a c t

We develop an empirical framework to identify and estimate the effects of treatments
on outcomes of interest when the treatments are the result of strategic interaction (e.g.,
bargaining, oligopolistic entry, peer effects). We consider a model where agents play a
discrete game of complete information and strategic substitutability, whose equilibrium
actions (i.e., binary treatments) determine a post-game outcome in a nonseparable
model with endogeneity. Due to the simultaneity in the first stage, the model as a whole
is incomplete and the selection process fails to exhibit the conventional monotonicity.
Without imposing parametric restrictions or large support assumptions, this poses
challenges in recovering treatment parameters. To address these challenges, we establish
a monotonic pattern of the equilibria in the first-stage game in terms of the number of
treatments selected. Based on this finding, we derive bounds on the average treatment
effects (ATE’s) under nonparametric shape restrictions and the existence of excluded
exogenous variables. We show that the instrument variation that compensates strategic
substitution helps solve the multiple equilibria problem. We apply our method to data
on airlines and air pollution in cities in the U.S. We find that (i) the causal effect of each
airline on pollution is positive, and (ii) the effect is increasing in the number of firms
but at a decreasing rate.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

We develop an empirical framework to identify and estimate the heterogeneous effects of treatments on outcomes
f interest, where the treatments are the result of agents’ strategic interaction (e.g., bargaining, oligopolistic entry,
ecisions in the presence of peer effects or strategic effects). Treatments are determined as an equilibrium of a game
nd these strategic decisions of players endogenously affect common or player-specific outcomes. For example, one may
e interested in the effects of entry of newspapers on local political behavior, entry of carbon-emitting companies on
ocal air pollution and health outcomes, the presence of potential entrants in nearby markets on pricing or investment
ecisions of incumbents, the exit decisions of large supermarkets on local health outcomes, or the provision of limited
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esources when individuals make participation decisions under peer effects and their own gains from the treatment.1
s reflected in some of these examples, our framework allows us to study the externalities of strategic decisions, such as
ocietal outcomes resulting from firm behavior. Ignoring strategic interaction in the treatment selection process may lead
o biased, or at least less informative, conclusions about the effects of interest.

We consider a model in which agents play a discrete game of complete information and strategic substitutability, whose
quilibrium actions (i.e., a profile of binary endogenous treatments) determine a post-game outcome in a nonseparable
odel with endogeneity. We are interested in the various treatment effects of this model. In recovering these parameters,

he setting of this study poses several challenges. First, the first-stage game posits a structure in which binary dependent
ariables are simultaneously determined in threshold crossing models, thereby, making the model, as a whole, incomplete.
his is related to the problem of multiple equilibria in the game. Second, due to this simultaneity, the selection process
or each treatment in the profile does not exhibit the conventional monotonic property à la Imbens and Angrist (1994).
urthermore, we want to remain flexible with other components of the model. That is, we make no assumptions on the
oint distributions of the unobservables nor parametric restrictions on the players’ payoff functions and how treatments
ffect the outcome. In addition, we do not impose any arbitrary equilibrium selection mechanism to deal with the
ultiplicity of equilibria, nor require that players be symmetric. In nonparametric models with multiplicity and/or
ndogeneity, identification may be achieved using excluded instruments with large support. Although such a strong
equirement can be met in practice, estimation and inference can still be problematic (Andrews and Schafgans, 1998;
han and Tamer, 2010). Thus, we avoid such assumptions for instruments and other exogenous variables.
The first contribution of this study is to establish that under strategic substitutability, regions that predict the equilibria

f the treatment selection process in the first-stage game can present a monotonic pattern in terms of the number of
reatments selected.2 The second contribution of this study is to show, after restoring the generalized monotonicity in
he selection process, how the model structure and the data can provide information about treatment parameters, such
s the average treatment effects (ATE’s). We first establish the bounds on the ATE and other related parameters with
ossibly discrete instruments. We also show that tighter bounds on the ATE can be obtained by introducing (possibly
iscrete) exogenous variables excluded from the first-stage game. This is especially motivated when the outcome variable
s affected by externalities generated by the players. We can derive sharp bounds as long as the outcome variable is binary.
o deal with the multiple equilibria problem, we assume that instruments vary sufficiently to offset the effect of strategic
ubstitutability. We provide a simple testable implication for the existence of such instrument variation in the case of
utually independent payoff unobservables. This requirement on variation is qualitatively different and substantially
eaker than a typical large support assumption. A marked feature of our analyses is that for the sharp bounds on the
TE, player-specific instruments are not necessary.
Partial identification in single-agent nonparametric triangular models with binary endogenous variables has been

tudied in Shaikh and Vytlacil (2011) and Chesher (2005), among others. Shaikh and Vytlacil (2011) provide bounds on
he ATE in this setting. In a more general model, Vytlacil and Yildiz (2007) achieve point identification with an exogenous
ariable that is excluded from the selection equation and has a large support. Our bound analysis builds on these papers,
ut we allow for multi-agent strategic interaction as a key component of the model. Some studies have extended a single-
reatment model to a multiple-treatment setting (e.g., Heckman et al. (2006) and Jun et al. (2011)), but their models
aintain monotonicity in the selection process and none of them allow simultaneity among the multiple treatments

esulting from agents’ interaction, as we do in this study.
In interesting recent work, Heckman and Pinto (2018), and Lee and Salanié (2018) extend the monotonicity of the

election process in multi-valued treatments settings. Lee and Salanié (2018) consider more general non-monotonicity
han Heckman and Pinto (2018) and do mention entry games as one example of the treatment selection processes they
llow. However, they assume known payoffs and bypass the multiplicity of equilibria by assuming a threshold-crossing
quilibrium selection mechanism, both of which we do not assume in this study. In addition, Lee and Salanié (2018)’s
ocus is on the identification of marginal treatment effects with continuous instruments. In another related work, Chesher
nd Rosen (2017) consider a wide class of generalized instrumental variable models in which our model may fall
nd propose a systematic method of characterizing sharp identified sets for admissible structures. This present study’s
haracterization of the identified sets is analytical, which help investigate how the identification is related to exogenous
ariation in the model and to the equilibrium characterization in the treatment selection. Also, calculating the bounds
n the treatment parameters using their approach involves projections of identified sets that may require parametric
estrictions. Lastly, Han (2021, 2022) considers identification of dynamic treatment effects and optimal treatment regimes
n a nonparametric dynamic model, in which the dynamic relationship causes non-monotonicity in the determination of
ach period’s outcome and treatment.
Without triangular structures, Manski (1997), Manski and Pepper (2000) and Manski (2013) also propose bounds on

he ATE with multiple treatments under various monotonicity assumptions, including an assumption on the sign of the
reatment response. We take an alternative approach that is more explicit about treatments interaction while remaining

1 The entry and pollution is our leading example introduced in Section 2; the other examples are discussed in detail in Appendix A.
2 To estimate payoff parameters, Berry (1992) partly characterizes equilibrium regions. To calculate the bounds on these parameters, Ciliberto and

Tamer (2009) simulate their moment inequalities model that are implied by the shape of these regions, especially the regions for multiple equilibria.
While their approaches are sufficient for their analyses, full analytical results are critical for the identification analysis in this current study.
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gnostic about the direction of the treatment response. Our results suggest that provided there exist exogenous variation
xcluded from the selection process, the bounds calculated from this approach can be more informative than those from
heir approach.

Identification in models for binary games with complete information has been studied in Tamer (2003), Ciliberto and
amer (2009), and Bajari et al. (2010), among others.3 This present study contributes to this literature by considering an
valuation problem with treatments generated by binary games and post-game outcomes that are often not of players’
irect concern. As related work that considers post-game outcomes, Ciliberto et al. (2021) introduce a model in which
irms make simultaneous decisions of entry and pricing upon entry. Consequently, their model can be seen as a multi-
gent extension of a sample selection model. On the other hand, the model considered in this study is a multi-agent
xtension of a model for endogenous treatments. As counterfactual policy analyses are the main goal, Ciliberto and
amer (2009) and Ciliberto et al. (2021) recover model primitives as their parameters of interest and impose parametric
ssumptions. In contrast, our parameters of interest are treatment effects as functionals of the primitives (but excluding
he game parameters), and thus, allow our model to remain essentially nonparametric. In addition, a different approach
o partial identification under multiplicity is employed, as their approach is not applicable to the particular setting of this
tudy even if we are willing to assume a known distribution for the unobserved payoff types.
To demonstrate the applicability of our method, we take the bounds we propose to data on airline market structure

nd air pollution in cities in the U.S. Aircrafts and airports land operations are a major source of emissions, and thus,
uantifying the causal effect of air transport on pollution is of importance to policy makers. We explicitly allow the
arket structure to be determined endogenously as the outcome of an entry game. We do not impose any structure on
ow airline competition affects pollution and allow for heterogeneous effects across firms. To implement our application,
e combine data from two sources. The first contains airline information from the Department of Transportation, which
e use to construct a dataset of airlines’ presence in each market. We then merge it with air pollution data in each
irport from air monitoring stations compiled by the Environmental Protection Agency. In our preferred specification, our
utcome variable is a binary measure of the level of particulate matter in the air.
We consider three sets of ATE exercises to investigate different aspects of the relationship between market structure

nd pollution. The first quantifies the effects of each airline operating as a monopolist compared to a situation in which
he market is not served by any airline. We find that the effect of each airline on pollution is positive and statistically
ignificant and that the effect is heterogeneous across airlines. The second set of exercises examines the ATE’s of all
otential market structures on pollution. We find that the probability of high pollution is increasing with the number
f airlines in the market, but at a decreasing rate. Finally, the third set of exercises quantifies the ATE of a single airline
nder all potential configurations of the market. We observe that in all cases, Delta entering a market has a positive effect
n pollution and this effect is decreasing with the number of rivals. The results from the last two set of exercises are
onsistent with the results of a Cournot oligopolistic model in which incumbents accommodate new entrants by reducing
he quantity they produce.

This paper is organized as follows. Section 2 summarizes the analysis of this study using a stylized example. Section 3
resents a general theory. Section 3.1 introduces the model and the parameters of interest; Section 3.2 presents the
eneralized monotonicity for equilibrium regions for many players; and Section 3.4 delivers the partial identification
esults of this study. Section 4 the empirical application on airlines and pollution. In Appendix A provides more examples
o which our setup can be applied. Appendix B presents a numerical illustration. Appendix C contains discussions and
our extensions of our main results. Appendix D provides formal definition of the regions of equilibria. Finally, the Online
upplemental Appendix collects the proofs of all theorems and lemmas and further descriptions of the data used in the
pplication.

. A stylized example

We first illustrate the main results of this study with a stylized example. Suppose we are interested in the effects of
irline competition on local air quality (or health). Let Yi denote the binary indicator of air pollution in market i. Only for

illustration, we assume there are two potential airlines. Let D1,i and D2,i be binary variables that indicate the decisions to
enter market i by Delta and United, respectively. We allow D1,i and D2,i to be correlated with unobserved characteristics of
the local market that affect Yi. Moreover, we allow D1,i and D2,i to be outcomes from multiple equilibria. The endogeneity
and the presence of multiple equilibria are our key challenges in this study.

Let Yi(d1, d2) be the potential air quality had Delta and United’s decisions been (D1,D2) = (d1, d2); for example, Yi(1, 1)
is the potential air quality from duopoly, Yi(1, 0) is with Delta being a monopolist, and so on. Let Xi be a vector of market
characteristics that affect Yi. Our parameter of interest is the ATE, E[Yi(d1, d2) − Yi(d′

1, d
′

2)|Xi = x], which captures the
effect of market structure on pollution. One interesting ATE is E[Yi(1, d2) − Yi(0, d2)|Xi = x] for each d2, where we can
learn the interaction effects of treatments, e.g., how much the average effect of Delta’s entry is affected by United’s entry:
E [Yi(1, 1) − Yi(0, 1)]−E [Yi(1, 0) − Yi(0, 0)] (suppressing Xi). In our empirical application (Section 4), we consider this and
other related parameters in a more realistic model, where there are more than two airlines.

