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Motivation

Many economic interactions are strategic

Researchers often bring models of games to data

I to estimate primitives and perform counterfactual simulations

One such primitive is the information available to players as they
interact and generate the data

(i) information is needed to evaluate counterfactual policies, or

(ii) information may be of independent economic interest

I e.g., do politically connected firms get preferential info in
procurement auctions? (Baltrunaite 20)

In either case, information structure prevailing in strategic
interaction is seldom known to the researcher



An Example

Discrete game:

I yi ∈ {1, 0}: “enter” or “not enter”

I firm i ’s profit: πi (y , εi ; x , θ)
• e.g. πi (y , εi ; x , θ) = x ′β + ∆y−i + εi

• the payoff states εi are unobservable to the researcher

What do the players know about ε ≡ (ε1, ε2)?

I some players may know more than others

I they may know something in common

Predictions change depending on how the analyst specifies the
information structure

With data and background alone, specifying info structure is hard



What This Paper Does

We represent information structures as high-dimensional
nonparametric objects

We formulate statistical hypotheses to test whether the information
structure prevailing in the data exceeds a certain baseline

We adopt the ordering of information structures, which respects
incentive ordering (Bergemann & Morris 16)

We construct a bootstrap-based test that is asymptotically valid

We obtain as a by-product confidence set on payoff parameters

Application: we investigate information asymmetries in airline entry
due to hubbing
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Primitives



Setup

Primitives of a game:
I i ∈ N: players

I yi ∈ Yi : player i ’s action

I x ∈ X : game characteristics

I εi ∈ Ei : payoff state;
ε ≡ (εi )i∈N ∼ F (·; θ): prior
belief

I πi (y , εi ; x , θ): player i ’s
payoff

What an analyst sees:
I i ∈ N: players

I yi ∈ Yi : player i ’s action

I x ∈ X : game characteristics

We focus on discrete games (i.e., Yi is finite)

The players have common knowledge of the game, know (x , θ), but
their knowledge of ε may be limited



Information Structure

Player i receives a private signal τ xi

τ x ≡ (τ x1 , . . . , τ
x
|N|) ∼ Px

τ |ε

I τ xi is higher-order belief that carries info on payoff states ε

An information structure is a map from x to the conditional laws of
the signals:

S : x 7→
(
T x ,

{
Px
τ |ε : ε ∈ E

})
We view S(·) as a nonparametric object

The payoff primitives and information structure define a game:

Γx(θ,S)



Equilibrium Concept

The individuals play a Bayes Nash equilibrium (BNE):

I σi : T x
i → ∆(Yi )

I A strategy profile σ ≡
(
σ1, . . . , σ|N|

)
is a BNE of Γx(θ,S) if σi

is a best response to σ−i for all i

Define the set of BNE predictions:

Qθ,S
BNE (x) ≡

{
q(·|x) ∈ ∆|Y |

∣∣∣ q (y |x) = E [σ(y |ε, τ)|x ], σ ∈ BNE x(θ,S)
}

I the set of conditional choice probabilities (CCPs) induced by
equilibria in Γx(θ,S)

I Qθ,S
BNE (x) requires the knowledge of S

I calculating this set requires finding all fixed points of
best-response conditions



Information Ordering



Baseline Information Structure
Specifying S exactly can be hard

Instead, we consider testing if S is at least as informative as certain
baseline S r

Example. incomplete information: SInc

I τi reveals εi only and is not informative about ε−i

Example. public signals: SPub

I εi = νi + εi

I for each player, τi reveals the opponent’s shock ν−i

Example. privileged signals: SPriv ,1

I τ1 fully reveals ε ≡ (ε1, ε2); τ2 is only informative on ε2

Example. complete information: SComp

I τi fully reveals ε ≡ (ε1, ε2)



Baseline Information

The information structure can vary across x (e.g., markets)

Example. privileged signals at hub airports

S r (x) =

{
SPriv ,1 x1 = 1
SInc x1 = 0

where x1 = 1{Airport = Hub for Player 1}



Information Ordering

We want to state that the actual information structure S is at least
as informative as a baseline S r

I requires appropriate notion of informativeness

I Bergemann & Morris 16

I multi-agent generalization of Blackwell 51’s information ordering



Information Ordering

Definition (Individual Sufficiency)

S1(x) is individually sufficient for S2(x) if there exist a combined
information structure S∗(x) such that

τ2i |τ1i , τ1−i , ε ∼ τ2i |τ1i , ∀i

That is, τ2i is independent of (τ1−i , εi , ε−i ) given τ1i . Combination

I S2(x) conveys no new information to any player about the
payoff state and higher-order beliefs about the state

Write

S1 � S2

if S1(x) is individually sufficient for S2(x) for all x ∈ X



Hypothesis Tests



Hypothesis

We test

H0 : S � S r v.s. H1 : S 6� S r

I H0: players observe more info than S r

I e.g., S r (x) = SPriv ,1(x) at hub airports



Testing Hypothesis

Recall, we assume CCPs are generated from BNE with S

How to contrast the data (captured in CCPs) with the hypothesis
on information ordering?