3 See also Galichon and Henry (2011) and Beresteanu et al. (2011) for a more general setup that includes complete information games as an
example.
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Let Z1,i and Z2,i be cost shifters for Delta and United, respectively, which serve as instruments. As a benchmark, we
irst consider naive bounds analogous to Manski (1990) using excluded instruments which satisfy

Yi(d1, d2) ⊥ (Z1,i, Z2,i)|Xi (2.1)

or all (d1, d2). To simplify notation, we suppress the index i henceforth, let D ≡ (D1,D2) and Z ≡ (Z1, Z2), and write
[·|w] ≡ E[·|W = w] for a generic r.v. W . As an illustration, we focus on calculating bounds on E[Y (1, 1)|X = x]. Note
hat

E[Y (1, 1)|x] = E[Y (1, 1)|z, x] = E[Y |D = (1, 1), z, x] Pr[D = (1, 1)|z, x]

+

∑
d′ ̸=(1,1)

E[Y (1, 1)|D = d ′, z, x] Pr[D = d ′
|z, x], (2.2)

here the first equality is by (2.1). Manski-type bounds can be obtained by observing that the counterfactual term
[Y (1, 1)|D = d ′, z, x] = Pr[Y (1, 1) = 1|D = d ′, z, x] is bounded above by one and below by zero. By further using
he variation in Z , which is excluded from Y (1, 1), the lower and upper bounds on E[Y (1, 1)|x] can be written as

LManski(x) ≡ sup
z∈Z

Pr[Y = 1,D = (1, 1)|z, x],

UManski(x) ≡ inf
z∈Z

{Pr[Y = 1,D = (1, 1)|z, x] + 1 − Pr[D = (1, 1)|z]} .

The goal of our analysis is to derive tighter bounds than LManski(x) and UManski(x) by introducing further assumptions
motivated by economic theory.

To illustrate, we introduce the following semi-triangular model with linear indices. From the next section, we
generalize this model and introduce fully nonparametric models that allow continuous Y . Consider

Y = 1[µ1D1 + µ2D2 + βX ≥ ϵ], (2.3)

D1 = 1[δ2D2 + γ1Z1 ≥ U1], (2.4)

D2 = 1[δ1D1 + γ2Z2 ≥ U2], (2.5)

where (ϵ,U1,U2) are continuously distributed unobservables that can be arbitrarily correlated, (U1,U2) are uniform, and
assume

(ϵ,U1,U2) ⊥ (Z1, Z2)|X, (2.6)

δ1 < 0 and δ2 < 0, (2.7)

sgn(µ1) = sgn(µ2). (2.8)

Note that (2.6) replaces (2.1), (2.7) assumes strategic substitutability, and (2.8) is plausible in the current example of air
quality and entry. Owing to the first stage simultaneity, (2.4)–(2.5), the model is incomplete, i.e., the model primitives
and the covariates do not uniquely predict (Y ,D). In this model, we are not interested in the players’ payoff parameters
(δ−s, γs) for s = 1, 2, individual parameters (µ1, µ2, β) that generate the outcome, nor distributional parameters. Instead,
we are interested in the ATE as a function of (µ1, µ2, β). This is in contrast to Ciliberto et al. (2021), where payoff and
pricing parameters are direct parameters of interest, and thus, our identification question and strategy (especially how
we deal with multiple equilibria) are different from theirs.

For two realizations z, z ′ of Z , say low and high entry cost for both airlines, define

h(z, z ′, x) ≡ Pr[Y = 1|z, x] − Pr[Y = 1|z ′, x], (2.9)

hd(z, z ′, x) ≡ Pr[Y = 1,D = d|z, x] − Pr[Y = 1,D = d|z ′, x] (2.10)

for d ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} ≡ D. We show that (2.9)–(2.10) recover useful information about the outcome index
function (µ1D1 + µ2D2 + βX), which in turn is helpful in constructing bounds on the ATE. Note that

h(z, z ′, x) = h11(z, z ′, x) + h10(z, z ′, x) + h01(z, z ′, x) + h00(z, z ′, x)
= Pr[Y = 1,D = (1, 1)|z, x] − Pr[Y = 1,D = (1, 1)|z ′, x]
+ Pr[Y = 1,D = (1, 0)|z, x] − Pr[Y = 1,D = (1, 0)|z ′, x]
+ Pr[Y = 1,D = (0, 1)|z, x] − Pr[Y = 1,D = (0, 1)|z ′, x]

+ Pr[Y = 1,D = (0, 0)|z, x] − Pr[Y = 1,D = (0, 0)|z ′, x], (2.11)

where D = (1, 0) and (0, 1) are the airlines’ decisions that may arise as multiple equilibria. The increase in cost (from z to
z ′) will make the operation of these airlines less profitable in some markets, depending on the values of the unobservables
U = (U1,U2). This will result in a change in the market structure in those markets. Specifically, markets ‘‘on the margin’’
may experience one of the following changes in structure as cost increases: (a) from duopoly to Delta-monopoly; (b) from
duopoly to United-monopoly; (c) from Delta-monopoly to no entrant; (d) from United-monopoly to no entrant; and (e)
735
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Fig. 1. Change in equilibrium regions with compensating strategic substitutability.

rom duopoly to no entrant. These changes are depicted in Fig. 1, where each Rd1,d2 (z) denotes the maximal region that
predicts (d1, d2), given Z = z .4

These changes (a)–(e) are a consequence of the monotonic pattern of equilibrium regions, which is formally established
in Theorem 3.1 of Section 3.2.

In general, besides these five scenarios, there may be markets that used to be Delta-monopoly but become United-
monopoly and vice versa, i.e., markets that exhibit non-monotonic behaviors; see Appendix C.2 for details. Owing to
possible multiple equilibria, we are agnostic about these latter types of changes except in extreme cases (i.e., one
equilibrium is selected with probability one). We generally do not know the equilibrium selection mechanism in play,
much less about how such mechanism changes as cost Z changes. The key idea in this study is to overcome the non-
monotonicity by shifting the cost sufficiently so that there is no market that switches from one monopoly to another.
We show that the shift in cost that compensates the strategic substitutability does just that, as is depicted in Fig. 1.
In this figure, we assume δ2 + γ1z1 > γ1z ′

1 and δ1 + γ2z2 > γ2z ′

2. In other words, we assume compensating strategic
substitutability:

⏐⏐γs(z ′
s − zs)

⏐⏐ ≥ |δ−s| for s = 1, 2. Importantly, we do not require infinite variation in Z .5 In fact, we show
that the compensating strategic substitutability is implied by the following condition, which can be tested using the data:
there exist z, z ′

∈ Z such that Pr[D = (1, 1)|z] + Pr[D = (0, 0)|z ′
] > 2 −

√
2. Suppose z, z ′ satisfy the compensating

trategic substitutability. Then, by (2.6), we can derive from (2.11) that (suppressing X = x for simplicity)

h(z, z ′) = Pr[ϵ ≤ µ1 + µ2,U ∈ ∆a ∪ ∆b ∪ ∆e]

− Pr[ϵ ≤ µ1,U ∈ ∆a] + Pr[ϵ ≤ µ1,U ∈ ∆c]

− Pr[ϵ ≤ µ2,U ∈ ∆b] + Pr[ϵ ≤ µ2,U ∈ ∆d]

− Pr[ϵ ≤ 0,U ∈ ∆c ∪ ∆d ∪ ∆e], (2.12)

where ∆i (i ∈ {a, . . . , e}) are disjoint and each ∆i characterizes those markets on the margin described above: ∆a
corresponds to the set of U ’s that experience (a), ∆b corresponds to (b), and so on. Once (2.12) is derived, it is easy
to see that

sgn{h(z, z ′, x)} = sgn(µ1) = sgn(µ2), (2.13)

which is formally shown in Lemma 3.1(i). See Section 1.3 in the Appendix for a proof in this specific two-player case, which
simplifies the general proof. The result (2.13) is helpful for our bound analysis. Again, focus on E[Y (1, 1)|x] and suppose
h(z, z ′, x) > 0. Then, µ1 > 0 and µ2 > 0, and thus, we can derive the lower bound on, e.g., E[Y (1, 1)|D = (1, 0), z, x] in
(2.2) as

E[Y (1, 1)|D = (1, 0), z, x] = Pr[ϵ ≤ µ1 + µ2 + βx|D = (1, 0), z, x]

≥ Pr[ϵ ≤ µ1 + βx|D = (1, 0), z, x] (2.14)
= E[Y |D = (1, 0), z, x],

which is larger than zero, the previous naive lower bound. Similarly, we can calculate the lower bounds on all
E[Y (1, 1)|D = d, z, x] for d ̸= (1, 1). Consequently, by (2.2), we have E[Y (1, 1)|x] ≥ Pr[Y = 1|z, x], i.e., the lower bound
on E[Y (1, 1)|x] is

L̃(x) ≡ sup
z

Pr[Y = 1|z, x].

4 See Appendix D in the Appendix for a formal definition. The figure is drawn in a way that γ1 and γ2 are negative.
5 Of course, changing each Zs from −∞ to ∞ will trivially achieve our requirement of having no market that switches from one monopoly to
nother.
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ote that L̃(x) ≥ LManski(x). In this case, Ũ(x) = UManski(x). In Section 3.4, we show that L̃(x) and Ũ(x) are sharp under
2.3)–(2.8).

We can further tighten the bounds if we have exogenous variables that are excluded from the entry decisions (i.e., from
he D1 and D2 equations). The existence of such variables is not necessary but helpful in tightening the bounds, and can
e motivated by the notion of externalities. That is, there can exist factors that affect Y but do not enter the players’
irst-stage payoff functions. Modify (2.6) and assume

(ϵ,U1,U2) ⊥ (Z1, Z2, X), (2.15)

here conditioning on other (possibly endogenous) covariates is suppressed. Here, Xi can be the characteristics of the local
market that directly affect pollution or health levels, such as weather shocks or the share of pollution-related industries
in the local economy. We assume that conditional on other covariates, these factors affect the outcome but the airlines
do not take them into account in their decisions.

To exploit the variation in X (in addition to the variation in Z), let (x, x̃, ˜̃x) be (possibly different) realizations of X , and
efine

h̃(z, z ′, x, x̃, ˜̃x) ≡ h00(z, z ′, x) + h10(z, z ′, x̃) + h01(z, z ′, x̃) + h11(z, z ′, ˜̃x). (2.16)

nder (2.15) and analogous to (2.13), we can show that if

sgn{h̃(z, z ′, x′, x′, x)} = sgn(−µ1) = sgn(−µ2) (2.17)

s positive (negative), then sgn{µ1 + β(x − x′)} = sgn{µ2 + β(x − x′)} is positive (negative). This is formally shown in
emma 3.1(ii).
As before, suppose h(z, z ′, x) > 0, and thus, µ1 > 0 and µ2 > 0 by (2.13). Now, if h̃(z, z ′, x′, x′, x) < 0, then

µ1 + βx < βx′ and µ2 + βx < βx′. Therefore, we can derive

E[Y (1, 1)|D = (1, 0), z, x] = Pr[ϵ ≤ µ1 + µ2 + βx|D = (1, 0), z, x]
≤ Pr[ϵ ≤ µ1 + βx′

|D = (1, 0), z, x′
]

= Pr[Y = 1|D = (1, 0), z, x′
],

where the second equality also uses (2.15) and (2.4)–(2.5). Similarly, we have E[Y (1, 1)|D = (0, 1), z, x] ≤ Pr[Y = 1|D =

(0, 1), z, x′
], and consequently, the upper bound on E[Y (1, 1)|x] becomes

U(x) ≡ inf
z∈Z

{
Pr[Y = 1,D = (1, 1)|z, x] + Pr[Y = 1,D ∈ {(1, 0), (0, 1)}|z, x′

] + Pr[D = (0, 0)|z, x]
}

by (2.2), and the lower bound is L(x) = L̃(x). Note that we can further take infimum over x′ such that h̃(z, z ′, x′, x′, x) < 0.
To summarize our illustration, our lower and upper bounds, L(x) and U(x), on E[Y (1, 1)|x] achieve

L(x) = L̃(x) ≥ LManski(x),

U(x) ≥ Ũ(x) = UManski(x),

where the inequalities are strict if
∑

d ̸=(1,1) Pr[Y = 1,D = d|z, x] > 0 and Pr[Y = 0,D ∈ {(1, 0), (0, 1)}|z, x′
] > 0.

Similarly, we can derive lower and upper bounds on other E[Y (d)|x]’s for d ̸= (1, 1), and eventually construct bounds on
any ATE. The gain from our approach is also exhibited in Fig. 5 in Appendix B, where we use the same data generating
process as in this section and calculate different bounds on the ATE, E[Y (1, 1)|x] − E[Y (0, 0)|x].

3. General theory

3.1. Setup

Let D ≡ (D1, . . . ,DS) ∈ D ⊆ {0, 1}S be an S-vector of observed binary treatments and d ≡ (d1, . . . , dS) be its realization,
where S is fixed. We assume that D is predicted as a pure strategy Nash equilibrium of a complete information game with
S players who make entry decisions or individuals who choose to receive treatments. Let Y be a scalar observed post-game
outcome that results from profile D of endogenous treatments. It can be an outcome common to all players or an outcome
specific to each player. Let (X, Z1, . . . , ZS) be observed exogenous covariates. We consider a model of a semi-triangular
system:

Y = θ (D, X, ϵD), (3.1)

Ds = 1
[
νs(D−s, Zs) ≥ Us

]
, s ∈ {1, . . . , S}, (3.2)

where s is indices for players or interchangeably for treatments, and D−s ≡ (D1, . . . ,Ds−1,Ds+1, . . . ,DS). Without loss of
generality, we normalize the scalar Us to be distributed as Unif (0, 1), and νs

: RS−1+dzs → (0, 1] and θ : RS+dx+dϵ → R are
unknown functions that are nonseparable in their arguments. We allow the unobservables (ϵD,U1, . . . ,US) to be arbitrarily

dependent on one another. Although the notation suggests that the instruments Zs’s are player/treatment-specific, they
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re not necessarily required to be so for the analyses in this study; see Appendix C.4 for a discussion. The exogenous
ariables X are variables excluded from all the equations for Ds. The existence of X is not necessary but useful for the
ound analysis of the ATE. There may be covariates W common to all the equations for Y and Ds, which is suppressed for
uccinctness. Implied from the complete information game, player s’s decision Ds depends on the decisions of all others
−s in D−s, and thus, D is determined by a simultaneous system. The unit of observation, a market or geographical region,
s indexed by i and is suppressed in all the expressions.

ssumption P. A pure-strategy Nash equilibrium exists in (3.2).

This assumption is not innocuous but clarifies the definition of the treatment parameters. It may be possible to extend
he setup of this study to incorporate mixed strategies, following the argument in Ciliberto and Tamer (2009). This
xtension, however, will change the definition of the treatment parameters and thus the identification strategy. We leave
his as interesting future work.

The potential outcome of receiving treatments D = d can be written as

Y (d) = θ (d, X, ϵd), d ∈ D,

nd ϵD =
∑

d∈D 1[D = d]ϵd . We are interested in the ATE and related parameters. Using the average structural function
ASF) E[Y (d)|x], the ATE can be written as

E[Y (d) − Y (d ′)|x] = E[θ (d, x, ϵd) − θ (d ′, x, ϵd′ )], (3.3)

or d, d ′
∈ D. Another parameter of interest is E[Y (d) − Y (d ′)|D = d ′′, z, x] for d, d ′, d ′′

∈ D. This parameter is related
o the average treatment effect on the treated (ATT), but unlike the ATT or the treatment of the untreated in the single-
reatment case, d ′′ does not necessarily equal d or d ′ here. One might also be interested in the sign of the ATE, which in
his multi-treatment case is essentially establishing an ordering among the ASF’s.

As an example of the ATE, we may choose d = (1, . . . , 1) and d ′
= (0, . . . , 0) to measure the canceling-out effect or

ore general nonlinear effects. Another example would be choosing d = (1, d−s) and d ′
= (0, d−s) for given d−s, where

e use the notation d = (ds, d−s) by switching the order of the elements for convenience. Sometimes, we instead want to
ocus on learning about complementarity between two treatments, while averaging over the remaining S −2 treatments;
ee Appendix C.3.
In identifying these treatment parameters, suppose we attempt to recover the effect of a single treatment Ds in model

3.1)–(3.2) conditional on D−s = d−s, and then recover the effects of multiple treatments by transitively using these effects
f single treatments. This strategy is not valid since D−s is a function of Ds and also because of multiplicity. Therefore, the
pproaches in the literature with single-treatment, single-agent triangular models are not directly applicable.

.2. Monotonicity in equilibria

As an important step of the analysis, we establish that the equilibria of the treatment selection process in the first-
tage game present a monotonic pattern when the instruments move. Specifically, we consider the regions in the space
f the unobservables that predict equilibria and establish their monotonic pattern in terms of instruments. The analytical
haracterization of the equilibrium regions when there are more than two players (S > 2) can generally be complicated
Ciliberto and Tamer (2009, p. 1800)); however, under a mild uniformity assumption (Assumption M1), our result is
btained under strategic substitutability. Let Zs be the support of Zs. We make the following assumptions on the first-stage
onparametric payoff function for each s ∈ {1, . . . , S}.

ssumption SS. For every zs ∈ Zs, νs(d−s, zs) is strictly decreasing in each element of d−s.

ssumption M1. For any given zs, z ′
s ∈ Zs, either νs(d−s, zs) ≥ νs(d−s, z ′

s) ∀d−s ∈ D−s, or νs(d−s, zs) ≤ νs(d−s, z ′
s)

d−s ∈ D−s.

Assumption SS asserts that the agents’ treatment decisions are produced in a game with strategic substitutability. The
trictness of the monotonicity is not important for our purpose but convenient in making statements about the equilibrium
egions. In the language of Ciliberto and Tamer (2009), we allow for heterogeneity in the fixed competitive effects (i.e., how
ach of other entrants affects one’s payoff), as well as heterogeneity in how each player is affected by other entrants, which
s ensured by the nonseparability between d−s and zs in νs(d−s, zs); this heterogeneity is related to the variable competitive
ffects. Assumption M1 is required in this multi-agent setting, and the uniformity is across d−s. Note that this assumption
s weaker than a conventional monotonicity assumption that νs(d−s, zs) is either non-decreasing or non-increasing in zs
or all d−s. Assumption M1 is justifiable especially when zs is chosen to be of the same kind for all players. For example,
n an entry game, if zs is chosen to be each player’s cost shifters, the payoffs would decrease in their costs for any given
pponents.
As the first main result of this study, we establish the geometric property of the equilibrium regions. For j = 0, . . . , S,

et R (z) ⊂ U ≡ (0, 1]S denote the region that predicts all equilibria with j treatments selected or j entrants, defined as
j
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subset of the space of the entry unobservables U ≡ (U1, . . . ,US); see Appendix D for a formal definition. Then, define
he region of all equilibria with at most j entrants as

R≤j(z) ≡

j⋃
k=0

Rk(z).

lthough this region is hard to express explicitly in general, it has a simple feature that serves our purpose. For given j,
hoose zs, z ′

s ∈ Zs such that

Pr[D = (1, . . . , 1)|Z = (zs, z−s)] > Pr[D = (1, . . . , 1)|Z = (z ′

s, z−s)] (3.4)

or all s. This condition is to merely fix z, z ′ that change the joint propensity score, and the direction of change is without
loss of generality. Such z, z ′ exist by the relevance of the instruments, which is assumed below. Let Z be the support of
Z ≡ (Z1, . . . , ZS).

Theorem 3.1. Under Assumptions P, SS and M1 and for z, z ′
∈ Z that satisfy (3.4), we have

R≤j(z) ⊆ R≤j(z ′) ∀j. (3.5)

Theorem 3.1 establishes a generalized version of monotonicity in the treatment selection process. This theorem plays
a crucial role in calculating the bounds on the treatment parameters and in showing the sharpness of the bounds.6 It is
worth noting that although the monotonicity is restored for sets defined in terms of the number of entrants, the ATE we
recover is aware of the identity of entrants as shown below.

Remark 3.1. Strategic substitutability (Assumption SS) is important in obtaining the generalized monotonicity (Theo-
rem 3.1). With strategic complementarity, multiple equilibria occur among equilibria with different numbers of entrants,
and therefore the machinery used in our identification analysis no longer applies.

3.3. Main assumptions

To characterize the bounds on the treatment parameters, we make the following assumptions. Unless otherwise noted,
the assumptions hold for each s ∈ {1, . . . , S}.

Assumption IN. (X, Z) ⊥ (ϵd,U ) ∀d ∈ D.

Assumption E. The distribution of (ϵd,U ) has strictly positive density with respect to Lebesgue measure on RS+1
∀d ∈ D.

Assumption EX. For each d−s ∈ D−s, νs(d−s, Zs)|X is nondegenerate.

Assumptions IN, EX and all the following analyses can be understood as conditional on W , the common covariates in X
and Z = (Z1, . . . , ZS). Assumption EX is related to the exclusion restriction and the relevance condition of the instruments
Zs.

We now impose a shape restriction on the outcome function θ (d, x, ϵd) via restrictions on

ϑ(d, x; u) ≡ E[θ (d, x, ϵd)|U = u]

a.e. u. This restriction on the conditional mean is weaker than the one directly imposed on θ (d, x, ϵd). Let X be the support
of X . Recall that we use the notation d = (ds, d−s) by switching the order of the elements for convenience.

Assumption M. For every x ∈ X , either ϑ(1, d−s, x; u) ≥ ϑ(0, d−s, x; u) a.e. u ∀d−s ∈ D−s ∀s or ϑ(1, d−s, x; u) ≤

ϑ(0, d−s, x; u) a.e. u ∀d−s ∈ D−s ∀s. Also, Y ∈ [Y , Y ].

Assumption M holds in, but is not restricted to, the leading case of binary Y with a threshold crossing model that
satisfies uniformity.

Assumption M*. (i) θ (d, x, ϵd) = 1[µ(d, x) ≥ ϵd] where ϵd is scalar and Fϵd |U = Fϵd′ |U for any d, d ′
∈ D; (ii) for every

∈ X , either µ(1, d−s, x) ≥ µ(0, d−s, x) ∀d−s ∈ D−s ∀s or µ(1, d−s, x) ≤ µ(0, d−s, x) ∀d−s ∈ D−s ∀s.

Assumption M* implies Assumption M. The second statement in Assumption M is satisfied with binary Y .7 The first
tatement in Assumption M can be stated in two parts, corresponding to (i) and (ii) of Assumption M*: (a) for every

6 Relatedly, Berry (1992) derives the probability of the event that the number of entrants is less than a certain value, which can be written as
Pr[U ∈ R≤j(z)] using our notation. However, his result is not sufficient for our study and relies on stronger assumptions, such as restricting the
payoff functions to only depend on the number of opponents.
7 Another example would be when Y ∈ [0, 1], as in Example 1.
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and d−s, either ϑ(1, d−s, x; u) ≥ ϑ(0, d−s, x; u) a.e. u, or ϑ(1, d−s, x; u) ≤ ϑ(0, d−s, x; u) a.e. u; (b) for every x, each
inequality statement in (a) holds for all d−s. For an outcome function with a scalar index, θ (d, x, ϵd) = θ̃ (µ(d, x), ϵd),
part (a) is implied by ϵd = ϵd′ = ϵ (or more generally, Fϵd |U = Fϵd′ |U ) for any d, d ′

∈ D and E[θ̃ (t, ϵd)|U = u]

being strictly increasing (decreasing) in t a.e. u.8 Functions that satisfy the latter assumption include strictly monotonic
functions, such as transformation models θ̃ (t, ϵ) = r(t + ϵ) with r(·) being possibly unknown strictly increasing, or their
special case θ̃ (t, ϵ) = t + ϵ, allowing continuous dependent variables; and functions that are not strictly monotonic,
such as models for limited dependent variables, θ̃ (t, ϵ) = 1[t ≥ ϵ] or θ̃ (t, ϵ) = 1[t ≥ ϵ](t − ϵ). However, there
can be functions that violate the latter assumption but satisfy part (a). For example, consider a threshold crossing
model with a random coefficient: θ (d, x, ϵ) = 1[φ(ϵ)dβ⊤

≥ xγ ⊤
], where φ(ϵ) is nondegenerate. When βs ≥ 0, then

E[θ (1, d−s, x, ϵ) − θ (0, d−s, x, ϵ)|U = u] = Pr
[

xγ ⊤

βs+d−sβ⊤
−s

≤ φ(ϵ) ≤
xγ ⊤

d−sβ⊤
−s

|U = u
]
, and thus, nonnegative a.e. u, and vice

ersa. Part (a) also does not impose any monotonicity of θ in ϵd (e.g., ϵd can be a vector). It is worth noting that part (a)
s not consistent with the possibility that agents make treatment decisions by directly observing the potential outcomes
i.e., the structure of Roy models). For instance, Fϵd |U = Fϵd′ |U (for any d, d ′

∈ D) does not hold in Roy models, because Us
eeds to be a function of ϵd ’s (possibly for all d ∈ D) under the structure. However, ruling out this structure is consistent
ith the notion of externality we propose in this paper.
Part (b) of Assumption M imposes uniformity, as we deal with more than one treatment. Uniformity is required across

ifferent values of d−s and s. For instance, in the empirical application of this study, this assumption seems reasonable,
ince an airline’s entry is likely to increase the expected pollution regardless of the identity or the number of existing
irlines. On the other hand, in Example 1 in the Appendix regarding media and political behavior, this assumption may
ule out the ‘‘over-exposure’’ effect (i.e., too much media exposure diminishes the incumbent’s chance of being re-elected).
n any case, knowledge on the direction of the monotonicity is not necessary in this assumption, unlike Manski (1997)
r Manski (2013), where the semi-monotone treatment response is assumed for possible multiple treatments.
Lastly, we require that there exists variation in Z that offsets the effect of strategic substitutability. Similar as before,

sing the notation d−s = (ds′ , d−(s,s′)) where d−(s,s′) is d without sth and s′-th elements, note that Assumption SS can be
estated as νs(0, d−(s,s′), zs) > νs(1, d−(s,s′), zs) for every zs. Given this, we assume the following compensating strategic
substitutability.