To this end, we consider a solution concept (Bayes correlated
equilibrium, Bergemann & Morris 16) that...

I incorporates the information ordering,

I which corresponds to the incentive ordering,

I and thus the ordering of equilibrium predictions



Bayes Correlated Equilibrium (BCE)

A Bayes correlated equilibrium (BCE) νx for the game Γx(θ,S r ) is
a probability measure νx over actions profiles, payoff types, and
signals that are:

1. consistent: for any measurable A ⊂ E × T ,∫
A

∫
Y
νx(dy , dε, dt) =

∫
A
Px
τ |ε(dt|ε)F (dε; θε)

2. incentive compatible: for yi , εi , τi s.t. νx (yi | εi , τi ) > 0,

Eνx [πi (yi , y−i , εi ; x , θπ) | yi , τi ] ≥ Eνx
[
πi
(
y ′i , y−i , εi ; x , θπ

)
| yi , τi

]
∀y ′i ∈ Yi

where Eνx [·] is taken w.r.t. the conditional equilibrium
distribution νx (y−i , ε−i , τ−i | yi , εi , τi )



How Do We Use BCE

Here is how we interpret BCE

The individuals play a BNE under unknown info structure S

From the analyst’s point of view, their behavior is consistent with
the following story:

1. there’s a baseline info structure S r ; the players may know
more than S r

2. a mediator observes ε ∼ F (·; θπ) and τ ∼ Pτ |ε under S r

3. the mediator draws y ∼ ν(y |τ, ε) and privately tells each i to
play yi

4. the players obey the mediator’s recommendation

This view is convenient because we do not need to know the precise
form of S (as long as S � S r )



Predictions

For a game Γx(θ,S), the set of BCE predictions is:

QBCE
θ,S (x) ≡

{
q(·|x) ∈ ∆|Y|

∣∣∣q(y |x) =

∫
E×T

νx (y , dε, dτ) ,

νx ∈ BCE x(θ,S)}

What’s useful for us is the relationship between the BNE and BCE
predictions:

Proposition
Suppose the data are generated by a BNE in Γx(θ,S) and S � S r

Then, for all θ ∈ Θ and x ∈ X ,

Py |x︸︷︷︸
identified

∈ Qθ,S
BNE (x) ⊆ QBCE

θ,S r (x)︸ ︷︷ ︸
specified, convex



BCE Predictions

Figure: Colored dots: BNE CCPs with varying signal precisions (S = SInc
if q = 0.5; S = SPub if q = 1)



Ordering of Information into Ordering of Functions

H0 : S � S r v.s. H1 : S 6� S r

If data are generated from a BNE under info structure S , then

Py |x ∈ Qθ,S
BNE (x) ⊆ Qθ,S r

BCE (x), ∀x ∈ X (1)

I can detect the violation of H0 if observed CCP is outside BCE
prediction Testability

(1) can be translated into an ordering of functions

b′Py |x ≤ h(b,Qθ,S r
BCE (x)), ∀b ∈ Bx and ∀x ∈ X

where h(·,A) is the support function of set A Support Function

I this allows us to work with functions rather than sets



Test Statistic

Let (yn, xn) ≡ (y`, x`)
n
`=1 be random sample drawn across markets

Let P̂n,x be a vector of empirical CCPs

Define

Tn(θ) ≡ sup
x∈X

sup
b∈Bn,x

√
n{b′P̂n,x − h(b,Qθ,S r

BCE (x))}

where Bn,x is a “unit ball” with ÂsyVar(P̂n,x)-weighted norm

I Tn(θ) = 0 if P̂n,x ∈ Qθ,S r
BCE (x) and Tn(θ) > 0 otherwise

I using the variance-weighted ellipsoid Bn,x has the effect of
studentization

I easy to compute via convex quadratic program Computation



Bootstrap
Consider a (empirical) bootstrap version of Tn(θ)