Assumption EQ. There exist z, z ′
∈ Z , such that νs(0, d−(s,s′), z ′

s) ≤ νs(1, d−(s,s′), zs) ∀d−(s,s′) ∀s, s′.

For example, in an entry game with Zs being cost shifters, Assumption EQ may hold with z ′
s > zs ∀s. In this example,

players may become less profitable with an increase in cost from government regulation. In particular, players’ decreased
profits cannot be overturned by the market being less competitive, as one player is absent due to unprofitability. Recall
that Assumption EQ is illustrated in Fig. 1 with νs(0, z ′

s) = γsz ′
s < νs(1, zs) = δ−s + γszs for s = 1, 2. Assumption EQ is

key for our analysis. To see this, let RM
j (·) denote the region that predicts multiple equilibria with j treatments selected

or j entrants. In the proof of a lemma that follows, we show that Assumption EQ holds if and only if RM
j (z) ∩ RM

j (z ′) = ∅.
That is, we can at least ensure that there is no market where firms’ decisions change from one realization of multiple
equilibria to another realization of multiple equilibria with the same number of entrants. To the extent of our analysis,
this liberates us from concerns about a possible change in equilibrium selection when changing Z .9 Assumption EQ has a
simple testable sufficient condition, provided that the unobservables in the payoffs are mutually independent. Let d j

∈ Dj

denote an equilibrium profile with j treatments selected or j entrants, i.e., a vector of j ones and S − j zeros, where Dj is
a set of all equilibrium profiles with j treatments selected.

Assumption EQ*. There exist z, z ′
∈ Z , such that

Pr[D = d j
|z] + Pr[D = d j−2

|z ′
] > 2 −

√
2. (3.6)

or all d j
∈ Dj, d j−2

∈ Dj−2 and 2 ≤ j ≤ S.

When S = 2, the condition is stated as Pr[D = (1, 1)|z] + Pr[D = (0, 0)|z ′
] > 2 −

√
2. As is detailed in the proof,

this essentially restricts the sum of radii of two circular isoquant curves to be less than the length of the diagonal of U:
1 − Pr[D = (1, 1)|z]) + (1 − Pr[D = (0, 0)|z ′

]) <
√
2. This ensures the required variation in Assumption EQ.

Lemma 3.1. Under Assumption P, SS, M1, and Us ⊥ Ut for all s ̸= t, Assumption EQ* implies Assumption EQ.

The mutual independence of Us’s (conditional on W ) is useful in inferring the relationship between players’ interaction
and instruments from the observed choices of players. The intuition for the sufficiency of Assumption EQ* is as follows. As
long as there is no dependence in unobserved types, (3.6) dictates that the variation of Z is large enough to offset strategic
substitutability, because otherwise, the payoffs of players cannot move in the same direction, and thus, will not result
in the same decisions. The requirement of Z variation in (3.6) is significantly weaker than the large support assumption
invoked for an identification at infinity argument to overcome the problem of multiple equilibria.

8 A single-treatment version of the latter assumption appears in Vytlacil and Yildiz (2007) (Assumption A-4), which is weaker than assuming
θ̃ (t, ϵ) is strictly increasing (decreasing) a.e. ϵ; see Vytlacil and Yildiz (2007) for related discussions.
9 In Appendix C.5, we discuss an assumption, partial conditional symmetry, which can be imposed alternative to Assumption EQ.
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.4. Partial identification of the ATE

Under the above assumptions, we now present a generalized version of the sign matching results (2.13) and (2.17) in
ection 2. We need to introduce additional notation. For realizations x of X and z, z ′ of Z , define

h(z, z ′, x) ≡ E[Y |z, x] − E[Y |z ′, x], (3.7)

hdj (z, z
′, x) ≡ E[Y |D = d j, z, x] Pr[D = d j

|z]

− E[Y |D = d j, z ′, x] Pr[D = d j
|z ′

]. (3.8)

ince
∑S

j=0
∑

dj∈Dj Pr[D = d j
|·] = 1, h(z, z ′, x) =

∑S
j=0

∑
dj hdj (z, z

′, x). Let x̃ = (x0, . . . , xS) be an (S + 1)-dimensional
array of (possibly different) realizations of X , i.e., each xj for j = 0, . . . , S is a realization of X , and define

h̃(z, z ′, x̃) ≡

S∑
j=0

∑
dj∈Dj

hdj (z, z
′, xj).

For 1 ≤ k ≤ j, define a reduction of d j
= (dj1, . . . , d

j
S) as d j−k

= (dj−k
1 , . . . , dj−k

S ), such that dj−k
s ≤ djs ∀s. Symmetrically, for

1 ≤ k ≤ S− j, define an extension of d j as d j+k
= (dj+k

1 , . . . , dj+k
S ), such that dj+k

s ≥ djs ∀s. For example, given d2
= (1, 1, 0),

a reduction d1 is either (1, 0, 0) or (0, 1, 0) but not (0, 0, 1), a reduction d0 is (0, 0, 0), and an extension d3 is (1, 1, 1). As
seen from this example, a particular reduction and extension depends on the identity of entrants. Let D<(d j) and D>(d j)
be the set of all reductions and extensions of d j, respectively, and let D≤(d j) ≡ D<(d j)∪ {d j

} and D≥(d j) ≡ D>(d j)∪ {d j
}.

These sets will be used in expressing the bounds on the ATE. Recall ϑ(d, x; u) ≡ E[θ (d, x, ϵ)|U = u]. Now, we state the
main lemma of this section.

Lemma 3.2. In model (3.1)–(3.2), suppose Assumptions P, SS, M1, IN, E, EX and M hold, and h(z, z ′, x) and h(z, z ′, x̃) are
well-defined. For z, z ′ such that (3.4) and Assumption EQ hold, and for j = 1, . . . , S, it satisfies that
(i) sgn{h(z, z ′, x)} = sgn

{
ϑ(d j, x; u) − ϑ(d j−1, x; u)

}
a.e. u ∀d j−1

∈ D<(d j);
(ii) for ι ∈ {−1, 0, 1}, if sgn{h̃(z, z ′, x̃)} = sgn{−ϑ(dk, xk; u) + ϑ(dk−1, xk−1; u)} = ι ∀dk−1

∈ D<(dk) ∀k ̸= j (k ≥ 1), then
sgn{ϑ(d j, xj; u) − ϑ(d j−1, xj−1; u)} = ι a.e. u ∀d j−1

∈ D<(d j).

Parts (i) and (ii) parallel (2.13) and (2.17), respectively. Using Lemma 3.2, we can learn about the ATE. First, note that
the sign of the ATE is identified by Lemma 3.2(i), since E[Y (d)|x] = E[ϑ(d, x;U )]. Next, we establish the bounds on
E[Y (d j)|x] for given d j for some j = 0, . . . , S.

We first present the bounds using the variation in Z only, i.e., by using Lemma 3.2(i). To this end, we fix X = x and
suppress it in all relevant expressions. To gain efficiency we define the integrated version of h as

H(x) ≡ E
[
h(Z, Z ′, x)

⏐⏐(Z, Z ′) ∈ ZEQ ,j ∀j = 0, . . . , S − 1
]
, (3.9)

where ZEQ ,j is the set of (z, z ′) that satisfy (3.4) and Assumption EQ given j, and h(z, z ′, x) = 0 whenever it is not well-
defined. We focus on the case H(x) > 0; H(x) < 0 is symmetric and H(x) = 0 is straightforward. Using Lemma 3.2(i), one
can readily show that Ldj (x) ≤ E[Y (d j)|x] ≤ Udj (x) with

Udj (x) ≡ inf
z∈Z

{
Pr[Y = 1,D ∈ D≥(d j)|z, x] + Pr[D ∈ D\D≥(d j)|z, x]

}
, (3.10)

Ldj (x) ≡ sup
z∈Z

{
Pr[Y = 1,D ∈ D≤(d j)|z, x]

}
. (3.11)

We can simplify these bounds and show that they are sharp under the following assumption.

Assumption C. (i) µd(·) and νd−s (·) are continuous; (ii) Z is compact.

Under Assumption C, for given d j, there exist vectors z̄ ≡ (z̄1, . . . , z̄S) and z ≡ (z1, . . . , zS) that satisfy

z̄ = argmaxz∈Z maxd∈D≥(dj) Pr[D = d|z],
z = argminz∈Z mind∈D≥(dj) Pr[D = d|z]. (3.12)

he following is the first main result of this study, which establishes the sharp bounds on E[Y (d j)|x], where X = x is fixed
n the model.

heorem 3.2. Given model (3.1)–(3.2) with fixed X = x, suppose Assumptions P, SS, M1, IN, E, EX, M*, EQ and C hold. In
ddition, suppose H(x) is well-defined and H(x) ≥ 0. Then, the bounds Udj and Ldj in (3.10) and (3.11) simplify to

Udj (x) = Pr[Y = 1,D ∈ D≥(d j)|z̄, x] + Pr[D ∈ D\D≥(d j)|z̄, x],
Ldj (x) = Pr[Y = 1,D ∈ D≤(d j)|z, x],

and these bounds are sharp.
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With binary Y (Assumption M*), sharp bounds on the mean treatment parameters can be obtained, which is
eminiscent of the findings of studies that consider single-treatment models (e.g., Shaikh and Vytlacil (2011)).

When the variation of X is additionally exploited in the model, the bounds will be narrower than the bounds in
heorem 3.2. We now proceed with this case, utilizing Lemma 3.2 (i) and (ii). First, analogous to (3.9), we define the
ntegrated version of h̃(z, z ′, x̃) as

H̃(x̃) ≡ E
[
h̃(Z, Z ′, x̃)

⏐⏐(Z, Z ′) ∈ ZEQ ,j ∀j = 0, . . . , S − 1
]
,

here h̃(z, z ′, x̃) = 0 whenever it is not well-defined. Then, we define the following sets of two consecutive elements
(xj, xj−1) of x that satisfy the conditions in Lemma 3.2: for j = 1, . . . , S, define X 0

j,j−1(ι) ≡ {(xj, xj−1) : sgn{H̃(x̃)} = ι, x0 =

· · · = xS} and for t ≥ 1,

X t
j,j−1(ι) ≡ {(xj, xj−1) : sgn{H̃(x̃)} = ι, (xk, xk−1) ∈ X t−1

k,k−1(−ι) ∀k ̸= j} ∪ X t−1
j,j−1(ι),

where the sets are understood to be empty whenever h̃(z, z ′, x̃) is not well-defined for any pM≤j (z) < pM≤j (z ′) ∀j. Note
that X t

j,j−1(ι) ⊂ X t+1
j,j−1(ι) for any t . Define Xj,j−1(ι) ≡ limt→∞ X t

j,j−1(ι).
10 Then, by Lemma 3.2, if (xj, xj−1) ∈ Xj,j−1(ι), then

sgn{ϑ(d j, xj; u) − ϑ(d j−1, xj−1; u)} = ι a.e. u ∀d j−1
∈ D<(d j). (3.13)

In conclusion, for bounds on the ATE E[Y (d j)|x], we can introduce the sets X L
dj
(x; d ′) and XU

dj
(x; d ′) for d ′

̸= d j as follows:
for d ′

∈ D<(d j) ∪ D>(d j),

X L
dj (x; d

′) ≡
{
xj′ : (xk, xk−1) ∈ Xk,k−1(−1) ∪ Xk,k−1(0) for j′ + 1 ≤ k ≤ j, xj = x

}
∪

{
xj′ : (xk, xk−1) ∈ Xk,k−1(1) ∪ Xk,k−1(0) for j + 1 ≤ k ≤ j′, xj = x

}
, (3.14)

XU
dj (x; d

′) ≡
{
xj′ : (xk, xk−1) ∈ Xk,k−1(1) ∪ Xk,k−1(0) for j′ + 1 ≤ k ≤ j, xj = x

}
∪

{
xj′ : (xk, xk−1) ∈ Xk,k−1(−1) ∪ Xk,k−1(0) for j + 1 ≤ k ≤ j′, xj = x

}
. (3.15)

The following theorem summarizes our results:

Theorem 3.3. In model (3.1)–(3.2), suppose the assumptions of Lemma 3.2 hold. Then the sign of the ATE is identified, and
the upper and lower bounds on the ASF and ATE with d, d̃ ∈ D are

Ld(x) ≤ E[Y (d)|x] ≤ Ud(x)

and Ld(x) − Ud̃(x) ≤ E[Y (d) − Y (d̃)|x] ≤ Ud(x) − Ld̃(x), where for any given d j
∈ Dj

⊂ D for some j,

Udj (x) ≡ inf
z∈Z

{
E[Y |D = d j, z, x] Pr[D = d j

|z] + Pr[D ∈ Dj
\{d j

}|z]Y

+

∑
d′∈D<(dj)∪D>(dj)

inf
x′∈XU

dj
(x;d′)

E[Y |D = d ′, z, x′
] Pr[D = d ′

|z]
}
,

Ldj (x) ≡ sup
z∈Z

{
E[Y |D = d j, z, x] Pr[D = d j

|z] + Pr[D ∈ Dj
\{d j

}|z]Y

+

∑
d′∈D<(dj)∪D>(dj)

sup
x′∈X L

dj
(x;d′)

E[Y |D = d ′, z, x′
] Pr[D = d ′

|z]
}
.

See Section 4 and Appendix B for concrete examples of the expression of Udj (x) and Ldj (x). The terms Pr[D = d ′
|z]Y and

Pr[D = d ′
|z]Y appear in the expression of the bounds because Lemma 3.2 cannot establish an order between ϑ(d, x; u)’s

for d ∈ Dj, which is related to the complication due to multiple equilibria, which occurs for d ∈ Dj. When the variation
n Z is only used in deriving the bounds, Xk,k−1(ι) should simply reduce to X 0

k,k−1(ι) in the definition of X L
dj
(x; d ′) and

XU
dj
(x; d ′). When Y is binary with no X , such bounds are equivalent to (3.10) and (3.11). The variation in X given Z yields

ubstantially narrower bounds than the sharp bounds established in Theorem 3.2 under Assumption C. However, the
esulting bounds are not automatically implied to be sharp from Theorem 3.2, since they are based on a different DGP
nd the additional exclusion restriction.

10 In practice, the formula for X t
j,j−1 provides a natural algorithm to construct the set Xj,j−1 for the computation of the bounds. The calculation

of each X t
j,j−1 is straightforward, as it is a search over a two-dimensional space for (xj, xj−1) once the set X t−1

j,j−1 from the previous step is obtained.
Practitioners can employ truncation t ≤ T for some T and use X T as an approximation for X .
j,j−1 j,j−1
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emark 3.2. Maintaining that Y is binary, sharp bounds on the ATE with variation in X can be derived assuming that the
igns of ϑ(d, x; u) − ϑ(d ′, x′

; u) are identified for d ∈ D and d ′
∈ D<(d) and x, x′

∈ X via Lemma 3.2. To see this, define

X̃U
d (x; d ′) ≡

{
x′

: ϑ(d, x; u) − ϑ(d ′, x′
; u) ≤ 0 a.e. u

}
,

X̃ L
d (x; d

′) ≡
{
x′

: ϑ(d, x; u) − ϑ(d ′, x′
; u) ≥ 0 a.e. u

}
,

which are identified by assumption. Then, by replacing X i
d(x; d

′) with X̃ i
d(x; d

′) (for i ∈ {U, L}) in Theorem 3.3, we may be
able to show that the resulting bounds are sharp. Since Lemma 3.2 implies that X i

dj
(x; d ′) ⊂ X̃ i

dj
(x; d ′) but not necessarily

X i
dj
(x; d ′) ⊃ X̃ i

dj
(x; d ′), these modified bounds and the original bounds in Theorem 3.3 do not coincide. This contrasts with

the result of Shaikh and Vytlacil (2011) for a single-treatment model, and the complication lies in the fact that we deal
with an incomplete model with a vector treatment. When there is no X , Lemma 3.2(i) establishes equivalence between
the two signs, and thus, X i

dj
(x; d ′) = X̃ i

dj
(x; d ′) for i ∈ {U, L}, which results in Theorem 3.2. Relatedly, we can also exploit

variation in W , namely, variables that are common to both X and Z (with or without exploiting excluded variation of
X). This is related to the analysis of Chiburis (2010) and Mourifié (2015) in a single-treatment setting. One caveat of this
approach is that, similar to these papers, we need to additionally assume that W ⊥ (ϵ,U ).

Remark 3.3. When X does not have enough variation, we can calculate the bounds on the ATE. To see this, suppose we
do not use the variation in X and suppose H(x) ≥ 0. Then ϑ(d j, x; u) ≥ ϑ(d j−1, x; u) ∀d j−1

∈ D<(d j) ∀j = 1, . . . , S by
Lemma 3.2(i) and by transitivity, ϑ(d ′, x; u) ≥ ϑ(d, x; u) with d ′ being an extension of d. Therefore, we have

E[Y (d)|x] ≤ E[Y |D = d, z, x] Pr[D = d|z] +

∑
d′∈D>(d)

E[Y |D = d ′, z, x] Pr[D = d ′
|z]

+

∑
d′∈D\D≥(d)

E[Y (d j)|D = d ′, z, x] Pr[D = d ′
|z]. (3.16)

Without using variation in X , we can bound the last term in (3.16) by Y ∈ [Y , Y ]. This is done above with θ (d, x, ϵ) =

1[µ(d, x) ≥ ϵd] and ϑ(d, x; u) = Fϵ|U (µ(d, x)|u).

4. Empirical application: Airline markets and pollution

In this section, we take the bounds proposed in Section 3.4 to data on airline market structure and air pollution in the
top 100 metropolitan statistical areas in the U.S.

In 2013, aircrafts were responsible for about 3 percent of total U.S. carbon dioxide emissions and nearly 9 percent
of carbon dioxide emissions from the U.S. transportation sector, and it is one of the fastest growing sources.11 Airplanes
remain the single largest source of carbon dioxide emissions within the U.S. transportation sector, which is not yet subject
to greenhouse gas regulations. In addition to aircrafts, airport land operations are also a big source of pollution: 43 of the
50 largest airports are in ozone nonattainment areas and 12 are in particulate matter nonattainment areas.12

There is growing literature showing the effects of air pollution on various health outcomes (see, Schlenker and Walker
(2015), Chay and Greenstone (2003) and Knittel et al. (2011)). In particular, Schlenker and Walker (2015) show that the
causal effect of airport pollution on the health of local residents—using a clever instrumental variable approach—is sizable.
Their study focuses on the 12 major airports in California and implicitly assume that the level of competition (or market
structure) is fixed. Using high-frequency data, they exploit weather shocks in the East coast—that might affect airport
activity in California through network effects—to quantify the effect of airport pollution on respiratory and cardiovascular
health complications. In contrast, we take the link between airport pollution and health outcomes as given and are
interested in quantifying the effects of different (endogenous) market structures of the airline industry on air pollution.13

In our analysis we combine data from two sources. The first contains airline information from the Department of
Transportation. These data have been used extensively in the literature to analyze the airline industry (see, e.g., Borenstein
(1989), Berry (1992), Ciliberto and Tamer (2009), and more recently, Li et al. (2018) and Ciliberto et al. (2021)). The second
source contains air pollution data in each airport from air monitoring stations compiled by the Environmental Protection
Agency. We discuss the definition and construction of the variables in Section 2 of Appendix A. We experimented with two
measures of pollution (fine particulate matter and ozone levels) which we discuss in the Appendix and obtain qualitatively
and quantitatively similar results in all cases.14 In order to save space, we only show results using particulate matter
concentration as our outcome variable.

11 See https://www.c2es.org/content/reducing-carbon-dioxide-emissions-from-aircraft/7/.
12 Ozone is not emitted directly but is formed when nitrogen oxides and hydrocarbons react in the atmosphere in the presence of sunlight. In
United States environmental law, a non-attainment area is an area considered to have air quality worse than the National Ambient Air Quality
Standards as defined in the Clean Air Act.
13 In this section, we refer to market structure as the particular configuration of airlines present in the market. In other words, market structure
not only refers to the number of firms competing in a given market but to the actual identities of the firms. Thus, we will regard a market in which,
say, United and American operate as different from a market in which Southwest and Delta operate, despite both markets having two carriers.
14 This is not surprising given that the two pollution measures are highly correlated.
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We assume that, in each market, airlines choose to be ‘‘in’’ or ‘‘out’’ in a simultaneous entry game of perfect information,
s introduced in Section 3.1. Therefore, we treat market structure—i.e., the profile of airlines that operate in a market—as
ur endogenous treatment. We then model air pollution as a function of the market structure as in Eq. (3.1), where the
ector D represents the market structure, and X includes market specific covariates that affect pollution directly (i.e., not
hrough airline activity). We use the share of pollution-related activity in the local economy.15 This is likely to be excluded
from (3.2) if we condition on the size of the market.16 Hence, we allow for market-level covariates, W , which affect both
the participation decisions and pollution (e.g., the size of the market as measured by population or the level of economic
activity). Finally, we consider two sets of instruments: the airport presence of an airline as in Berry (1992) and a firm-
market proxy for cost as in Ciliberto and Tamer (2009). For reasons we discuss below, we use the latter in our baseline
results.

To simplify the estimation, we discretize all continuous variables into binary variables. We experimented with several
specifications of the covariates, X and W , and instruments, Z . In particular, we tried different discretizations of each
variable (including allowing for more than two points in their supports and different cutoffs). Clearly, there is a limit to
how finely we can cut the data even with a large sample size such as ours. The coarser discretization occurs when each
covariate (and instrument) is binary and this seems to produce reasonable results; hence, we stick with this discretization
in all of our exercises and use the median of each variable as the threshold.1718 Of particular interest is the discretization
of the instruments. Recall that our procedure relies on there being enough variation in the instruments as stated in
Assumption EQ. When the payoff unobservables are mutually independent, there is a simple testable implication for the
existence of such instrument variation as we have discussed in Section 3.3. When we consider the binary version of our
cost instrument, the conditions in Assumption EQ* are satisfied in our data by setting the vectors z and z ′ to be low cost
and high cost for all airlines, respectively.19

Before moving to the results, we discuss the plausibility of the other identifying assumptions. Assumptions SS and
M1 relate to the shape of the profit functions. The strategic substitutability Assumption SS is likely to hold in our case, as
firms’ profits are likely to decrease with competition (see, e.g., the argument in Section 3.1 in Berry (1992)). The instrument
monotonicity Assumption M1 is also likely to hold since as firms costs move from low to high their profits are expected to
decrease regardless of the market structure. Assumptions IN and EX are related to the validity of the instruments and the
exogeneity of X . Given our choice of Z and X , both assumptions are plausible as we argue in of the Appendix in which we
introduce the data. Finally, Assumption M*(i) is imposed as a threshold crossing model for pollution. Assumption M*(ii)
is also likely to be satisfied in our context, by assuming that after entering firms play a Cournot game to set their prices
and quantities (i.e., the number of passengers flown in each market). Then it is expected that more passengers will be
served in equilibrium as a result of an additional firm entering the market, and thus pollution worsens, regardless of the
market structure.

To illustrate our estimation procedure, we consider three types of ATE exercises. The first examines the effects of a
single (monopolist) airline on pollution vis-a-vis a market that is not served by any airline. The second set of exercises
examine the total effect of the industry on pollution under all possible market configurations. Finally, the third type of
exercises examine how the (marginal) effect of a given airline changes when the firm faces different levels of competition.
Notice that in all cases we quantify ‘‘reduced-form’’ effects, in that they summarize structural effects resulting from a given
market structure. The idea is that following entry, firms compete by choosing their prices, frequency, and which airplanes
to operate. Different market structures will have different impacts on these variables, which in turn, affect the level of
pollution.