T ∗n (θ) ≡ sup
(b,x)∈Ψn,θ

{G∗n(b, x)}

where

I G∗n(b, x) ≡
√
nb′(P̂∗n,x − P̂n,x): bootstrapped empirical process

I Ψn,θ ≡ {(b, x) : b′P̂n,x − h(b,QBCE
θ,S r (x)) ≥ −τn}: a

conservative estimator of the “contact set”Ψθ

Ψθ ≡ {(b, x) : b′Py |x = h(b,QBCE
θ,S r (x))}

I Andrews & Soares 10; Chernozhukov et al 13

Define the bootstrap p-value by

pn(θ) ≡ P∗(T ∗n (θ) > Tn(θ)|yn, xn)



Asymptotic Size Control

Let φ(yn, xn) ≡ 1{ supθ∈Θ pn(θ) ≤ α}

Theorem (Asymptotic Size)
Under H0,

lim sup
n→∞

sup
P∈P

EP [φ] ≤ α

where P is the set of distributions of (y , x) that satisfy our
assumptions and regularity conditions.



Extension: Testing Multiple Hypotheses
The analyst may consider testing a sequence of hypotheses

I to refine her understanding of the game’s info structure

Example. Suppose H0 : S � SPriv

I even if H0 is not rejected, it is not definitive that S = SPriv

I it is plausible that S = SComp, because SComp � SPriv

Instead, suppose the analyst test two nulls of the form:

H0,j : S � S r
j for j = 1, 2

where S r
1 = SComp and S r

2 = SPriv

I suppose H0,2 is not rejected (as before) while H0,1 is

I then, stronger evidence towards the player’s privileged info

We introduce a modified version of Holm 79

I to control for family-wise error rate (and thus asymptotic size)



Monte Carlo Experiments



Simulation Design

Two-player binary response game:

πi (y , εi ; x , θπ) = xβ + ∆y−i + εi , i = 1, 2

I εi = νi + εi with νi ∈ {−η, η}; x ∈ {−M,M}

Under S , each player receives a signal about ν−i

q ≡ P(ti = ν̄−i |ν−i = ν̄−i )

The precision of the signal is controlled by q

I q → 1
2 : uninformative signal (i.e., SInc)

I q → 1: signal reveals ν−i (i.e., SPub)

We select a BNE and generate a sample of size n = 1000

We test H0 : S � SPub against H1 : S 6� SPub



BCE Predictions

Figure: Colored dots: BNE CCPs with varying signal precisions (S = SInc
if q = 0.5; S = SPub if q = 1)



Power Properties

Figure: The Rejection Probability of the Test



An Empirical Application



An Empirical Question

Consider hubbing in the airline industry in the US

Q: When considering entry on potential new routes that originate in
its hub, does the hub airline benefit from the superior ability to
forecast demand and a better understanding of costs?

Data:

I Department of Transportation’s Origin and Destination Survey
(DB1B) and Domestic Segment (T-100) database

I markets (cross-sectional units): origin and destination airports
in a given quarter

I potential entrants: American (AA), Delta (DL), United (UA),
Southwest (WN), a medium-size airline, and a low-cost carrier



Players

We focus on hubs for AA, DL, UA, WN

We aggregate airlines into three players for each market (e.g.,
Atlanta - Airport X)

I hub airline (e.g., DL)

I non-hub airline (e.g., AA, UA, WN)

I non-major airline (e.g., midsize, LCC)

Observable covariates include airport presence (Berry 92), cost
(Ciliberto & Tamer 09), and market characteristics (population, per
capita income)



Hypothesis

We test aggregate null hypothesis

H0 : S � SPriv ,Hub v.s. H1 : S 6� SPriv ,Hub

and market-specific null hypothesis

H0,x : S(x) � SPriv ,Hub(x) v.s. H1,x : S(x) 6� SPriv ,Hub(x)

I the baseline information structure is SPriv ,Hub:
• τHub reveals ε;

• τi for other i ’s only reveals their own payoff state

• i.e., εi = νi + εi , and τHub reveals ν−Hub

I covariates x : market size, each player’s market presence
• total 16 market types



Informational Priviledge of Hub Airline
H0 is rejected with infθ{Tn(θ)− c∗0.05(θ)} = 86.76

I Bayesian optimization algorithm for infθ

H0,x is rejected for some (but not all) x

I “not rejected” even when hub airline has low market presence

I rejected in markets where hub and non-major airlines have
high market presence CS for Null Markets