4.1. Estimation and results

Using the notation from Section 3.1, let the elements of the treatment vector d = (dDL, dAA, dUA, dWN, dmed, dlow) be
either 0 or 1, indicating whether each firm (American (AA), Delta (DL), United (UA), Southwest (WN), a medium-size
airline, and a low-cost carrier) is active in the market. We compute the upper and lower bounds on the ATE using the
result from Theorem 3.3 and the fact that our Y variable is binary. Specifically, given two treatment vectors d and d̃ we
can bound the ATE

L(d, d̃; x, w) ≤ E[Y (d) − Y (d̃)|x, w] ≤ U(d, d̃; x, w)

15 Note that our definition of market is a city-pair; hence, all of our variables are, in fact, weighted averages over the two cities.
16 The idea here is that the size of the market, among other things, determines whether a firm might enter it, but not the type of economic activity
in the cities. Hence, conditional on the market’s GDP, a market with a higher share of polluting industries will have a higher level of pollution but
this share would not affect the airline market structure. That is, we are implicitly assuming that pollution activity generates the same business air
travel as non-polluting activities, conditional on size.
17 We find that, in general, our qualitative results are robust to alternative definitions of the thresholds like the mean, median, or mode of each
continuous variable.
18 Also, after some experimentation, we obtained reasonable results when both X and W are scalars: share of pollution related industries in the
arket and total GDP in the market, respectively. Hence, we consider this parsimonious model in our baseline specification.

19 When we use the (binary) market presence instrument, there are instances in which the instrument variation is not enough to satisfy
ssumption EQ*. Thus, in what follows we use only use our cost instrument.
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w
here the upper bound can be characterized by

U(d, d̃; x, w) ≡ Pr[Y = 1,D = d|z, x, w] +

∑
d′∈Dj\{d}

Pr[D = d ′
|Z = z,W = w]

+

∑
d′∈D<(d)∪D>(d)

Pr[Y = 1,D = d ′
|Z = z, X = x′(d ′),W = w]

− Pr[Y = 1,D = d̃|Z = z, X = x,W = w]

−

∑
d′′∈D<(d̃)∪D>(d̃)

Pr[Y = 1,D = d ′′
|Z = z, X = x′′(d ′′),W = w]

for every z , x′(d ′) ∈ XU
d (x; d ′) for d ′

̸= d, and x′′(d ′′) ∈ X L
d̃
(x; d ′′) for d ′′

̸= d̃ and the lower bound can be characterized by

L(d, d̃; x, w) ≡ Pr[Y = 1,D = d|Z = z, X = x,W = w]

+

∑
d′∈D<(d)∪D>(d)

Pr[Y = 1,D = d ′
|Z = z, X = x′(d ′),W = w]

− Pr[Y = 1,D = d̃|Z = z, X = x,W = w] −

∑
d′′∈Dj\{d̃}

Pr[D = d ′′
|Z = z,W = w]

−

∑
d′′∈D<(d̃)∪D>(d̃)

Pr[Y = 1,D = d ′′
|Z = z, X = x′′(d ′′),W = w]

for every z , x′(d ′) ∈ X L
d (x; d

′) for d ′
̸= d, and x′′(d ′′) ∈ XU

d̃
(x; d ′′) for d ′′

̸= d̃. We estimate the population objects above
using their sample counterparts. We also compute confidence sets by deriving unconditional moment inequalities from
our conditional moment inequalities and implementing the Generalized Moment Selection test proposed by Andrews and
Soares (2010). The confidence sets are obtained by inverting the test.20

Monopoly Effects. Here we examine the ATE of a change in market structure from no airline serving a market to a
monopolist serving it. Intuitively, we want to understand the change in the probability of being a high-pollution market
when an airline starts operating on it. Recall that we allow each firm to have different effects on pollution; hence, we
estimate the effects of each one of the six firms in our data becoming a monopolist. Thus, we are interested in the ATE’s of
the form E[Y (dmonop)−Y (dnoserv)|X,W ] where dmonop is one of the six vectors in which only one element is 1 and the rest
are 0’s, and dnoserv is a vector of all 0’s. The results are shown in Fig. 2, where the solid black intervals are our estimates
of the identified sets and the thin red lines are the 95% confidence sets. We see that all ATE’s are positive and statistically
significant different from 0, except for the low-cost carriers. While there no major differences on the effects of the major
carriers, with the exception of Delta which seems to induce a higher increase in the probability of high pollution, the
medium and low-cost carriers induce a smaller effect.

Total Market Structure Effect. We now turn to our second set of exercises. Here, we quantify the effect of the
airline industry on the likelihood of a market having high levels of pollution. To do so, we estimate ATE’s of the form
E[Y (d)−Y (dnoserv)|X,W ] for all potential market configurations d and where dnoserv is defined as before. Fig. 3 depicts the
results. The left-most set of intervals corresponds to the 6 different monopolistic market structures, and by construction,
coincide with those from Fig. 2. The next set corresponds to all possible duopolistic structures (15 possibilities), and so
on. Not surprisingly, we observe that the effect on the probability of being a high-pollution market is increasing in the
number of firms operating in the market. More interesting is the non-linearity of the effect: the effect increases at a
decreasing rate. This would be consistent with a model in which firms accommodate new entrants by decreasing their
frequency, which is analogous to the prediction of a Cournot competition model, as we increase the number of firms. To
further investigate this point, in the next set of exercises, we examine the effect of one firm as we change the competition
it faces.

Marginal Carrier Effect. In our last set of exercises, we investigate how the marginal effect (i.e., the effect of introducing
one more firm into the market) changes under different market configurations. In particular, we are interested in the effect
of Delta entering the market, given that the current market structure (excluding Delta) is d–DL ≡ (dAA, dUA, dWN, dmed, dlow).
Thus, we estimate E[Y ((1, d–DL)) − Y ((0, d–DL))|X,W ].21

Fig. 4 shows the identified sets and confidence sets of the marginal effect of Delta on the probability of high pollution
under all possible market configuration for Delta’s rivals. In the Figure, the left-most exercise is the effect of Delta as
a monopolist and coincides, by construction, with the left-most exercise in Fig. 2. The second exercise (from the left)
corresponds to the additional effect of Delta on pollution when there is already one firm operating in the market, which
yields five different possibilities. The next exercise shows the effect of Delta when there are two firms already operating in

20 For details of this procedure, see Dickstein and Morales (2018).
21 We obtain qualitatively similar results when estimating the marginal effects of the other five carriers, and hence, we omit the graphs to save
space.
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Fig. 2. Effect of a Monopolistic Market Struct. This plot shows the ATE’s of a change in market structure from no airline serving a market to a
monopolist serving it. The solid black intervals are our estimates of the identified sets and the thin red lines are the 95% confidence sets. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Total market structure effect. This plot shows the ATE’s of the airline industry under all possible market configurations. The solid black
intervals are our estimates of the identified sets and the thin red lines are the 95% confidence sets. The bars in each cluster correspond to all
possible market configurations, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 4. Marginal effect of Delta under different market structures. This plot shows the ATE’s of Delta entering the market given all possible rivals
market configurations. The solid black intervals are our estimates of the identified sets and the thin red lines are the 95% confidence sets. The bars
in each cluster correspond to all possible market configurations, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

the market yielding 10 possibilities, and so on. Again, the estimated marginal ATE’s in all cases are positive and statistically
significant. Interestingly, although we cannot entirely reject the null hypothesis that all the effects are the same, it seems
that the marginal effect of Delta is decreasing in the number of rivals it faces. Intuitively, this suggests a situation in
which after Delta enters the market, it (or its rivals) operates with a frequency that is decreasing with the number of
rivals (again, as we would expect in a Cournot competition model) and is consistent with the findings in our previous set
of exercises.

The conclusions from the total market and marginal ATE’s are also interesting from a policy perspective. For example, a
merger of two airlines in which duplicate routes are eliminated would imply a decrease in total pollution in the affected
markets, but by less than what one would have naively anticipated from removing one airline while keeping everything
else constant. In other words, there are two effects of removing an airline from a market. The first is a direct affect:
pollution decreases by the amount of pollution by the carrier that is no longer present in the market. However, the
remaining firms in the market will react strategically to the new market structure. In our exercises, we find that this
indirect effect implies an increase in pollution. The overall effect is a net decrease in pollution. Moreover, given the non-
linearities of the ATE’s we estimate it looks like the overall effect, while negative, might be negligible in markets with
four or more competitors.

While it is unclear that merger analysis, which is typically concerned with price increases post-merge or cost savings
of the merging firms, should also consider externalities such as pollution, (social) welfare analysis should. Hence, our
findings may serve as guidance to policy discussion on air traffic regulation.

Appendix A. More examples

Example 1 (Media and Political Behavior). In this example, the interest is in how media affects political participation
or electoral competitiveness. In county or market i, either Yi ∈ [0, 1] can denote voter turnout, or Yi ∈ {0, 1} can
denote whether an incumbent is re-elected or not. Let Ds,i denote the market entry decision by local newspaper type s,
which is correlated with unobserved characteristics of the county. In this example, Zs,i can be the neighborhood counties’
population size and income, which is common to all players (Z1,i = · · · = ZS,i). Lastly, Xi can include changes in voter ID
regulations. Using a linear panel data model, Gentzkow et al. (2011) show that the number of newspapers in the market
significantly affects the voter turnout but find no evidence whether it affects the re-election of incumbents. More explicit
modeling of the strategic interaction among newspaper companies can be important to capture competition effects on
political behavior of the readers.
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xample 2 (Incumbents’ Response to Potential Entrants). In this example, we are interested in how market i’s incumbents
respond to the threat of entry of potential competitors. Let Yi be an incumbent firm’s pricing or investment decision and
Ds,i be an entry decision by firm s in ‘‘nearby’’ markets, which can be formally defined in each context. For example,
in airline entry, nearby markets are defined as city pairs that share the endpoints with the city pair of an incumbent
(Goolsbee and Syverson, 2008). That is, potential entrants are airlines that operate in one (or both) of the endpoints of
the incumbent’s market i, but who have not connected these endpoints. Then the parameter E[Yi(d)−Yi(d ′)] captures the
ncumbent’s response to the threat, specifically whether it responds by lowering the price or making an investment. As in
xample 1, Zs,i are cost shifters and Xi are other factors affecting price of the incumbent, excluded from nearby markets,
onditional of Wi. The characteristics of the incumbent’s market can be a candidate of Xi, such as the distance between
he endpoints of the incumbent’s market in the airline example.

xample 3 (Food Desert). Let Yi denote a health outcome, such as diabetes prevalence, in region i, and Ds,i be the exit
decision by large supermarket s in the region. Then E[Yi(d) − Yi(d ′)] measures the effects of absence of supermarkets on
ealth of the residents. Conditional on other factors Wi, the instrument Zs,i can include changes in local government’s

zoning plans and Xi can include the region’s health-related variables, such as the number of hospitals and the obesity
rate. This problem is related to the literature on ‘‘food desert’’ (e.g., Walker et al. (2010)).

Example 4 (Ground Water and Agriculture). In this example, we are interested in the impact of access to groundwater on
economic outcomes in rural areas (Foster and Rosenzweig, 2008). In each Indian village i, symmetric wealthy farmers (of
the same caste) make irrigation decisions Ds,i, i.e., whether or not to buy motor pumps, in the presence of peer effects and
learning spillovers. Since ground water is a limited resource that is seasonally recharged and depleted, other farmers’ entry
may negatively affects one’s payoff. The adoption of the technology affects Yi, which can be the average of local wages of
peasants or prices of agricultural products, or a village development or poverty level. In this example, continuous or binary
instrument Zs,i can be the depth to groundwater, which is exogenously given (Sekhri, 2014), or provision of electricity for
pumping in a randomized field experiment. Xi can be village-level characteristics that villagers do not know ex ante or
do not concern about.22

Appendix B. Numerical study

To illustrate the main results of this study in a simulation exercise, we calculate the bounds on the ATE using the
following data generating process:

Yd = 1[µ̃d + βX ≥ ϵ],

D1 = 1[δ2D2 + γ1Z1 ≥ V1],

D2 = 1[δ1D1 + γ2Z2 ≥ V2],

where (ϵ, V1, V2) are drawn, independent of (X, Z), from a joint normal distribution with zero means and each correlation
coefficient being 0.5. We draw Zs (s = 1, 2) and X from a multinomial distribution, allowing Zs to take two values,
Zs = {−1, 1}, and X to take either three values, X = {−1, 0, 1}, or fifteen values, X = {−1, − 6

7 , −
5
7 , . . . ,

5
7 ,

6
7 , 1}.

eing consistent with Assumption M, we choose µ̃11 > µ̃10 and µ̃01 > µ̃00. Let µ̃10 = µ̃01. With Assumption SS, we
hoose δ1 < 0 and δ2 < 0. Without loss of generality, we choose positive values for γ1, γ2, and β . Specifically, µ̃11 = 0.25,
˜ 10 = µ̃01 = 0 and µ̃00 = −0.25. For default values, δ1 = δ2 ≡ δ = −0.1, γ1 = γ2 ≡ γ = 1 and β = 0.5.

In this exercise, we focus on the ATE E[Y (1, 1)− Y (0, 0)|X = 0], whose true value is 0.2 given our choice of parameter
values. For h(z, z ′, x), we consider z = (1, 1) and z ′

= (−1, −1). Note that H(x) = h(z, z ′, x) and H̃(x, x′, x′′) =

h̃(z, z ′, x, x′, x′′), since Zs is binary. Then, we can derive the sets XU
d (0; d ′) and X L

d (0; d
′) for each d ∈ {(1, 1), (0, 0)} and

d ′
̸= d in Theorem 3.3.
Based on our design, H(0) > 0, and thus, the bounds when we use Z only are, with x = 0,

max
z∈Z

Pr[Y = 1,D = (0, 0)|z, x] ≤ Pr[Y (0, 0) = 1|x] ≤ min
z∈Z

Pr[Y = 1|z, x],

and

max
z∈Z

Pr[Y = 1|z, x] ≤ Pr[Y (1, 1) = 1|x] ≤ min
z∈Z

{Pr[Y = 1,D = (1, 1)|z, x] + 1 − Pr[D = (1, 1)|z, x]} .

Using both Z and X , we obtain narrower bounds. For example, when |X | = 3, with H̃(0, −1, −1) < 0, the lower bound
on Pr[Y (0, 0) = 1|X = 0] becomes

max
z∈Z

{Pr[Y = 1,D = (0, 0)|z, 0] + Pr[Y = 1,D ∈ {(1, 0), (0, 1)}|z, −1]} .

22 Especially in this example, the number of players/treatments Si is allowed to vary across villages. We assume in this case that players/treatments
are symmetric (in a sense that becomes clear later) and ν1(·) = · · · = νSi (·) = ν(·).
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W
ith H̃(1, 1, 0) < 0, the upper bound on Pr[Y (1, 1) = 1|X = 0] becomes

min
z∈Z

{Pr[Y = 1,D = (1, 1)|z, 0] + Pr[Y = 1,D ∈ {(1, 0), (0, 1)}|z, 1] + Pr[D = (0, 0)|z, 0]} .

For comparison, we calculate the bounds in Manski (1990) using Z . These bounds are given by

max
z∈Z

Pr[Y = 1,D = (0, 0)|z, x] ≤ Pr[Y (0, 0) = 1|x]

≤ min
z∈Z

{Pr[Y = 1,D = (0, 0)|z, x] + 1 − Pr[D = (0, 0)|z]} ,

and

max
z∈Z

Pr[Y = 1,D = (1, 1)|z, x] ≤ Pr[Y (1, 1) = 1|x]

≤ min
z∈Z

{Pr[Y = 1,D = (1, 1)|z, x] + 1 − Pr[D = (1, 1)|z]} .

We also compare the estimated ATE using a standard linear IV model in which the nonlinearity of the true DGP is ignored:

Y = π0 + π1D1 + π2D2 + βX + ϵ,(
D1
D2

)
=

(
γ10
γ20

)
+

(
γ11 γ12
γ21 γ22

)(
Z1
Z2

)
+

(
V1
V2

)
.

Here, the first stage is the reduced-form representation of the linear simultaneous equations model for strategic
interaction. Under this specification, the ATE becomes E[Y (1, 1) − Y (0, 0)|X = 0] = π1 + π2, which is estimated via
two-stage least squares (TSLS).

The bounds calculated for the ATE are shown in Figs. 5–8. Fig. 5 shows how the bounds on the ATE change, as the
value of γ changes from 0 to 2.5. The larger γ is, the stronger the instrument Z is. The first conspicuous result is that the
TSLS estimate of the ATE is biased because of the problem of misspecification. Next, as expected, Manski’s bounds and our
proposed bounds converge to the true value of the ATE as the instrument becomes stronger. Overall, our bounds, with
or without exploiting the variation of X , are much narrower than Manski’s bounds.23 Notice that the sign of the ATE is
identified in the whole range of γ , as predicted by the first part of Theorem 3.3, in contrast to Manski’s bounds. Using the
additional variation in X with |X | = 3 decreases the width of the bounds, particularly with the smaller upper bounds on
the ATE in this simulation design. Fig. 6 depicts the bounds using X with |X | = 15, which yields narrower bounds than
when |X | = 3, and substantially narrower than those only using Z .

Fig. 7 shows how the bounds change as the value of β changes from 0 to 1.5, where a larger β corresponds to a stronger
exogenous variable X . The jumps in the upper bound are associated with the sudden changes in the signs of H̃(−1, 0, −1)
and H̃(0, 1, 1). At least in this simulation design, the strength of X is not a crucial factor for obtaining narrower bounds. In
fact, based on other simulation results (omitted in the paper), we conclude that the number of values X can take matters
more than the dispersion of X (unless we pursue point identification of the ATE).

Finally, Fig. 8 shows how the width of the bounds is related to the extent to which the opponents’ actions D−s affect
one’s payoff, captured by δ. We vary the value of δ from −2 to 0, and when δ = 0, the players solve a single-agent
optimization problem. Thus, heuristically, the bound at this point would be similar to the ones that can be obtained
when Shaikh and Vytlacil (2011) is extended to a multiple-treatment setting with no simultaneity. In the figure, as the
value of δ becomes smaller, the bounds get narrower.

Appendix C. Discussions and extensions

C.1. Point identification of the ATE

When there exist player-specific excluded instruments with large support, we point identify the ATE’s. To invoke an
identification-at-infinity argument, the following assumptions are instead needed to hold:

γ1 and γ2 are nonzero, (C.1)

Z1|(X, Z2) and Z2|(X, Z1) has an everywhere positive Lebesgue density. (C.2)

These assumptions impose a player-specific exclusion restriction and large support. Under (C.1)–(C.2), we can easily show
that the ATE in (3.3) is point identified. In this case, the structure we impose, especially on the outcome function (such
as the threshold-crossing structure, or more generally Assumption M in Section 3.3) is not needed.

The identification strategy is to exploit the large variation of player specific instruments based on (C.1)–(C.2), which
simultaneously solves the multiple equilibria and the endogeneity problems. For example, to identify E[Y (1, 1)|x], consider

E[Y |D = (1, 1), z, x] = E[Y (1, 1)|D = (1, 1), z, x]
= E[Y (1, 1)|δ2 + γ1z1 ≥ U1, δ1 + γ2z2 ≥ U2, x] → E[Y (1, 1)|x],

23 Although we do not make a rigorous comparison of the assumptions here, note that the bounds by Manski and Pepper (2000) under the
semi-MTR is expected to be similar to ours. However, their bounds need to assume the direction of the monotonicity.
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Fig. 5. Bounds on the ATE with different strength of vector Z = (Z1, Z2) of binary instruments when X takes three different values (|X | = 3). This
igure (and the next) depicts the simulated bounds for E[Y11 − Y00|X = 0] = 0.2 (the straight dotted line). The horizontal axis is the value of the
oefficients on the instruments (γ1 = γ2 = γ ). The stronger the instruments, the narrower the bounds are. The cross lines are Manski (1990)’s
ounds. The red solid lines are our bounds using only the variation of Z , which identify the sign of the ATE. The blue circle lines are bounds where
he variation of X , the exogenous variable excluded from the treatment selection process, is also used. Lastly, the green solid line is the simulated
SLS estimand assuming a linear simultaneous equations model. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 6. Bounds with different strength of vector Z = (Z1, Z2) of binary instrument when X takes fifteen different values (|X | = 15). (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

here the second equation is by (2.6) and Y (1, 1) = µ1+µ2+βX , and the convergence is by (C.1)–(C.2) with z1 → ∞ and
z2 → ∞. The identification of E[Y (0, 0)|x], E[Y (1, 0)|x] and E[Y (0, 1)|x] can be achieved by similar reasoning. Note that
D = (1, 0) or D = (0, 1) can be predicted as an outcome of multiple equilibria. However, when either (z1, z2) → (∞, −∞)
or (z1, z2) → (−∞, ∞) occurs, a unique equilibrium is guaranteed as a dominant strategy, i.e., D = (1, 0) or D = (0, 1),
respectively.
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b
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Fig. 7. Bounds under different strength of X with |X | = 15. The horizontal axis is the value of the coefficient on the exogenous variable X excluded
from the treatment selection process. The jumps in the bounds when both the variations of Z and X are used (the blue circle lines) are because
different inequalities are involved for different values of the coefficient; see the text for details. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. Bounds under different strength of interaction with |X | = 3. The horizontal axis is the value of the coefficients on the opponents’ decisions
(δ1 = δ2 = δ). The smaller the interaction effects, the narrower the bounds are. Again, the jumps in the bounds when both the variations of Z and
X are used (the blue circle lines) are because different inequalities are involved for different values of the coefficient. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

C.2. Non-monotonicity of treatment selection

In the case of a single binary treatment, the standard selection equation exhibits monotonicity that facilitates various
identification strategies (e.g., Imbens and Angrist (1994), Heckman and Vytlacil (2005) and Vytlacil and Yildiz (2007) to
name a few). Relatedly, Vytlacil (2002) shows the equivalence between imposing the selection equation with threshold-
crossing structure and assuming the local ATE (LATE) monotonicity. This equivalence (and thus, previous identification
strategies) is inapplicable to our setting due to the simultaneity in the first stage (3.2). To formally state this, let D(z)
e a potential treatment vector, had Z = z been realized. When cost Z = (Z1, Z2) increases from z to z ′, it may be that
ome markets witness Delta entering and United going out of business (i.e., D(z) = (0, 1) and D(z ′) = (1, 0)), while
ther markets witness the opposite (i.e., D(z) = (1, 0) and D(z ′) = (0, 1)). The direction of monotonicity is reversed in
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he two groups of markets, and thus, Pr[D(z) ≥ D(z ′)] ̸= 1 and Pr[D(z) ≤ D(z ′)] ̸= 1 where the inequality for vectors is
air-wise inequalities, which violates the LATE monotonicity.24 Despite this non-monotonic pattern, Theorem 3.1 restores
eneralized monotonicity, i.e., monotonicity in terms of the algebra of sets. This generalized monotonicity, combined with
he compensating strategic substitutability (Assumption EQ), allows us to use a strategy analogous to the single-treatment
ase for our bound analysis. This also suggests that we can introduce a generalized version of the LATE parameter in the
urrent framework, although we do not pursue it in this study.
Related to our study, Lee and Salanié (2018) introduce a framework for treatment effects with general non-

onotonicity of selection, and consider the simultaneous treatment selection as one of the examples. Although they
ngage in a similar discussion on non-monotonicity, their approach to gain tractability for identification is different
rom ours. When they allow the identity of players being observed as in our setting, they show that their treatment
easurability condition (Assumption 2.1) introduced to restore monotonicity is satisfied, provided they assume a

hreshold-crossing equilibrium selection mechanism. In contrast, we avoid making assumptions on equilibrium selection,
ut require compensating variation of instruments. In addition, for this particular example, they assume the first-stage is
nown (i.e., payoff functions are known), and focus on point identification of the MTE with continuous instruments.

.3. Partial ATE

Define a partial counterfactual outcome as follows: with a partition D = (D1,D2) ∈ D1 × D2 = D and its realization
= (d1, d2),

Y (d1,D2) ≡

∑
d2∈D2

1[D2 = d2]Y (d1, d2). (C.3)

his is a counterfactual outcome that is fully observed once D1 = d1 is realized. Then for each d1 ∈ D1, the partial ASF
an be defined as

E[Y (d1,D2)] =

∑
d2∈D2

E[Y (d1, d2)|D2 = d2] Pr[D2 = d2] (C.4)

nd the partial ATE between d and d ′ as

E[Y (d1,D2) − Y (d ′

1,D2)]. (C.5)

sing this concept, we can consider complementarity concentrated on, e.g., the first two treatments:

E [Y (1, 1,D2) − Y (0, 1,D2)] > E [Y (1, 0,D2) − Y (0, 0,D2)] .

.4. Model with common Z

Consider model (3.1)–(3.2) but with instruments common to all players/treatments, i.e., Z1 = · · · = ZS :

Y = θ (D, X, ϵD),
Ds = 1

[
νs(D−s, Z1) ≥ Us

]
, s ∈ {1, . . . , S}.

his setting can be motivated by such instruments as appeared in Example 1. Given this model, Assumptions SS, M1, IN,
X and C will be understood with Z1 = · · · = ZS imposed.25 Then the bound analysis for the ATE including sharpness will
aturally follow. The intuition of this straightforward extension is as follows. As a generalized version of monotonicity in
he treatment selection process is restored (Theorem 3.1), model (3.1)–(3.2) can essentially be seen as a triangular model
ith an ordered-choice type of a first-stage. Therefore an instrument that ‘‘shift’’ the entire first-stage process is sufficient

or the purpose of our analyses. Player-specific instruments do introduce an additional source of variation, as it is crucial
or the point identification of the ATE that employs identification at infinity.