Market → 0001 0010 0011 0111 1000 1001 1011 1101 T − c

Iter. 117 5.91 5.29 0.00 76.85 0.00 0.32 7.30 91.59 82.68

Iter. 122 5.91 6.86 0.00 80.01 0.76 3.89 9.17 94.68 85.90

Iter. 132 5.91 3.78 0.00 88.95 5.01 3.89 13.42 103.44 94.37

Iter. 135 1.30 4.28 0.00 89.67 6.75 3.88 15.16 104.15 94.93

Iter. 149 0.00 3.91 0.00 87.94 4.75 2.88 13.16 102.45 93.46

Table: Market-Specific Test Results (some columns omitted)



Conclusions



Concluding Remarks

The actual information structure of a strategic environment is a
complex parameter

Nonetheless, it plays a crucial role in evaluating the model’s
empirical contents and making counterfactual predictions

The paper develops a test of hypotheses on the information
structure

It will allow the researcher to

I investigate the players’ information asymmetries;

I investigate how the info structure varies with market/game
characteristics;

I use QBCE
θ̃,S r (x̃) for counterfactual predictions



Thank You! ,



Combining Signals

Definition (Combination)
The information structure (at x)

S∗(x) ≡
(
T ∗x ,

{
P∗,xτ |ε : ε ∈ E

})
is a combination of S1(x) and S2(x) if

T ∗i ,x = T 1
i ,x × T 2

i ,x , for each i∫
P∗,xτ∗|ε(τ

1, τ2|ε)dτ1 = P2,x
τ2|ε(τ

2|ε) for each τ2and i∫
P∗,xτ∗|ε(τ

1, τ2|ε)dτ2 = P1,x
τ1|ε(τ

1|ε), for each τ1and i

I we consider a coupling of the signals (given ε) Return



Testability
Consider a simple example with two players:

I πi (y , εi ) = yi (−∆jy−i + εi ) for (∆1,∆2) ∈ Θ = (0, 1]2 and

εi
iid∼ U[−1, 1]

Suppose S r = SC as the baseline

BCE predicts the sharp LB for the prob of e.g. y = (1, 0) as

LB∆ =
1
4

(1 + ∆2(1−∆1)) ≥ 0.25, ∀(∆1,∆2) ∈ Θ

Let ∆∗ ≡ (∆∗1,∆
∗
2) be the true parameter value

Suppose S = SI , then a BNE under SI induces the following CCP:

P10 ≡ P(y = (1, 0)) =
1 + ∆∗2

(2 + ∆∗1)(2 + ∆∗2)

I e.g., if ∆∗1 = ∆∗2 = 0.5, then P10 = 0.24 < LB∆ for all ∆

Hence, we can detect the violation of H0 by comparing the CCP
and BCE prediction (i.e., LB∆) Return



Support Function
The support function

h(b,A) ≡ sup
q∈A

b′q, b ∈ Bx

is a continuous function on the “unit ball”:

Bx ≡ {b ∈ R|Y | : ‖b‖Wx≤ 1}, ‖b‖Wx = (b′Wxb)1/2

where Wx ≡ AsyVar(P̂n,x)

A

Return



Computation
A key object is

Vn,x(θ) ≡ sup
b∈Bn,x

√
n{b′P̂n,x − h(b,QBCE

θ,S r (x))}

= sup
b∈Bn,x

inf
q∈QBCE

θ,Sr
(x)

√
n
[
b′P̂n,x − b′q

]
(P0)

Problem (P0) can be recast as a convex quadratic program:

Vn,x(θ) = max
lb≤w≤ub

−γ′w

s.t.w ′Γ1w ≤ 1
Γ2w = 0|Y |
Γ3w ≤ 0dν

I w ≡ (b′, λ′eq, λ
′
ineq)′ stacks b ∈ R|Y | and Lagrange multipliers

associated with the constraints Return



Confidence Set for x Satisfying Null

H0,x : S(x) � SPriv ,Hub(x)

Let X0 be the set of x ’s for which H0,x is true

Define

Tx(θ) ≡ sup
b∈Bn,x

{b′Py |x − h(b,QBCE
θ,S r (x))}

Define the bootstrap p-value as

pn(θ, x) ≡ P∗(T ∗n,x(θ) > Tn,x(θ)|yn, xn)

I Tn,x and T ∗n,x are sample and bootstrap analogs of Tx

Then define a confidence set for X0 as:

CSn ≡ {x : pn(x) > αx}

where αx is chosen to control for FWER Return