.5. Partial symmetry: Interaction within groups

In some cases, strategic interaction may occur within groups of players (i.e., treatments). In the airline example, it may
e the case that larger airlines interact with one another as a group, so do smaller airlines as a different group, but there
ay be no interaction across the groups.26 In general for K groups of players/treatments, we consider, with player index
= 1, . . . , Sg and group index g = 1, . . . ,G,

Y = θ (D1, . . . ,DG, X, ϵD), (C.6)

24 The same argument applies with a scalar multi-valued treatment D̃ ∈ {1, 2, 3, 4}, which has a one-to-one map with D ∈

(0, 0), (0, 1), (1, 0), (1, 1)}. Then, some markets can experience D̃(z) = 2 and D̃(z ′) = 3 while others experience D̃(z) = 3 and D̃(z ′) = 2, and
thus, it is possible to have Pr[D̃(z) ≥ D̃(z ′)] ̸= 1 and Pr[D̃(z) ≤ D̃(z ′)] ̸= 1.
25 Assumption EQ may be slightly harder to justify with a common instrument.
26 We can also easily extend the model so that smaller airlines take larger airlines’ entry decisions as given and play their own entry game, which
may be more reasonable to assume.
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Dg,s = 1
[
νs
g (Dg,−s, Zg,s) ≥ Ug,s

]
, (C.7)

where each Dg ≡ (Dg,1, . . . ,Dg,Sk ) is the treatment vector of group g and D ≡ (D1, . . . ,DG). This model generalizes
he model (3.1)–(3.2). It can also be seen as a special case of exogenously endowing an incomplete undirected network
tructure, where players interact with one another within each of complete sub-networks. In this model, each group
an differ in the number (Sg ) and identity of players (under which the entry decision is denoted by Dg,s). Also, the
nobservables U g ≡ (Ug,1, . . . ,Ug,S) can be arbitrarily correlated across groups, in addition to the fact that Ug,s’s can
e correlated within group g and U ≡ (U1, . . . ,UG) can be correlated with ϵD. This partly relaxes the independence
ssumption across markets, which is frequently imposed in the entry game literature. When G = 1, the model (C.6)–(C.7)
oincides to (3.1)–(3.2).
To calculate the bounds on the ATE E[Y (d)−Y (d ′)|x] we apply the results in Theorem 3.3, by adapting the assumptions

in Sections 3.2 and 3.3 to the current extension. Although Assumption EQ can also be adapted accordingly, we consider
an alternative assumption that may be valid in the current setting. Under this assumption, Assumption EQ is no longer
needed for identification.27 Let D−

g ≡ (Dg , . . . ,Dg−1,Dg+1, . . . ,DG) and let its realization be d−

g .

Assumption SY. For g = 1, . . . ,G and every x ∈ X , ϑ(dg , d−

g , x; u) = ϑ(d̃g , d−

g , x; u) a.e. u for any permutation d̃g of dg .

This assumption is a partial conditional symmetry assumption. It requires symmetry in the functions within each group
g , as long as the observed characteristics X remain the same. When G = 1, SY is related to an assumption found in Manski
(2013).

Under Assumption SY, the bound on the ASF can be calculated by iteratively applying the previous results to each
group. Assumptions SS, EX and M can be modified so that they hold for treatments with within-group interaction. In
particular, Assumption EX can be modified as follows: for each dg,−s ∈ Dg,−s, νs

g (dg,−s, Zg,s)|X, Z−

g is nondegenerate, where
Z ≡ (Zg , Z−

g ). That is, there must be group-specific instruments that are excluded from other groups.28
We briefly show how to modify the previous bound analysis with binary Y and no X for simplicity.
Analogous to the previous notation, let Dj

g be the set of equilibria with j entrants in group g and let D≤j
g ≡

⋃j
k=0 D

k
g .

Suppose G = 2, and d1 ∈ {0, 1}S1 and d2 ∈ {0, 1}S2 . Consider the ASF E[Y (d)] = E[Y (d1, d2)] with d1 ∈ Dj−1
1 and d2 ∈ Dk−1

2
for some j = 1, . . . , S1 and k = 1, . . . , S2. To calculate its bounds, we can bound E[Y (d)|D = d ′, z] in an expansion similar
to (2.2) for d̃ ̸= d by sequentially applying the analysis of Section 3.4 in each group. First, consider d̃ = (d̃1, d2) with
d̃1 ∈ Dj

1. We apply Lemma 3.2 for the D1 portion after holding D2 = d2. Suppose

Pr[Y = 1|D2 = d2, Z1 = z1, Z2 = z2] − Pr[Y = 1|D2 = d2, Z1 = z ′

1, Z2 = z2] ≥ 0,

Pr[D1 ∈ D>j−1
1 |Z1 = z1] − Pr[D1 ∈ D>j−1

1 |Z1 = z ′

1] > 0,

then we have µ(d̃1, d2) ≥ µ(d1, d2). The proof of Lemma 3.2 can be adapted by holding D2 = d2 in this case, because
there is no strategic interaction across groups and therefore the multiple equilibria problem only occurs within each group.
Note that this strategy still allows for dependence between D1 and D2 even after conditioning on Z due to dependence
between U1 and U2. Then,

Pr[Y (d1, d2) = 1|D = (d̃1, d2), z] = Pr[ϵ ≤ µ(d1, d2)|D = (d̃1, d2), z]

≤ Pr[ϵ ≤ µ(d̃1, d2)|D = (d̃1, d2), z] (C.8)

= Pr[Y = 1|D = (d̃1, d2), z].

Next, consider d = (d1, d2) and d̃ = (d̃1, d̃2) with d̃2 ∈ Dk
2 and the other elements as previously determined. Then, by

applying Lemma 3.2 this time for D2 after holding D1 = d̃1, we have µ(d̃1, d̃2) ≥ µ(d̃1, d2) by supposing

Pr[Y = 1|D1 = d̃1, Z1 = z1, Z2 = z2] − Pr[Y = 1|D1 = d̃1, Z1 = z1, Z2 = z ′

2] ≥ 0,

Pr[D2 ∈ D>j−1
2 |Z2 = z2] − Pr[D2 ∈ D>j−1

2 |Z2 = z ′

2] > 0.

Then,

Pr[Y (d1, d2) = 1|D = (d̃1, d̃2), z] ≤ Pr[ϵ ≤ µ(d̃1, d2)|D = (d̃1, d̃2), z]

≤ Pr[ϵ ≤ µ(d̃1, d̃2)|D = (d̃1, d̃2), z] (C.9)

= Pr[Y = 1|D = (d̃1, d̃2), z],

where the first inequality is by (C.8). Note that in deriving the upper bound in (C.9), it is important that at least the two
groups share the same signs of within-group h’s and h̃’s.

27 Also, Y can be unbounded and thus the second statement in Assumption M is not needed.
28 We maintain Assumption R in the current setting since the assumption is equivalent to assuming a rank invariance within each group,
i.e., ϵ g −g = ϵ g ∀dg , d̃

g
∈ {0, 1}Sg and g = 1, . . . ,G.
d ,d d̃ ,d−g
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Fig. 9. Regions of equilibrium for S = 3.
754



J.F. Balat and S. Han Journal of Econometrics 234 (2023) 732–757

s
i
s

Fig. 10. Depicting the regions of multiple equilibria for S = 3.

C.6. Player-specific outcomes

So far, we considered a scalar Y that may represent an outcome common to all players in a given market or a
geographical region. The outcome, however, can also be an outcome that is specific to each player. In this regard, consider
a vector of outcomes Y = (Y1, . . . , YS) where each element Ys is a player-specific outcome. An interesting example of this
etting may be where Y is also an equilibrium outcome from strategic interaction not only through D but also through
tself. In this case, it would become important to have a vector of unobservables even after assuming e.g., rank invariance,
ince we may want to include ϵD = (ϵ1,D, . . . , ϵS,D), where ϵs,D is an unobservable directly affecting Ys.29 We may also
want to include a vector of observables of all players X = (X1, . . . , XS), where Xs directly affects Ys. Then, interaction
among Ys can be modeled via a reduced-form representation:

Ys = θs(D,X, ϵD), s ∈ {1, . . . , S}.

In the entry example, the first-stage scalar unobservable Us may represent each firm’s unobserved fixed cost (while Zs
captures observed fixed cost). The vector of unobservables in the player-specific outcome equation represents multiple
shocks, such as the player’s demand and variable cost shocks, and other firms’ variable cost and demand shocks. Unlike in
a linear model, it would be hard to argue that these errors are all aggregated as a scalar variable in this nonlinear outcome
model, since it is not known in which fashion they enter the equation.

Appendix D. Formal notation for equilibrium regions

We begin by introducing some notation for equilibrium profiles. For k = 1, . . . , S, let ek be an S-vector of all zeros
except for the kth element which is equal to one, and let e0 ≡ (0, . . . , 0). For j = 0, . . . , S, define ej ≡

∑j
k=0 ek,

which is an S-vector where the first j elements are unity and the rest are zero. For a set of positive integers, define a
permutation function σ : {n1, . . . , nS} → {n1, . . . , nS}, which has to be a one-to-one function.30 Let Σ be a set of all
possible permutations. Define a set of all possible permutations of ej = (ej1, . . . , e

j
S) as

Dj
≡

{
d j

: d j
= (σ (ej1), . . . , σ (ejS)) for σ (·) ∈ Σ

}
(D.1)

29 In this case, Assumption M should be imposed on ϵs,D for each s.
30 For example,(

n1 n2 n3 n4 n5
σ (n1) σ (n2) σ (n3) σ (n4) σ (n5)

)
=

(
1 2 3 4 5
2 1 5 3 4

)
.

755



J.F. Balat and S. Han Journal of Econometrics 234 (2023) 732–757

f
a

a

or j = 0, . . . , S. Note Dj is constructed to be a set of all equilibrium profiles with j treatments selected or j entrants,
nd it partitions D =

⋃S
j=0 D

j. There are S!/j!(S − j)! distinct d j’s in Dj. For example with S = 3, d2
∈ D2

=

{(1, 1, 0), (1, 0, 1), (0, 1, 1)} and d0
∈ D0

= {(0, 0, 0)}. Note d0
= e0 = (0, . . . , 0) and dS

= eS = (1, . . . , 1).
Let D(z) ≡ (D1(z), . . . ,DS(z)) where z ≡ (z1, . . . , zS) and Ds(z) is the potential treatment decision had the player s

been assigned Z = z . We are interested in characterizing a region R of U ≡ (U1, . . . ,US) in U ≡ (0, 1]S that satisfies
U ∈ R ⇔ D(z) ∈ Dj for some j. For each equilibrium profile, we define regions of U that are Cartesian products in U . With
a slight abuse of notation, let d j

−s ≡ (σ (ej1), . . . , σ (ejs−1), σ (ejs+1), . . . , σ (ejS−1)) for 0 ≤ j ≤ S − 1:

Rd0 (z) ≡

S∏
s=1

(
νs(d0

−s, zs), 1
]
, RdS (z) ≡

S∏
s=1

(
0, νs(dS−1

−s , zs)
]

nd, given d j
= (σ (ej1), . . . , σ (ejS)) for some σ (·) ∈ Σ31 and j = 1, . . . , S − 1,

Rdj (z)

≡

⎧⎨⎩U : (Uσ (1), . . . ,Uσ (S)) ∈

{ j∏
s=1

(
0, νσ (s)(d j−1

−σ (s), zσ (s))
]}

×

⎧⎨⎩
S∏

s=j+1

(
νσ (s)(d j

−σ (s), zσ (s)), 1
]⎫⎬⎭

⎫⎬⎭ (D.2)

For example, when S = 3 and for σ (·) such that d1
= (σ (1), σ (0), σ (0)) = (0, 1, 0), we have

R010(z) =
(
ν1(1, 0, z1), 1

]
×

(
0, ν2(0, 0, z2)

]
×

(
ν3(0, 1, z3), 1

]
.

Fig. 9 depicts all Rdj (z)’s for a given z when S = 3 and Fig. 10 shows all the regions of multiple equilibria in that case.
Finally, we define the region of all equilibria with j treatments selected or j entrants as

R j(z) ≡

⋃
dj∈Dj

Rdj (z). (D.3)

Appendix E. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.12.015.
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